dc.contributor.author
Dräger, Julia
dc.contributor.author
Ruß, Stefanie
dc.contributor.author
Sauerwald, Tilman
dc.contributor.author
Kohl, Claus-Dieter
dc.contributor.author
Bunde, Armin
dc.date.accessioned
2018-06-08T04:04:20Z
dc.date.available
2014-03-05
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16516
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20697
dc.description.abstract
We use Monte-Carlo Simulations to study the conductance switching generated by
gas-induced electron trapping/-releasing in films of sintered metal oxide
nanoparticles by using a site-bond percolation model. We explore the
possibilities of gas sensors based on these mechanisms. In our study, we model
films of different thicknesses where the conductance values of the grains
(sites) and of the contacts (bonds) between these grains depend on the surface
density Nr of adsorbed gas molecules from the ambient atmosphere. Below a
critical density Nr=Nr,c , the system is insulating due to the interruption of
current flow, either through the connecting bonds or through the grain
interior. This leads to two competing critical gas covering thresholds
N(bond)r,c and N(site)r,c , respectively, that separate the insulating from
the conducting phase. For N(site)r,c>N(bond)r,c , the characteristic curve of
monodisperse sensors shows a noticeable jump from zero to a finite conductance
at Nr=N(site)r,c , while for polydisperse sensors site percolation effects
modify the jump into a steep increase of the characteristic curve and thus
lead to an enhanced sensitivity. For N(site)r,c<N(bond)r,c , both mono- and
polydisperse systems follow the same curves that show a smoother
characteristic increase ∝(Nr−N(bond)r,c)2 which reveals that, despite the
occurrence of an inherent bond percolation effect close to Nr,c , the increase
of the bonds is the dominating effect.
en
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Percolation transition in the gas-induced conductance of nanograin metal oxide
films with defects
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Applied Physics. - 113 (2013), 22, Artikel Nr. 223701/1-9
dc.identifier.sepid
32564
dcterms.bibliographicCitation.doi
10.1063/1.4809572
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4809572
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik

refubium.mycore.fudocsId
FUDOCS_document_000000019765
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003140
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
00218979