dc.contributor.author
Kreutzmann, Ann-Kristin
dc.contributor.author
Pannier, Sören
dc.contributor.author
Rojas-Perilla, Natalia
dc.contributor.author
Schmid, Timo
dc.contributor.author
Templ, Matthias
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2018-06-08T11:45:16Z
dc.date.available
2017-06-01T11:51:52.527Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22049
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25253
dc.description.abstract
The R package emdi offers a methodological and computational framework for the
estimation of regionally disaggregated indicators using small area estimation
methods and provides tools for assessing, processing and presenting the
results. A range of indicators that includes the mean of the target variable,
the quantiles of its distribution and complex, non-linear indicators or
customized indicators can be estimated simultaneously using direct estimation
and the empirical best predictor (EBP) approach (Molina and Rao 2010). In the
application presented in this paper package emdi is used for estimating
inequality indicators and the median of the income distributions for small
areas in Austria. Because the EBP approach relies on the normality of the
mixed model error terms, the user is further assisted by an automatic
selection of data-driven transformation parameters. Estimating the uncertainty
of small area estimates (using a mean squared error - MSE measure) is achieved
by using both parametric bootstrap and semi-parametric wild bootstrap. The
additional uncertainty due to the estimation of the transformation parameter
is also captured in MSE estimation. The semi-parametric wild bootstrap further
protects the user against departures from the assumptions of the mixed model
in particular, those of the unit-level error term. The bootstrap schemes are
facilitated by computationally effcient code that uses parallel computing. The
package supports the users beyond the production of small area estimates.
Firstly, tools are provided for exploring the structure of the data and for
diagnostic analysis of the model assumptions. Secondly, tools that allow the
spatial mapping of the estimates enable the user to create high quality
visualizations. Thirdly, results and model summaries can be exported to Excel™
spreadsheets for further reporting purposes.
en
dc.format.extent
21 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000720-9
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
offcial statistics
dc.subject
parallel computation
dc.subject
small area estimation
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::519 Wahrscheinlichkeiten, angewandte Mathematik
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::005 Computerprogrammierung, Programme, Daten
dc.title
The R Package emdi for Estimating and Mapping Regionally Disaggregated
Indicators
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000027116
refubium.series.issueNumber
2017,15 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000008275
dcterms.accessRights.openaire
open access