dc.contributor.author
Preuß, Gerhard
dc.date.accessioned
2018-06-08T07:28:02Z
dc.date.available
2014-07-16T08:23:56.046Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/18018
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21732
dc.description.abstract
In Analysis two modes of non-topological convergence are interesting: order
convergence and convergence almost everywhere. It is proved here that oder
convergence of sequences can be induced by a limit structure, even a finest
one, whenever it is considered in sigma-distributive lattices. Since
convergence almost everywhere can be regarded as order convergence in a
certain sigma-distributive lattice, this result can be applied to convergence
of sequences almost everywhere and thus generalizing a former result of U.
Höhle obtained in a more indirect way by using fuzzy topologies.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Complete lattices
dc.subject
sigma-distributive lattices
dc.subject
convergence almost everywhere
dc.subject
order convergence
dc.subject
limit spaces (=convergence spaces) and generalizations
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Order convergence and convergence almost everywhere revisited
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020599
refubium.mycore.reportnumber
A /09/2010
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /09/2010
refubium.mycore.derivateId
FUDOCS_derivate_000000003707
dcterms.accessRights.openaire
open access