We propose a device that allows for the emission of pairs of spin-polarized electrons into the edge states of a two-dimensional topological insulator. Charge and spin emission is achieved using a periodically driven quantum dot weakly coupled to the edge states of the host topological insulator. We present calculations of the emitted time-dependent charge and spin currents of such a dynamical scatterer using the Floquet scattering matrix approach. Experimental signatures of spin-polarized two-particle emission can be found in noise measurements. Here a new form of noise suppression, named Z2 antibunching, is introduced. Additionally, we propose a setup in which entanglement of the emitted electrons is generated. This entanglement is based on a postselection procedure and becomes manifest in a violation of a Clauser- Horne-Shimony-Holt inequality.