dc.contributor.author
Hoersch, Daniel
dc.date.accessioned
2018-06-08T03:27:54Z
dc.date.available
2016-09-19T10:55:30.684Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15239
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19427
dc.description.abstract
The F1 sub-complex of ATP synthase is a biological nanomotor that converts the
free energy of ATP hydrolysis into mechanical work with an astonishing
efficiency of up to 100% (Kinosita et al., 2000). To probe the principal
mechanics of the machine, I re-engineered the active site of E.coli F1 ATPase
with a structure-based protein design approach: by incorporation of a site-
specific, photoswitchable crosslinker, whose end-to-end distance can be
modulated by illumination with light of two different wavelengths, a dynamic
constraint was imposed on the inter-atomic distances of the α and β subunits.
Crosslinking reduced the ATP hydrolysis activity of four designs tested in
vitro and in one case created a synthetic ATPase whose activity can be
reversibly modulated by subsequent illumination with near UV and blue light.
The work is a first step into the direction of the long-term goal to design
nanoscaled machines based on biological parts that can be precisely controlled
by light.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
Engineering a light-controlled F1 ATPase using structure-based protein design
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
PeerJ. - 4 (2016), Artikel Nr. e2286
dcterms.bibliographicCitation.doi
10.7717/peerj.2286
dcterms.bibliographicCitation.url
http://doi.org/10.7717/peerj.2286
refubium.affiliation
Physik
de
refubium.mycore.fudocsId
FUDOCS_document_000000025388
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000006976
dcterms.accessRights.openaire
open access