dc.contributor.author
Beckenbach, Isabel Leonie
dc.date.accessioned
2019-04-12T09:23:12Z
dc.date.available
2019-04-12T09:23:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/24385
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2157
dc.description.abstract
In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory.
In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of König and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall’s condition for bipartite graphs.
In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs.
In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs.
In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.
en
dc.description.abstract
Diese Arbeit untersucht Matchings und Flüsse in Hypergraphen mit Hilfe kombinatorischer Methoden. In Graphen gehören diese Probleme zu den grundlegendsten der kombinatorischen Optimierung. Viele Resultate lassen sich nicht von Graphen auf Hypergraphen verallgemeinern, da Hypergraphen ein sehr abstraktes Konzept bilden. Daher schauen wir uns bestimmte Klassen von Hypergraphen an, die mehr Struktur besitzen, und nutzen diese aus um Resultate aus der Graphentheorie zu übertragen. In Kapitel 2 betrachten wir das perfekte Matchingproblem auf Klassen von „bipartiten“ Hypergraphen, wobei es verschiedene Möglichkeiten gibt den Begriff „bipartit“ auf Hypergraphen zu definieren. Für sogenannte partitionierte Hypergraphen geben wir einen polynomiellen Approximationsalgorithmus an, dessen Gütegarantie bis auf eine Konstante bestmöglich ist. Danach betrachten wir die Sätze von Konig und Hall und untersuchen deren Zusammenhang. Unser Hauptresultat ist eine Bedingung für die Existenz von perfekten Matchings auf normalen Hypergraphen, die Halls Bedingung für bipartite Graphen verallgemeinert. Als Verallgemeinerung von perfekten Matchings betrachten wir in Kapitel 3 perfekte f-Matchings, f-Faktoren und (g, f)-Matchings. Wir beweisen Bedingungen für die Existenz von (g, f)-Matchings auf unimodularen Hypergraphen, perfekten f-Matchings auf uniformen Mengerschen Hypergraphen und f-Faktoren auf uniformen balancierten Hypergraphen. Außerdem geben wir eine Übersicht über die Komplexität des (g, f)-Matchingproblems auf verschiedenen Klassen von Hypergraphen an, die bipartite Graphen verallgemeinern. In Kapitel 4 untersuchen wir die Struktur von Hypergraphen, die ein perfektes Matching besitzen. Wir zeigen, dass diese Hypergraphen entlang spezieller Schnitte zerlegt werden können. Für Graphen weiß man, dass die so erhaltene Zerlegung eindeutig ist, was im Allgemeinen für Hypergraphen nicht zutrifft. Wenn man jedoch uniforme Hypergraphen betrachtet, dann liefert jede Zerlegung die gleichen unzerlegbaren Hypergraphen bis auf parallele Hyperkanten. Kapitel 5 beschäftigt sich mit Flüssen in gerichteten Hypergraphen, wobei wir Hypergraphen betrachten, die auf gerichteten Graphen basieren. Das bedeutet, dass eine Hyperkante die Vereinigung einer Menge von disjunkten Kanten ist. Wir definieren ein Residualnetzwerk, mit dessen Hilfe man entscheiden kann, ob ein gegebener Fluss optimal ist. Unser Hauptresultat in diesem Kapitel ist ein Algorithmus, um einen Fluss minimaler Kosten zu finden, der den Netzwerksimplex verallgemeinert.
de
dc.format.extent
xiii, 194 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Balanced Hypergraphs
en
dc.subject
Normal Hypergraphs
en
dc.subject
Mengerian Hypergraphs
en
dc.subject
Network Flows
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Matchings and Flows in Hypergraphs
dc.contributor.gender
female
dc.contributor.firstReferee
Borndörfer, Ralf
dc.contributor.furtherReferee
Hochstättler, Winfried
dc.date.accepted
2019-03-22
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-24385-6
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access