dc.contributor.author
Johenning, Friedrich W.
dc.contributor.author
Theis, Anne-Kathrin
dc.contributor.author
Pannasch, Ulrike
dc.contributor.author
Rückl, Martin
dc.contributor.author
Rüdiger, Sten
dc.contributor.author
Schmitz, Dietmar
dc.date.accessioned
2018-06-08T02:55:28Z
dc.date.available
2015-07-28T09:40:57.482Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14148
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18345
dc.description.abstract
A key feature of signalling in dendritic spines is the synapse-specific
transduction of short electrical signals into biochemical responses. Ca2+ is a
major upstream effector in this transduction cascade, serving both as a
depolarising electrical charge carrier at the membrane and an intracellular
second messenger. Upon action potential firing, the majority of spines are
subject to global back-propagating action potential (bAP) Ca2+ transients.
These transients translate neuronal suprathreshold activation into
intracellular biochemical events. Using a combination of electrophysiology,
two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are
electrochemically coupled to Ca2+ release from intracellular stores via
ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs:
the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines
regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient
enhancement is compartmentalized and independent of the dendritic Ca2+
transient. Furthermore, this functional state change depends exclusively on
bAPs travelling antidromically into dendrites and spines. Induction, but not
expression, of bAP-Ca2+ transient enhancement is a spine-specific function of
the RyR. We demonstrate that RyRs can form specific Ca2+ signalling
nanodomains within single spines. Functionally, RyR mediated Ca2+ release in
these nanodomains induces a new form of Ca2+ transient plasticity that
constitutes a spine specific storage mechanism of neuronal suprathreshold
activity patterns.
de
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium
Dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
PLOS Biology. - 13 (2015), 6, Artikel Nr. e1002181
dcterms.bibliographicCitation.doi
10.1371/journal.pbio.1002181
dcterms.bibliographicCitation.url
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002181
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000022890
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005252
dcterms.accessRights.openaire
open access