dc.contributor.author
Walter, Paul
dc.contributor.author
Groß, Markus
dc.contributor.author
Schmid, Timo
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2018-06-08T11:45:20Z
dc.date.available
2017-08-14T12:46:09.976Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22052
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25256
dc.description.abstract
Among a variety of small area estimation methods, one popular approach for the
estimation of linear and non-linear indicators is the empirical best
predictor. However, parameter estimation using standard maximum likelihood
methods is not possible, when the dependent variable of the underlying nested
error regression model, is censored to specific intervals. This is often the
case for income variables. Therefore, this work proposes an estimation method,
which enables the estimation of the regression parameters of the nested error
regression model using interval censored data. The introduced method is based
on the stochastic expectation maximization algorithm. Since the stochastic
expectation maximization method relies on the Gaussian assumptions of the
error terms, transformations are incorporated into the algorithm to handle
departures from normality. The estimation of the mean squared error of the
empirical best predictors is facilitated by a parametric bootstrap which
captures the additional uncertainty coming from the interval censored
dependent variable. The validity of the proposed method is validated by
extensive model-based simulations.
en
dc.format.extent
19 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000720-9
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Small area estimation
dc.subject
empirical best predictor
dc.subject
nested error regression model
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.title
Estimation of Linear and Non-Linear Indicators using Interval Censored Income
Data
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000027507
refubium.series.issueNumber
2017,22 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000008608
dcterms.accessRights.openaire
open access