dc.contributor.author
Das, Shagnik
dc.contributor.author
Sudakov, Benny
dc.date.accessioned
2018-06-08T03:12:34Z
dc.date.available
2015-05-27T11:41:50.729Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14690
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18881
dc.description.abstract
The celebrated Erdős-Ko-Rado theorem shows that for n≥2k the largest
intersecting k-uniform set family on [n] has size (n−1k−1). It is natural to
ask how far from intersecting larger set families must be. Katona, Katona and
Katona introduced the notion of most probably intersecting families, which
maximise the probability of random subfamilies being intersecting. We consider
the most probably intersecting problem for k-uniform set families. We provide
a rough structural characterisation of the most probably intersecting families
and, for families of particular sizes, show that the initial segment of the
lexicographic order is optimal.
en
dc.rights.uri
http://www.combinatorics.org/ojs/index.php/eljc/about/editorialPolicies
dc.subject
Extremal set theory
dc.subject
Supersaturation
dc.subject
Intersecting families
dc.title
Most Probably Intersecting Hypergraphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
The Electronic Journal of Combinatorics. - 22 (2015), 1, Artikel Nr. P1.80
dcterms.bibliographicCitation.url
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p80
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000022477
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004946
dcterms.accessRights.openaire
open access