dc.contributor.author
Mardt, Andreas
dc.contributor.author
Pasquali, Luca
dc.contributor.author
Wu, Hao
dc.contributor.author
Noé, Frank
dc.date.accessioned
2018-11-05T12:31:54Z
dc.date.available
2018-11-05T12:31:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23172
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-964
dc.description.abstract
There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Molecular modelling
en
dc.subject
Theoretical chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
VAMPnets for deep learning of molecular kinetics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
5
dcterms.bibliographicCitation.doi
10.1038/s41467-017-02388-1
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-017-02388-1
refubium.affiliation
Mathematik und Informatik
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dc.relation.hascorrection
https://refubium.fu-berlin.de/handle/fub188/23305
dcterms.isPartOf.issn
2041-1723