dc.contributor.author
Kastoryano, Michael J.
dc.contributor.author
Temme, Kristan
dc.date.accessioned
2018-06-08T03:07:45Z
dc.date.available
2014-03-19T09:44:56.105Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14544
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18736
dc.description.abstract
A family of logarithmic Sobolev inequalities on finite dimensional quantum
state spaces is introduced. The framework of non-commutative -spaces is
reviewed and the relationship between quantum logarithmic Sobolev inequalities
and the hypercontractivity of quantum semigroups is discussed. This
relationship is central for the derivation of lower bounds for the logarithmic
Sobolev (LS) constants. Essential results for the family of inequalities are
proved, and we show an upper bound to the generalized LS constant in terms of
the spectral gap of the generator of the semigroup. These inequalities provide
a framework for the derivation of improved bounds on the convergence time of
quantum dynamical semigroups, when the LS constant and the spectral gap are of
the same order. Convergence bounds on finite dimensional state spaces are
particularly relevant for the field of quantum information theory. We provide
a number of examples, where improved bounds on the mixing time of several
semigroups are obtained, including the depolarizing semigroup and quantum
expanders.
en
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Quantum logarithmic Sobolev inequalities and rapid mixing
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Mathematical Physics. - 54 (2013), 5, Artikel Nr. 052202/1-30
dc.identifier.sepid
32456
dcterms.bibliographicCitation.doi
10.1063/1.4804995
dcterms.bibliographicCitation.url
http://link.aip.org/link/JMAPAQ/v54/i5/p052202/s1&Agg=doi
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019563
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000002997
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
00222488