dc.contributor.author
Förstera, Benjamin
dc.date.accessioned
2018-06-08T00:53:44Z
dc.date.available
2012-04-19T09:23:23.651Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/12626
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-16824
dc.description
1\. Introduction 1.1 About the dichotomous nature of chloride signalling in
the brain – The chloride equilibrium potential 10 1.2 GABA & Glycine 11 1.2.1
Inhibition 12 1.2.2 Glycine Receptor (GlyR) 13 1.2.3 GABA(A) Receptors
(GABA(A)R) 15 1.3 Gephyrin 18 1.3.1 Gephyrin structure and aggregation 18
1.3.2 GlyR and GABA(A)R binding of gephyrin 20 1.3.3 Gephyrin trafficking and
synaptogenesis 20 1.3.4 Molybdenum co-factor synthesis of gephyrin 24 1.4 Glia
cells 24 1.5 The hippocampus 26 1.5.1 Hippocampal anatomy 26 1.5.2 The main
hippocampal circuit 26 1.6 Epilepsy 28 1.6.1 Temporal Lobe Epilepsy 30 1.6.1.1
Network and Cellular Mechanisms of TLE 32 1.7 Aim of the PhD work 34 2\.
Material and methods 2.1 Preface 35 2.1.1 Chemicals 35 2.1.2 Enzymes 37
2.1.2.1 Enzymes for cell culture 37 2.1.2.2 Polymerases 37 2.1.2.3 Restriction
enzymes 37 2.1.3 Kits 37 2.1.4 Media and solutions 37 2.1.4.1 Primary
hippocampal cell culture 38 2.1.4.2 Media and solutions for HEK293 cells 39
2.1.4.3 Substances for pharmacoligical manipulations 39 2.1.4.4 RHC whole-cell
patch-clamp recording 39 2.1.4.5 HEK293 whole-cell patch-clamp recording 39
2.1.4.6 HEK293 outside-out patch-clamp recording 40 2.1.4.7 Solutions for
immunofluorescence 40 2.1.4.8 Media and solutions for bacterial cultures 40
2.1.4.9 Solutions for molecular biology 40 2.1.5 Antibodies 41 2.1.6 Plasmids
41 2.1.7 Oligonucleotides 42 2.1.8 Human control RNA, Bacteria and Animals 43
2.1.9 Equipment and software 44 2.1.9.1 Epifluorescence microscopy 44 2.1.9.2
Confocal microscopy 44 2.1.9.3 Microtome 44 2.1.9.4 Molecular- and
microbiology 44 2.1.9.5 Cell culture 45 2.1.9.6 Electrophysiology 45 2.1.9.7
Computer software 45 2.2 Legal information 46 2.3 Tissue preparation 46 2.3.1
Human patient hippocampectomies 46 2.3.2 Mouse brain tissue 48 2.3.3
Cryosections 48 2.4 Cell culture 49 2.4.1 Primary rat hippocampal neuron cell
culture 49 2.4.1.1 Preparation 49 2.4.1.2 Effectene based cell transfection 50
2.4.1.3 Experimental cellular stress procedures 51 2.4.2 Human embryonic
kidney cell culture and transfection 52 2.4.2.1 HEK293 cell cultivation 52
2.4.2.2 Calcium phosphate based transfection 52 2.5 Molecular biology 53 2.5.1
Gel extraction 53 2.5.2 TA vector 53 2.5.3 RNA isolation 53 2.5.4 Synthesis of
complementary DNA 54 2.5.5 Polymerase chain reaction 55 2.5.5.1 Semi-
quantitative PCR 56 2.5.5.2 Isolation of irregularly spliced GPHN transcripts
56 2.5.5.3 Detection of GlyR alpha2A and GlyR alpha2B splice variants 57
2.5.5.4 Detection of GlyR alpha3L and GlyR alpha3K splice variants 57 2.5.5.5
Detection of GABA(A)R subunits 58 2.5.6 DNA extraction and sequencing of
genomic regions 58 2.5.7 Expression constructs 59 2.5.7.1 Gephyrin expression
constructs 59 2.5.7.2 Gephyrin RNA splice reporter constructs 60 2.5.7.3
Epitope tagged and high affinity GlyR expression constructs 62 2.5.8
Molybdenum cofactor synthesis assay 62 2.6 Immunochemistry 63 2.6.1 Western
blot analysis 63 2.6.2 Immunohistochemistry 64 2.6.3 Immunocytochemistry 65
2.6.3.1 Surface staining 65 2.6.3.2 Methanol fixation and permeabilisation 66
2.6.3.3 Paraformaldehyde fixation and Triton-X permeabilisation 66 2.6.3.4
Intracellular staining 67 2.6.4 Microscopy and image analysis 67 2.6.4.1
Fluorescence microscopy 67 2.6.4.2 Confocal microscopy 68 2.6.4.3 Splice
reporter assays 68 2.6.4.4 Co-localisation analysis 68 2.6.4.5 Receptor
cluster analysis 69 2.7 Electrophysiology 70 2.7.1 Whole-cell patch-clamp 70
2.7.2 Outside-out patch-clamp 71 2.8 Statistical data analysis 73 3\.
Manuscripts 3.1 Publication 1: Irregular RNA splicing curtails postsynaptic
gephyrin in the cornu ammonis of patients with epilepsy. 74 3.2 Publication 1,
Supplementary Data 92 3.3 Publication 2: Glycine receptors caught between
genome and proteome - Functional implications of RNA editing and splicing. 109
3.4 Publication 3: Splice-specific roles of glycine receptor alpha3 in the
hippocampus. 118 4\. Discussion 4.1 GABA(A)R, gephyrin & TLE 134 4.1.1
Gephyrin oligomerisation is essential for the post-synaptic enrichment &
stabilisation of GABA(A)R 135 4.1.2 TLE patients express irregularly spliced
TLE gephyrins 136 4.1.2.1 Dominant negative effects can be attributed to
irregularly spliced TLE gephyrins 137 4.1.2.2 Cellular stress is sufficient to
disrupt regular gephyrin RNA splicing 138 4.1.2.3 Consequences of impaired
gephyrin clustering in TLE 140 4.2 GlyR 141 4.2.1 RNA-edited high affinity
GlyR 141 4.2.1.1 Structural implications of GlyR RNA-editing 142 4.2.1.2
Functional relevance of extra-synaptic high affinity GlyR 143 4.2.2 GlyR
alpha3 RNA splicing determines subcellular localisation 145 4.2.2.1 Neuronal
phenotypic promiscuity of hippocampal GlyR depends on RNA splicing 146 4.3
Conclusion and Outlook 148 4.3.1 Finding avenues to combat the disruptive
effects of cellular stress on GABAergic post-synaptic domains 149 5\. Appendix
5.1 Abbreviations 151 5.1.1 Units 154 5.2 Index of Figures and Tables 155 5.3
Declaration to the publications 157 5.4 Summary 159 5.5 Zusammenfassung 161
6\. References 163
dc.description.abstract
The main focus of this thesis is the involvement of the GABA(A) receptor
alpha2 scaffolding protein gephyrin in hyperexcitability disorders. The recent
observation of gradually declining hippocampal gephyrin immunoreactivity
during epileptogenesis in an animal model of epilepsy (Fang et al. 2011) and a
reduction of postsynaptic GABA(A) receptor alpha2 in the epileptic hippocampus
(Bouilleret et al. 2000; Kneussel et al. 2001; Kumar and Buckmaster 2006) have
linked gephyrin to temporal lobe epilepsy. Still, the mechanisms underlying
reduced gephyrin immunoreactivity have remained enigmatic. Thus, aim of this
PhD work was to identify and characterise cellular mechanisms responsible for
loss of postsynaptic gephyrin in temporal lobe epilepsy. Immunohistochemical
and western blot analyses unveiled aberrant gephyrin expression in the cornu
ammonis of patients afflicted with temporal lobe epilepsy. Four abnormally
spliced gephyrin variants lacking several exons in the G-domain were isolated
from patient RNA and characterised in HEK293 cells and primary hippocampal
neurons via EGFP tagged expression constructs. All 4 identified temporal lobe
epilepsy gephyrins were found to be oligomerisation-deficient and interact
with regularly spliced gephyrins in a dominant negative way, thereby curbing
hippocampal postsynaptic gephyrin and GABA(A) receptor alpha2. While gephyrin
gene mutations were not detected by sequencing of genomic DNA, cellular stress
like hyperthermia or alkalosis proved suitable and sufficient to induce
inhibition of regular gephyrin RNA splicing and subsequent expression of
dominant negative temporal lobe epilepsy gephyrins, leading to curtailed
postsynaptic gephyrin and GABA(A) receptor alpha2 scaffolds in primary
hippocampal neurons of a wild type background. Thus, cellular stress, like
rebound alkalosis occurring secondary to seizure activity, could facilitate
the development of temporal lobe epilepsy by reducing GABA(A) receptor
alpha2-mediated hippocampal synaptic transmission selectively in the cornu
ammonis, and in turn reduce seizure threshold, making the network prone to
further deregulation of gephyrin splicing and epileptogenesis in a self-
propagating cycle. The novel RNA splice-reporter introduced in this work (see
3.2, Publication 1, Supplementary Methods and Figure 9) presents an invaluable
molecular tool in drug screening for protective agents to brace neurons
against cellular stress and the search for gene expression with compensatory
properties for the design of causally-oriented therapies for the treatment of
excitability diseases (Eichler and Meier 2008) as well, as other neuronal
impairments, like affective mood disorders and stroke (Tyagarajan et al.
2011).
de
dc.description.abstract
Der Hauptschwerpunkt dieser Dissertation liegt auf der Beteiligung des Alpha2
GABA(A) Rezeptor (GABA(A)R) Verankerungsproteins Gephyrin an
Temporallappenepilepsie (TLE). Unlängst publizierte Beobachtungen eines
graduellen Verlusts hippocampaler Gephyrinimmunoreaktivität während der
Epileptogenese in einem Tiermodell der Epilepsie (Fang et al. 2011) und der
Minderung postsynaptischer Alpha2 GABA(A)R im epileptischen Hippocampus
(Bouilleret et al. 2000; Kneussel et al. 2001; Kumar and Buckmaster 2006)
bringen Gephyrin in Verbindung mit TLE. Die Mechanismen, welche der
verringerten Gephyrinimmunoreaktivität zugrunde liegen, blieben bislang
rätselhaft. Ziel dieser Doktorarbeit war es daher, die zellulären Mechanismen
des Verlusts postsynaptischen Gephyrins in TLE zu identifizieren und zu
charakterisieren. Immunohistochemische und Westernblotuntersuchungen
enthüllten abnormale Gephyrinexpression in der Cornu Ammonis (CA) Region von
TLE Patienten. Vier irregulär gespleißte Gephyrinvarianten, denen mehrere
Exone in der G-Domäne fehlen, wurden aus Patienten-RNA isoliert und mittels
EGFP-markierter Expressionskonstrukte in HEK293 Zellen und primären
Hippocampusneuronen charakterisiert. Alle 4 fehlgespleißten Gephyrine wiesen
Oligomerisationsdefizite auf und reduzierten mittels Interaktion mit regulärem
Gephyrin in dominant-negativer Weise hippocampales postsynaptisches Gephyrin
und Alpha2 GABA(A)R. Mutationen des Gephyringens bei der Sequenzierung
genomischer DNA wurden nicht gefunden. Zellulärer Stress wie Hypertermie oder
Alkalose, stellte sich hingegen als hinreichend heraus, reguläres Spleißen von
Gephyrin RNA zu behindern und durch die resultierende Expression dominant-
negativer Gephyrine postsynaptische Gephyrinaggregation und korrespondierende
Alpha2 GABA(A)R-Verankerung in primären Hippocampusneuronen mit
Wildtyphintergrund einzuschränken. Somit erweist sich zellulärer Stress, wie
beispielsweise Alkalose infolge epileptischer Anfälle, als möglicher
Verstärker in der Entwicklung von TLE, und zwar aufgrund einer selektiv in der
CA Region eingeschränkten Verfügbarkeit postsynaptischer Alpha2 GABA(A)R. Die
hieraus resultierende niedrigere Schwelle zur Auslösung epileptischer
Aktivität kann das neuronale Netzwerk in einer selbstpropagierenden Schleife
wiederum anfälliger für Deregulierung des Gephyrinspleißens machen. Der in
dieser Arbeit vorgestellte neuartige Spleißreporter (3.2, Publication 1,
Supplementary Data) stellt ein molekulares Werkzeug zur Identifkation
potentiell protektiver Wirkstoffe gegen zellulären Stress dar und kann der
Suche nach Genen mit kompensatorischen Eigenschaften gegenüber zellulärem
Stress dienen, um Ansatzpunkte für die Entwickung neuer pharmakologischer
Agenzien und ursachenorientierter Therapieformen nicht nur für die Behandlung
von TLE (Eichler and Meier 2008) sondern auch von anderen neurodegenerativen
Erkrankungen und affektiven Persönlichkeitsstörungen zu liefern (Tyagarajan et
al. 2011).
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Chloride Channels
dc.subject
Glycine Receptor
dc.subject
C-to-U Editing
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.title
Post-transcriptional modification of gephyrin and glycine receptor messenger
RNA in temporal lobe epilepsy
dc.contributor.contact
benjamin.foerstera@mdc-berlin.de
dc.contributor.firstReferee
Prof. Dr. Jochen C. Meier
dc.contributor.furtherReferee
Prof. Dr. Fritz G. Rathjen
dc.date.accepted
2012-02-02
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000036645-6
dc.title.translated
Posttranskriptionale Modifikation von Gephyrin und Glycinrezeptor messenger
RNA in Temporallappenepilepsie
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000036645
refubium.note.author
Aus Copyright-Gründen sind die Zeitschriftenartikel hier nicht online
veröffentlicht.
refubium.mycore.derivateId
FUDISS_derivate_000000010923
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access