dc.contributor.author
Natali, M.
dc.contributor.author
Bazzan, I.
dc.contributor.author
Goberna-Ferrón, S.
dc.contributor.author
Al-Oweini, R.
dc.contributor.author
Ibrahim, M.
dc.contributor.author
Bassil, B. S.
dc.contributor.author
Dau, Holger
dc.contributor.author
Scandola, F.
dc.contributor.author
Galán-Mascarós, J. R.
dc.contributor.author
Kortz, U.
dc.contributor.author
Sartorel, A.
dc.contributor.author
Zaharieva, Ivelina
dc.contributor.author
Bonchio, M.
dc.date.accessioned
2018-12-14T12:02:15Z
dc.date.available
2018-12-14T12:02:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23589
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1375
dc.description.abstract
Multi-nuclear cobalt cores have been proposed as molecular analogues of the natural oxygen evolving complex, enabling water oxidation for artificial photosynthesis schemes and the production of solar fuels. In particular, cobalt containing polyoxometalates (Co-POMs) display a record activity as water oxidation catalysts (WOCs) in terms of the turnover number, turnover frequency, and quantum yield, when combined in a light activated oxygen evolving cycle with Ru(bpy)32+ (bpy = 2,2′-bipyridine) as the photosensitizer. The unique behavior of high-nuclearity cobalt clusters is addressed herein by employing Co-POMs with Co ≥9 as molecular WOCs. The temporal dissection of the catalytic events is framed herein to investigate the initial photo-induced electron transfer (ET) occurring in the micro-to-millisecond time domain, and followed by the oxygen evolution kinetics taking place within a minute-to-hours regime. In particular, flash photolysis shows ET from the Co-POM to photogenerated Ru(bpy)33+ with well-behaved diffusional kinetics (bimolecular rate constants in the range kET = 2.1–5.0 × 109 M−1 s−1) and counting up to 32 ET events in a 60 ms timeframe. The evolution of the Co-POMs is then traced under oxygenic conditions, where infrared and X-ray absorption spectroscopy (XAS) indicate that POM based structures are competent catalysts under the photo-assisted turnover regime.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
artificial photosynthesis
en
dc.subject
natural oxygen evolving complex
en
dc.subject
high-nuclearity cobalt clusters
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/C7GC00052A
dcterms.bibliographicCitation.journaltitle
Green Chemistry
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
2416
dcterms.bibliographicCitation.pageend
2426
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
http://xlink.rsc.org/?DOI=C7GC00052A
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.funding.id
Open Access Publikation in Allianzlizenz (RSC)
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1463-9262 (Print)
dcterms.isPartOf.issn
1463-9270 (Online)