dc.contributor.author
Roth, I.
dc.contributor.author
Kueng, R.
dc.contributor.author
Kimmel, S.
dc.contributor.author
Liu, Y.-K.
dc.contributor.author
Gross, D.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Kliesch, M.
dc.date.accessioned
2019-02-28T12:28:04Z
dc.date.available
2019-02-28T12:28:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23974
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1749
dc.description.abstract
Characterizing quantum processes is a key task in the development of quantum technologies, especially at the noisy intermediate scale of today’s devices. One method for characterizing processes is randomized benchmarking, which is robust against state preparation and measurement errors and can be used to benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity—a figure of merit characterizing the coherence of a process.
en
dc.subject
Quantum benchmarking
en
dc.subject
Quantum gates
en
dc.subject
Quantum sensing
en
dc.subject
Quantum theory
en
dc.subject
Quantum tomography
en
dc.subject
Group theory
en
dc.subject
Probability theory
en
dc.subject
Random matrix theory
en
dc.subject
Quantum Information
en
dc.subject.ddc
500 Natural sciences and mathematics::530 Physics::539 Modern physics
dc.title
Recovering Quantum Gates from Few Average Gate Fidelities
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
170502
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.121.170502
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
17
dcterms.bibliographicCitation.volume
121
dcterms.bibliographicCitation.url
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170502
dcterms.rightsHolder.note
Copyright des Verlages
dcterms.rightsHolder.url
http://journals.aps.org/copyrightFAQ.html#post
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1079-7114 (Online)
dcterms.isPartOf.issn
0031-9007 (Print)