dc.contributor.author
Imber, Marcel
dc.contributor.author
Loi, Vu Van
dc.contributor.author
Reznikov, Sylvia
dc.contributor.author
Fritsch, Verena Nadin
dc.contributor.author
Pietrzyk-Brzezinska, Agnieszka J.
dc.contributor.author
Prehn, Janek
dc.contributor.author
Hamilton, Chris
dc.contributor.author
Wahl, Markus C.
dc.contributor.author
Bronowska, Agnieszka K.
dc.contributor.author
Antelmann, Haike
dc.date.accessioned
2018-07-19T07:16:42Z
dc.date.available
2018-07-19T07:16:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22484
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-291
dc.description.abstract
Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.
en
dc.format.extent
12 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
de
dc.subject
Staphylococcus aureus
en
dc.subject
Bacillithiol
en
dc.subject
Hypochlorite stress
en
dc.subject
MD simulations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::579 Mikroorganismen, Pilze, Algen
de
dc.title
The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.doi
10.1016/j.redox.2018.02.001
dcterms.bibliographicCitation.journaltitle
Redox Biology
dcterms.bibliographicCitation.pagestart
557
dcterms.bibliographicCitation.pageend
568
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.redox.2018.02.001
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.affiliation.other
Institut für Biologie

de
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2213-2317