dc.contributor.author
Abdo, Hosam
dc.contributor.author
Brandt, Stephan
dc.contributor.author
Dimitrov, Darko
dc.date.accessioned
2018-06-08T10:26:30Z
dc.date.available
2015-02-26T10:23:21.928Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20453
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23756
dc.description.abstract
In this note a new measure of irregularity of a graph G is introduced. It is
named the total irregularity of a graph and is defined as irrt(G) = 1 / 2∑u,v
∈V(G) |dG(u)-dG(v)|, where dG(u) denotes the degree of a vertex u ∈V(G). All
graphs with maximal total irregularity are determined. It is also shown that
among all trees of the same order the star has the maximal total irregularity.
en
dc.rights.uri
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/about/submissions#authorGuidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
The total irregularity of a graph
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Discrete Mathematics and Theoretical Computer Science. - 16 (2014), 1, S.
201–206
dcterms.bibliographicCitation.url
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2310
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000021923
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004586
dcterms.accessRights.openaire
open access