dc.contributor.author
Baldermann, Claudia
dc.contributor.author
Salvati, Nicola
dc.contributor.author
Schmid, Timo
dc.date.accessioned
2018-06-08T08:24:20Z
dc.date.available
2016-04-06T11:40:01.737Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20033
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23434
dc.description.abstract
Geographically weighted small area methods have been studied in literature for
small area estimation. Although these approaches are useful for the estimation
of small area means efficiently under strict parametric assumptions, they can
be very sensitive to outliers in the data. In this paper, we propose a robust
extension of the geographically weighted empirical best linear unbiased
predictor (GWEBLUP). In particular, we introduce robust projective and
predictive small area estimators under spatial non-stationarity. Mean squared
error estimation is performed by two different analytic approaches that
account for the spatial structure in the data. The results from the model-
based simulations indicate that the proposed approach may lead to gains in
terms of efficiency. Finally, the methodology is demonstrated in an
illustrative application for estimating the average total cash costs for farms
in Australia.
en
dc.format.extent
27 Seiten
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000532-8
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000006-7
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Bias correction
dc.subject
geographical weighted regression
dc.subject
mean squared error
dc.subject
model-based simulation
dc.subject
spatial statistics
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft
dc.title
Robust small area estimation under spatial non-stationarity
refubium.affiliation
Wirtschaftswissenschaft
de
refubium.mycore.fudocsId
FUDOCS_document_000000024328
refubium.series.issueNumber
2016,5 : Economics
refubium.series.name
Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin
refubium.mycore.derivateId
FUDOCS_derivate_000000006247
dcterms.accessRights.openaire
open access