dc.contributor.author
Cuevas, Erik V
dc.contributor.author
Zaldivar, Daniel
dc.contributor.author
Rojas, Raúl
dc.date.accessioned
2018-06-08T08:11:13Z
dc.date.available
2009-05-13T09:03:35.799Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/19518
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23166
dc.description.abstract
Color-segmentation is very sensitive to changes in the intensity of light.
Many algorithms do not tolerate variations in color hue which correspond, in
fact, to the same object. Learning Vector Quantization (LVQ) networks learn to
recognize groups of similar input vectors in such a way that neurons
physically near to each other in the neuron layer respond to similar input
vectors. Learning is supervised, the inputs vectors into target classes are
chosen by the user. In this work a new algorithm based on LVQ is presented. It
involves neural networks that operate directly on the image pixels with a
decision function. This algorithm has been applied to spotting and tracking
human faces, and shows more robustness than other algorithms for the same
task.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Competitive neural networks applied to face localization
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000001917
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
03-13
refubium.mycore.derivateId
FUDOCS_derivate_000000000394
dcterms.accessRights.openaire
open access