dc.contributor.author
Schmidt, Jens M.
dc.date.accessioned
2018-06-08T07:50:08Z
dc.date.available
2009-11-20T12:46:57.259Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18799
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-22483
dc.description.abstract
Given two 3-connected graphs G and H, a construction sequence constructs G
from H (e. g. from the K4) with three basic operations, called the Barnette-
Grünbaum operations. These operations are known to be able to construct all
3-connected graphs. We extend this result by identifying every intermediate
graph in the construction sequence with a subdivision in G and showing under
some minor assumptions that there is still a construction sequence to G when
we start from an arbitrary prescribed H-subdivision. This leads to the first
algorithm that computes a construction sequence in time O(|V (G)|2). As an
application, we develop a certificate for the 3-connectedness of graphs that
can be easily computed and verified. Based on this, a certifying test on
3-connectedness is designed.
en
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000021-2
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
construction sequence
dc.subject
3-connected graph
dc.subject
nested subdivisions
dc.subject
inductive characterization
dc.subject
3-connectedness
dc.subject
certifying algorithm
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::005 Computerprogrammierung, Programme, Daten
dc.title
Construction sequences and certifying 3-Connectedness
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik
refubium.mycore.fudocsId
FUDOCS_document_000000004356
refubium.resourceType.isindependentpub
no
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
09-1
refubium.mycore.derivateId
FUDOCS_derivate_000000000815
dcterms.accessRights.openaire
open access