dc.contributor.author
Schreiber, Jadwiga
dc.date.accessioned
2018-06-08T00:13:37Z
dc.date.available
2010-01-06T14:56:41.887Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/11653
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-15851
dc.description
1\. Introduction 7 1.1 The cell adhesion molecule coxsackie virus and
adenovirus receptor (CAR) and its function in cells 7 1.1.1 The development of
neuronal networks and cell adhesion molecules 7 1.1.2 Coxsackie virus and
adenovirus receptor (CAR) 8 1.1.3 The expression of CAR in different tissues
11 1.1.4 The cellular function of CAR 12 1.1.5 Known interaction partners of
CAR 13 1.1.6 What is interesting about CAR? 14 1.2 Neuronal cell membrane
properties 15 1.2.1 Unequal ion distribution across the membrane and the
resting membrane potential 15 1.2.2 Electrical circuit as a model of the
neuronal cell membrane 16 1.2.3 Nernst equation and Goldman equation 18 1.2.4
Current flow across the membrane 20 1.2.4.1 Leak channels and background
conductance at RMP 21 1.2.4.2 Gated channels and active current flow through
the cell membrane 22 1.2.5 Gap junctions 24 1.2.6 Calcium homeostasis in
neurons 26 1.2.6.1 Ca2+-activated currents in neurons 28 1.2.6.2 Cell adhesion
molecules and Ca2+-signaling 29 1.3 Aim of the study 29 2\. Materials and
methods 31 2.1 Materials 31 2.1.1 Animals 31 2.1.2 Cell lines 31 2.1.3
Antibodies 31 2.1.4 Proteins 32 2.2 Methods 33 2.2.1 Cell Culture 33 2.2.1.1
Primary chick cell culture 33 2.2.1.2 Primary mouse cell culture E15 34
2.2.1.3 Primary mouse cell culture E10.5 35 2.2.2 Genotyping of CAR mice by
PCR and DNA electrophoresis 36 2.2.3 SDS-PAGE and Western blot 37 2.2.4
Immunocytochemistry 39 2.2.5 Electrophysiology 40 2.2.5.1 Basic principle 40
2.2.5.2 Circuit in the whole-cell patch-clamp configuration 42 2.2.5.3
Electrophysiology in cell culture 43 2.2.5.4 Equations and voltage protocols
used in experiments 44 2.2.5.5 Double patch-clamp 49 2.2.5.6 Reversal
potential (Erev) and Nernst equation 50 2.2.5.7 Solutions, modulators and
blockers 51 2.2.6 Calcium imaging 57 2.2.6.1 Fluorometric [Ca2+]i measurements
57 2.2.6.2 Ca2+ imaging in cell culture and data analysis 58 2.2.7 Dye
spreading 59 2.2.8 Quantification of cell aggregates and neurite outgrowth 59
2.2.9 Statistics 60 3\. Results 61 3.1 Expression of CAR on neurons and HeLa
cells 61 3.2 Analysis of the function of CAR by patch-clamp recordings 63 3.3
Membrane resistance 63 3.3.1 The Rm in CAR-deficient neurons is increased 63
3.3.2 The Rm in fiber knob (Ad2) treated neurons is reduced 66 3.3.3 The Rm in
anti-CAR ABs (Rb80) treated neurons is increased 68 3.3.4 The Rm in D1 and D2
treated neurons is not changed 70 3.3.5 Investigations on the Rm in CAR-
deficient and Ad2 treated neurons 71 3.4 Characterization of voltage-gated ion
channels in CAR-deficient neurons and Ad2 treated cells 71 3.4.1 Na+ and K+
voltage-gated channels in CAR-deficient neurons 71 3.4.2 Na+ and K+ voltage-
gated channels in Ad2 treated neurons 75 3.4.3 Voltage-gated Ca2+ channels in
CAR-deficient neurons 78 3.4.4 Voltage-gated Ca2+ channels in Ad2 treated
neurons 81 3.5 Non-voltage gated ion channels and other transport proteins in
CAR-deficient neurons and Ad2 treated cells 83 3.5.1 Role of gap junctions in
CAR mediated differences in Rm 84 3.5.2 Neurotransmitter-gated receptors 92
3.5.2.1 Neurotransmitter-gated ionotropic receptors 92 3.5.3 Na+/K+-ATPase
pump 93 3.5.4 Hyperpolarization-activated cyclic nucleotide-gated cation
channels 95 3.6 Changes in passive conductance through the neuronal membrane
in CAR KO cells and Ad2 treated neurons 99 3.6.1 Passive potassium (K+)
conductance is not involved in Rm changes 100 3.6.2 Passive chloride (Cl-)
conductance is impaired in CAR KO cells. 101 3.6.3 Characterization of the
current obtained after Ad2 treatment and the current that is missing in CAR KO
cells. 108 3.7 CAR-mediated increase of intracellular Ca2+ 111 3.7.1
Application of Ad2 induces an increase of intracellular Ca2+ 111 3.7.2 Ad2
induces a release of Ca2+ from intracellular stores 113 3.7.3 CAR-CAR mediated
increase in intracellular Ca2+ 117 3.8 Ad2 disturbs homophilic CAR-CAR
interaction 118 3.9 Consequences of the absence of CAR on synaptic activity
and on action potential generation 119 3.9.1 Changes in passive membrane
properties in CAR-deficient neurons and Ad2 treated cells affect action
potential generation 119 3.9.2. The absence of CAR influences neuronal network
activity 121 3.9.2.1 Excitatory postsynaptic currents show a higher frequency
in CAR-deficient neurons 122 3.9.2.2 Inhibitory postsynaptic currents show a
lower frequency in CAR-deficient neurons 125 4\. Discussion 128 4.1 The
absence of CAR results in an increased Rm 128 4.2 Possible reasons for the
measured changes in Rm in the absence of CAR or after treatment with Ad2 130
4.2.1 Voltage-gated and neurotransmitter-gated channels are not modulated by
CAR 131 4.2.2 Gap junctions are not involved in observed changes in Rm in CAR-
deficient neurons and Ad2 treated cells 132 4.2.3 The Na+/K+-ATPase pump is
functional in CAR KO cells 132 4.2.4 Hyperpolarization-activated currents are
altered in CAR KO cells and Ad2 treated cells 133 4.2.5 Analysis of ion flow
across the neuronal membrane in the absence of CAR 134 4.2.5.1 K+ conductance
is not responsible for higher Rm in CAR KO cells 134 4.2.5.2 Cl- conductance
is impaired in CAR KO cells and enhanced in Ad2 treated cells 135 4.3 CAR-
mediated increase in intracellular Ca2+ 138 4.4 CAR as an adhesion molecule
140 4.4.1 Ad2-induced Ca2+ increase might stimulate neurite outgrowth 141 4.5
Changes in membrane conductance influence network activity and action
potential generation 142 4.6 Conclusions 145 5\. Summary 147 6\.
Zusammenfassung 148 7\. Reference List 150 8\. Abbreviation list 187 9\.
Curriculum vitae 189 10\. Acknowledgments 191
dc.description.abstract
How cell adhesion proteins of the Ig superfamily modulate intracellular
signaling cascades and thereby influence neuronal communication is not well
understood. In contrast to other CAMs, the coxsackie virus and adenovirus
receptor (CAR) is strongly expressed in the embryonic and early postnatal
brain. Initially it is found on all neural cells but becomes concentrated in
axon- and dendrite-rich areas, suggesting that it might play a role in the
development of neuronal circuits. Here, I investigated the function of CAR by
patch-clamp recordings using CAR-deficient neurons or reagents binding to CAR
(fiber knob Ad2, anti-CAR antibodies, recombinant extracellular CAR domains).
Initially I studied passive membrane properties of cultivated neurons.
Unexpectedly, I observed an increased Rm in CAR-deficient neurons. In
parallel, a decrease of Rm was measured in wild type neurons in the presence
of the fiber knob Ad2 – a trimeric protein binding to CAR that disrupts cell-
cell contacts. Most likely CAR-mediated changes in membrane resistance (Rm)
are the result of an altered Cl- conductance across the membrane, which is
impaired in CAR-deficient neurons and enhanced in Ad2 treated neurons. This
conclusion is based on several electrophysiological recordings including the
comparison of the Cl- conductance between CAR-deficient and WT neurons, the
Cl- ion substitution in the recording solution, the pharmacological block of
the Cl- current as well as shifting the reversal potential of Cl-. In
addition, investigations on the conductance of other ions such as Na+ and K+
across the membrane as well as investigations on gap junctions or on
Na+/K+-ATPase, HCN or voltage-gated Na+, K+, Ca2+ channels revealed no
evidence for their implication in the deficits observed in CAR KO neurons.
Furthermore, it could be shown that Ad2 is able to increase the [Ca2+]i, by
releasing Ca2+ from intracellular Ca2+ stores. An Ad2-mediated increase in the
[Ca2+]i leads, most probably, to activation of the Ca2+-activated Cl- channels
(CaCCs). Several characteristical properties for the CaCCs could be observed
including outward rectification, voltage- and Ca2+-dependency and specific
halide selectivity for these channels. This enhanced Cl- conductance in Ad2
treated neurons results in a significantly lower Rm. The absence of CAR and
the Ad2-mediated changes in the membrane conductance influence also neuronal
network activity. CAR-deficient neurons showed a significantly higher
frequency of action potentials (APs) compared to WT cells, whereas Ad2 treated
neurons revealed a significantly lower frequency of APs than control cells.
Furthermore, investigation of neuronal network formation and synaptic activity
in CAR-deficient neurons revealed an imbalance in the excitatory and
inhibitory input ratio, suggesting a function of CAR in the formation of
neuronal networks. The data presented in this work lead to the conclusions
that CAR plays an important role during the development of neurons by
modulating the [Ca2+]i, the membrane conductance as well as synaptic activity
and action potential generation.
de
dc.description.abstract
Wie die Zelladhesionsproteine der Ig Superfamilie intrazelluläre
Signalkaskaden modulieren und dabei neuronale Kommunikation beeinflussen, ist
gegenwärtig nicht gut verstanden. In Gegensatz zu anderen CAMs (cell adhesion
molecules) ist der Coxsackie- und Adenovirus-rezeptor (CAR) intensiv im
embryonalen und postnatalen Gehirn exprimiert. Anfänglich ist es auf allen
neuronalen Zellen zu finden, dann aber vorwiegend in Axon- und Dendriten-
reichen Regionen exprimiert. Dies lässt sich vermuten, dass CAR bei Bildung
von neuronalen Schaltkreisen von Bedeutung ist. In dieser Arbeit habe ich die
Funktion von CAR mittels elektrophysiologischer Techniken untersucht. Dabei
habe ich sowohl CAR-defiziente Neurone als auch Reagenzien, die an CAR binden
(fiber knob Ad2, Anti-CAR Antikörper, rekombinante extrazelluläre Domänen von
CAR), verwendet. Anfänglich habe ich passive Membraneigenschaften von
kultivierten Neuronen untersucht. Dabei beobachtete ich unerwarteterweise eine
Zunahme des Membranwiderstandes (Rm) in CAR-defizienten Neuronen. In
parallelen Experimenten konnte ich eine Abnahme von Rm nach Applikation von
Ad2 beobachten. Ad2 ist ein trimeres Protein, das an CAR bindet und Zell-
Zellkontakte unterbricht. Elektrophysiologische Untersuchungen an CAR-
defizienten Neuronen zeigten, dass CAR in die Regulation der Cl- Leitfähigkeit
neuronaler Membrane involviert ist. CAR-defiziente Neurone zeigten im
Vergleich zu Wildtyp Zellen eine verminderte Cl- Leitfähigkeit, und dadurch
einen signifikant höheren Rm. Zusätzlich zu dem Ergebnis in CAR-defizienten
Neuronen, wiesen Ad2 behandelte Neurone, einen signifikant niedrigeren Rm auf,
was auf eine erhöhte Cl- Leitfähigkeit in diesen Zellen schließen lässt.
Dieser Befund wurde durch verschiedene elektrophysiologische Messungen
unterstützt, wie z.B. Cl- Ionen Substitution, pharmakologischer Block von Cl-
Strömen oder Verschiebung von Cl- Umkehrpotentialen. Zusätzlich wurden andere
Ionen wie K+ und Na+, gap junctions, HCN Kanäle oder die Na+/K+-ATPase
untersucht. Keines dieser Proteine oder Ionen ist danach an den CAR-
vermittelten Effekten beteiligt. Der Cl- Strom, der in CAR-defizienten und Ad2
behandelten Zellen identifiziert wurde, zeigte charakteristische Merkmale
eines Ca2+-aktivierten Cl- Stromes: Ca2+-Abhängigkeit, nach außen gerichtete
Leitfähigkeit und höhere Permeabilität für verschiedene Halogenid Ionen. Im
Einklang mit diesen Ergebnissen steht, dass, wie mittels Ca2+-Imaging
festgestellt wurde, die Applikation von Ad2 die intrazelluläre Ca2+
Konzentration erhöht, indem Ca2+ aus intrazellulären Ca2+ Speichern
freigesetzt wird. Die durch Ad2 Applikation erhöhte [Ca2+]i Konzentration
stimuliert Ca2+¬aktivierte Cl- Kanäle, wodurch die Cl- Leitfähigkeit in Ad2
behandelten Zellen steigt und der Rm sich verringert. Die Abwesenheit von CAR
und die dadurch veränderte Cl- Leitfähigkeit beeinflusst die Generierung von
Aktionspotentialen und die Entstehung von neuronalen Netzwerken. Es kommt zu
einer Störung der exzitatorisch-inhibitorisch Balance. In dieser Arbeit konnte
gezeigt werden, dass CAR eine wichtige Rolle während der Entwicklung
embryonaler Neurone spielt, indem es in Ca2+-ahbängiger Weise die Cl-
Leitfähigkeit durch die Membran und somit die synaptische Aktivität und
Generierung von Aktionspotentialen beeinflusst.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
adhesion molecule
dc.subject
cortical neurons
dc.subject
membrane resistance
dc.subject
ion conductance
dc.subject
intracellular Ca2+ concentration
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
The cell adhesion molecule coxsackie virus and adenovirus receptor (CAR)
modulates intracellular Ca2+ concentration and Cl- conductance in cultivated
mouse cortical neurons
dc.contributor.firstReferee
Prof. Dr. Fritz G. Rathjen
dc.contributor.furtherReferee
Prof. Dr. Rosemarie Grantyn
dc.date.accepted
2009-11-27
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000014929-9
dc.title.translated
Das Adhäsionsmolekül Coxsackie- und Adenovirus-Rezeptor (CAR) moduliert
intrazelluläre Ca2+ Konzentration und Cl- Leitfähigkeit in kultivierten
kortikalen Mausneuronen
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000014929
refubium.mycore.derivateId
FUDISS_derivate_000000006795
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access