The development of simple to prepare, polarization‐sensitive plasmonic apertures with two plasmonic modes, is described. To achieve these results, monocrystalline nanosphere lithography masks of 438 nm polystyrene spheres are modified with reactive ion etching before silver is subsequently evaporated through the mask at varied angles. As the angle of evaporation increases, round apertures, elliptical apertures or lines with bow‐tie like features between two lines are produced. A primary plasmon mode is shown at 570 nm, while a tunable plasmon mode is demonstrated between 700 nm and 900 nm. Finite‐difference time‐domain calculations agree with the observed results and predict that this method of fabrication can produce tunable plasmonic features throughout the NIR optical telecommunication wavelength range. Lastly, the excitation polarization angle is compared with that of plasmonic nanorods and asymmetric nano‐apertures systems to describe why the excitation polarization of the low energy mode is orthogonal to the long axis of the apertures.