Space usage has been a concern since the very early days of algorithm design. The increased availability of devices with limited memory or power supply – such as smartphones, drones, or small sensors – as well as the proliferation of new storage media for which write access is comparatively slow and may have negative effects on the lifetime – such as flash drives – have led to renewed interest in the subject. As a result, the design of algorithms for the limited workspace model has seen a significant rise in popularity in computational geometry over the last decade. In this setting, we typically have a large amount of data that needs to be processed. Although we may access the data in any way and as often as we like, write-access to the main storage is limited and/or slow. Thus, we opt to use only higher level memory for intermediate data (e.g., CPU registers). Since the application areas of the devices mentioned above – sensors, smartphones, and drones – often handle a large amount of geographic (i.e., geometric) data, the scenario becomes particularly interesting from the viewpoint of computational geometry. Motivated by these considerations, we investigate geometric problems in the limited workspace model. In this model the input of size n resides in read-only memory, an algorithm may use a workspace of size s = {1, . . . , n} to read and write the intermediate data during its execution, and it reports the output to a write-only stream. The goal is to design algorithms whose running time decreases as s increases, which provides a time-space trade-off. In this thesis, we consider three fundamental geometric problems, namely, computing different types of Voronoi diagrams of a planar point set, computing the Euclidean minimum spanning tree of a planar point set, and computing the k-visibility region of a point inside a polygonal domain. Using several innovative techniques, we either achieve the first time-space trade-offs for those problems or improve the previous results.
Der Speicherplatzbedarf ist seit den Anfängen des Algorithmenentwurfs von Interesse. Die erhöhte Verfügbarkeit von Geräten mit begrenztem Speicherplatz oder begrenzter Stromversorgung – wie Smartphones, Drohnen oder kleine Sensoren – sowie die Verbreitung neuer Speichermedien, bei denen der Schreibzugriff vergleichsweise langsam ist und negative Auswirkungen auf die Lebensdauer haben kann – wie beispielsweise Flash-Laufwerken – haben zu erneuter Aufmerksamkeit für dieses Thema geführt. In der Folge hat der Entwurf von Algorithmen für das Limited Workspace Model (Modell mit begrenztem Arbeitsspeicher) in den letzten zehn Jahren einen signifikanten Anstieg an Popularität in der algorithmischen Geometrie erfahren. In diesem Setting haben wir in der Regel eine große Menge an Daten, die verarbeitet werden müssen. Obwohl wir auf die Daten beliebig oft und in beliebiger Weise zugreifen können, ist der Schreibzugriff auf den Hauptspeicher begrenzt und/oder langsam. Zwischenergebnisse werden daher nur in einem kleineren, übergeordneten Speicher (z. B. CPU-Register) abgelegt. Da die Anwendungsbereiche der oben genannten Geräte – Sensoren, Smartphones und Drohnen – oft mit einer großen Menge an geografischen (d. h., geometrischen) Daten umgehen, ist dieses Szenario aus Sicht der algorithmischen Geometrie besonders interessant. Motiviert durch diese Überlegungen haben wir geometrische Probleme im Limited Workspace Model untersucht. In diesem Modell befindet sich die Eingabe der Größe n in einem schreibgeschützten Speicher, ein Algorithmus kann einen Arbeitsspeicher der Größe s = {1, . . . , n} verwenden, um die Zwischendaten während der Ausführung zu lesen und zu schreiben. Die Ausgabe sendet er an einen lesegeschützten Stream. Ziel ist es, Algorithmen zu entwickeln, deren Laufzeit mit zunehmender Verfügbarkeit an Arbeitsspeicher abnimmt, was einen Time-Space Trade-Off (Laufzeit-Speicher-Abwägung) darstellt. In dieser Arbeit betrachten wir drei grundlegende geometrische Probleme, nämlich die Berechnung verschiedener Arten von Voronoi-Diagrammen einer Punktmenge in der Ebene, die Berechnung des euklidischen minimalen Spannbaums einer ebenen Punktmenge und die Bestimmung der k-Sichtbarkeitsregion (k-visibility region) eines Punkts innerhalb eines polygonalen Gebiets. Mit mehreren innovativen Techniken entwickeln wir entweder die ersten Time-Space Trade-Offs für diese Probleme oder verbessern die bisherigen Ergebnisse.