Recently, we introduced a novel hybridization route for carbon nanotubes using gold nanoparticles, whose close proximity neatly enhances their radiative emission. Here we investigate the mechanisms behind the enhancement by monitoring the de-excitation dynamics of our π-hybrids through two-color pump- probe time-resolved spectroscopy. The de-excitation process reveals a fast component and a slow component. We find that the presence of gold prominently affects the fast processes, indicating a stronger influence of the gold nanoparticle on the intra-band non-radiative relaxation than on the inter-band recombination of the single-walled carbon nanotube. By evaluating the de- excitation times, we estimate the balance between near-field pumping and the faster metal-induced de-excitation contributions, proving the enhanced pumping to be the leading mechanism.