dc.contributor.author
Beverland, Michael E.
dc.contributor.author
Buerschaper, Oliver
dc.contributor.author
Koenig, Robert
dc.contributor.author
Pastawski, Fernando
dc.contributor.author
Preskill, John
dc.contributor.author
Sijher, Sumit
dc.date.accessioned
2018-06-08T03:10:38Z
dc.date.available
2016-04-14T08:16:00.665Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14636
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18828
dc.description.abstract
We study restrictions on locality-preserving unitary logical gates for
topological quantum codes in two spatial dimensions. A locality-preserving
operation is one which maps local operators to local operators — for example,
a constant-depth quantum circuit of geometrically local gates, or evolution
for a constant time governed by a geometrically local bounded-strength
Hamiltonian. Locality-preserving logical gates of topological codes are
intrinsically fault tolerant because spatially localized errors remain
localized, and hence sufficiently dilute errors remain correctable. By
invoking general properties of two-dimensional topological field theories, we
find that the locality-preserving logical gates are severely limited for codes
which admit non-abelian anyons, in particular, there are no locality-
preserving logical gates on the torus or the sphere with M punctures if the
braiding of anyons is computationally universal. Furthermore, for Ising anyons
on the M-punctured sphere, locality-preserving gates must be elements of the
logical Pauli group. We derive these results by relating logical gates of a
topological code to automorphisms of the Verlinde algebra of the corresponding
anyon model, and by requiring the logical gates to be compatible with basis
changes in the logical Hilbert space arising from local F-moves and the
mapping class group.
en
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik
dc.title
Protected gates for topological quantum field theories
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Mathematical Physics. - 57 (2016), 2, Artikel Nr. 022201
dcterms.bibliographicCitation.doi
10.1063/1.4939783
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4939783
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDOCS_document_000000024365
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000006278
dcterms.accessRights.openaire
open access