dc.contributor.author
Berninger, Heiko
dc.contributor.author
Kornhuber, Ralf
dc.contributor.author
Sander, Oliver
dc.date.accessioned
2018-06-08T07:24:19Z
dc.date.available
2014-07-16T09:23:47.999Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/17883
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-21603
dc.description.abstract
We investigate Dirichlet--Neumann and Robin methods for a quasilinear elliptic
transmission problem in which the nonlinearity changes discontinuously across
two subdomains. In one space dimension we obtain convergence theorems by
extending known results from the linear case. They hold both on the continuous
and on the discrete level. From the proofs one can infer mesh-independence of
the convergence rates for the Dirichlet--Neumann method, but not for the Robin
method. In two space dimensions we consider numerical examples which
demonstrate that the theoretical results might be extended to higher
dimensions. Moreover, we investigate the asymptotic convergence behaviour for
fine mesh sizes in these test cases quantitatively. We observe a good
agreement with many known linear results, which is remarkable in view of the
nonlinear character of the problem.
de
dc.relation.ispartofseries
urn:nbn:de:kobv:188-fudocsseries000000000226-9
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Dirichlet-Neumann method
dc.subject
heterogeneous domain decomposition methods
dc.subject
nonlinear transmission problem
dc.subject
mesh-independence
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Convergence behaviour of Dirichlet-Neumann and Robin methods for a nonlinear
transmission problem
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000020609
refubium.mycore.reportnumber
A /02/2010
refubium.series.issueNumber
Preprints, Serie A: Mathematik
refubium.series.name
Freie Universität Berlin, Fachbereich Mathematik und Informatik
refubium.series.reportNumber
A /02/2010
refubium.mycore.derivateId
FUDOCS_derivate_000000003717
dcterms.accessRights.openaire
open access