dc.contributor.author
D'Addezio, Marco
dc.date.accessioned
2019-07-10T13:25:18Z
dc.date.available
2019-07-10T13:25:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25014
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2769
dc.description.abstract
In this thesis we study the monodromy groups of lisse sheaves and isocrystals in positive characteristic.
The first aim is to prove independence results for objects with the same L-function.
In the last section we show the finiteness of perfect torsion points of an abelian variety. This
extends a theorem of Lang-Néron and answers positively a question of Esnault.
en
dc.format.extent
87 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
lisse sheaves
en
dc.subject
monodromy groups
en
dc.subject
abelian varieties
en
dc.subject
positive characteristic
en
dc.subject
independence
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::513 Arithmetic
dc.title
Monodromy groups in positive characteristic
dc.contributor.gender
male
dc.contributor.firstReferee
Esnault, Hélène
dc.contributor.furtherReferee
Tsuzuki, Nobuo
dc.date.accepted
2019-02-07
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-25014-1
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept