dc.contributor.author
Grantcharova-Angelova, Evelina
dc.date.accessioned
2018-06-07T15:27:29Z
dc.date.available
2005-11-24T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/1108
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-5310
dc.description
Title pages, Contents, Abbreviations, Summary
1. Introduction 1
1.1 G protein-coupled receptors 1
1.1.1 Signaling of the G protein-coupled receptors 3
1.1.2 Regulation of G protein-coupled receptor activity 4
1.2 Endothelins 6
1.3 Endothelin receptors 10
1.3.1 Signal transduction of endothelin A and endothelin B receptors 12
1.3.2 Internalization and down-regulation of the endothelin receptors 14
1.4 Physiological role of the endothelin system 15
1.5 The role of the endothelin system in disease 17
1.6 The aim of this study 20
2. Materials and Methods 21
2.1 Materials 21
2.1.1 Chemicals, kits, cells and antibodies 21
2.1.2 Technical equipment and software 25
2.2 Methods 27
2.2.1 Cell culture, transient transfection and nucleofection 27
2.2.2 Protein analysis 29
2.2.3 Saturation and displacement binding experiments with I-ET-1 37
2.2.4 Inositol phosphate assay 38
2.2.5 Determination of cAMP content of intact HEK 293 cells by
radioimmunoassay 39
2.2.6 Laser Scanning Microscopy 40
3. Results 41
3.1 Detection of the wild-type and mutant ETB receptors in immunoblots 41
3.2 The ETB receptor is expressed as a full-length receptor at the cell
surface of HEK 293 cells and vascular smooth muscle cells 44
3.3 The N-terminal cleavage of the ETB receptor occurs at the plasma membrane
46
3.4 The N-terminal cleavage of the ETB receptor is ligand-dependent 47
3.5 Time-course of N- and C-terminal proteolysis of the ETB receptor 49
3.6 The N-terminal cleavage is reduced by metal chelators but not by
inhibitors of lysosomal proteases or the proteasome 51
3.7 The N-terminal cleavage of the ETB receptor is prevented by
metalloprotease inhibitors 52
3.8 Substitutions of amino acids in the cleavage site do not prevent
N-terminal proteolysis 54
3.9 The N-terminally truncated Δ2-64 ETB receptor shows a dramatically reduced
cell surface expression when compared to the wild-type 55
3.10 The Δ2-64 ETB receptor retains its ability to stimulate inositol
phosphate formation and to inhibit forskolin-induced cAMP formation 57
3.11 Wild-type and N-terminally truncated ETB receptors show differences in
ERK1/2 activation 59
3.12 The second phase of ERK1/2 activation depends on βγ subunits released
from Gi proteins 61
3.13 Matrix metalloproteases are involved in the second phase of ERK1/2
activation 63
3.14 N linked glycosylation is essential for the late phase of ERK1/2
activation 64
3.15 The Δ2-64 ETB receptor shows normal internalization upon ET-1 stimulation
65
4. Discussion 67
5. Summary 74
6. References 76
Publications list, Acknowledgements, Curriculum vitae 91
dc.description.abstract
The human endothelin B (ETB) receptor comprises 442 amino acids, of which the
first 26 function as a signal peptide. The signal peptide, which is essential
for cell surface transport is cleaved off by a signal peptidase in the ER
lumen during receptor biosynthesis. In addition, a second protheolytic
cleavage within the extracellular N terminus (at R64/S65) has been identified,
which results in an N-terminally truncated receptor, lacking amino acids 26 to
64. The regulation and the physiological significance of this proteolysis were
not known when this study was started. To gain more insight into the process
of N-terminal proteolysis, ETB receptor or ETB·GFP fusion protein stably or
transiently expressed in human embryonic kidney 293 (HEK 293) cells and in
vascular smooth muscle cells (VSMCs) were analyzed. After incubation of cells
with 125I-ET-1 at 4°C, only the full-length ETB receptor was detected at the
cell surface. When cells were incubated at 37°C in the presence of
endothelin-1, N-terminal cleavage was observed. The cleavage was not prevented
by inhibitors of internalization (sucrose, phenylarsine oxide) or of serine
and cysteinyl proteases. However, when cells were incubated with
internalization and metalloprotease inhibitors (batimastat, inhibitor of TNFa-
converting enzyme Ro32-7315) or metal chelators (EDTA, phenanthroline), the
cleavage was blocked. The data show that metalloproteases mediate an agonist-
dependent cleavage of the ETB receptor at the cell surface. Functional
analysis of a mutant ETB receptor lacking the first 64 amino acids (D2-64 ETB)
revealed normal ligand binding properties and preserved G protein-signaling
(increase of inositol phosphate formation and inhibition of forskolin-induced
cAMP-formation) when compared to the wild-type receptor. However, the D2-64
ETB receptor showed a 15-fold reduced cell surface expression and an altered
ability to activate ERK1/2. Although the wild-type and the D2-64 ETB receptor
elevated an early phase of ERK1/2 phosphorylation (within 5 min), only the
wild-type receptor induced a second phase of ERK1/2 activation (starting after
80 min). The second phase was mediated via bg subunit of Gi proteins and was
abolished by inhibitors of matrix metalloproteases (batimastat and an
inhibitor of TNFa-converting enzyme Ro32-7315). The data presented in this
study strongly suggest, that the N-terminal proteolysis of the human ETB
receptor is mediated by a metalloprotease in an agonist-dependent manner.
Removal of the ETB receptor s N terminus yields a receptor with a dramatically
reduced cell surface expression and an altered ability to stimulate ERK1/2
activation. The data suggest, that the N-terminal cleavage of the ETB receptor
could be involved in the regulation of cell surface expression and of ERK1/2
activation. The functional role of the observed biphasic ERK1/2 activation via
the full-length ETB receptor and the monophasic ERK1/2 activation via the
D2-64 ETB receptor requires further characterization.
de
dc.description.abstract
Der humane ETB-Rezeptor gehört zur Gruppe der Rhodospin-ähnlichen G-Protein-
gekoppelten Rezeptoren (GPCR). Im Gegensatz zu den meisten anderen Vertretern
der Rhodopsin-ähnlichen GPCR, verfügt der ETB-Rezeptor über ein abspaltbares
Signalpeptid, das für die Ausbildung der korrekten Topologie in der Membran
des endoplasmatischen Retikulums (ER) und den Transport zur Plasmamembran
essentiell ist. Neben der Abspaltung des Signalpeptids im Lumen des ER erfolgt
eine weitere Proteolyse des extrazellulären N-Terminus des ETB-Rezeptor
zwischen Arginin 64 und Serin 65. Die N-terminale Proteolyse des ETB-Rezeptors
konnte in allen bisher untersuchten Spezies nachgewiesen werden (Rind,
Schwein, Mensch, Ratte, Maus). Allerdings sind die Regulation und die
physiologische Bedeutung dieser Proteolyse bislang nicht bekannt. Ziel dieser
Arbeit war, die genauen Mechanismen und die funktionellen Konsequenzen der
N-terminalen Proteolyse aufzuklären. Es wurde festgestellt, dass die
N-terminale Proteolyse des ETB-Rezeptors durch eine Metalloprotease in einem
Agonist-abhängigen Prozess vermittelt wird. Damit kommen als Kandidaten für
die N-terminale Proteolyse in erster Linie die Membran-assoziierten
Metalloproteasen (MT-MMPs) sowie Proteasen der ADAM-Familie in Frage. Der
Nachweis von intakten oder N-terminal gespaltenen ETB-Rezeptoren erfolgte
mittels Low-Temperature- Polyacrylamid-Gelelektrophorese (LT-PAGE). Nach
Markierung der Oberflächenrezeptoren mit 125I-ET-1 (30 Min, 4°C) wurden die
Zellen lysiert und mit einer SDS-Polyacrylamid-Gelelektrophorese bei 4°C
aufgetrennt. Die gebildeten 125I-ET-1/ETB-Rezeptorkomplexe bleiben unter
diesen Bedingungen stabil und können anschließend in einer Autoradiographie
dargestellt werden. Die funktionelle Charakterisierung von HEK293 Zellen, die
entweder den wildtypischen ETB-Rezeptor oder einen gentechnisch modifizierten
ETB-Rezeptor (D2-64 ETB-Rezeptor) exprimierten, dem die ersten 64 Aminosäuren
fehlen, zeigten keine Unterschiede in der Affinität für ET-1 und der
ET-1-vermittelten Hemmung der Forskolin-induzierten cAMP-Bildung. Jedoch
unterschieden sich der wildtypische Rezeptor und der N-terminal verkürzte ETB-
Rezeptor ihrer Fähigkeit Extrazellulär Signal-regulierte Kinasen (ERK1 und
ERK2) zu aktivieren. So wiesen Gefäßmuskelzellen oder HEK293 Zellen, die den
wildtypischen ETB-Rezeptor exprimierten, in Gegenwart von ET-1 oder dem
selektiven ETB-Rezeptoragonisten IRL1620 eine biphasische, lang-anhaltende
ERK1/2-Aktivierung auf. Die erste Phase hielt für etwa 30 Minuten an, auf die
nach weiteren 50 Minuten eine zweite Phase folgte. Hingegen wiesen
Gefäßmuskelzellen oder HEK293 Zellen, die den D2-64 ETB-Rezeptor exprimierten,
lediglich die erste Phase der ERK1/2 Aktivierung auf. In weitere Analysen
konnte gezeigt werden, dass diese zweite Phase durch einen Pertussistoxin-
sensitiven Gi-vermittelten Signalweg vermittelt wird.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Endothelin receptor
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Ligand-induced N-terminal proteolysis of the human endothelin B receptor
dc.contributor.firstReferee
Priv.-Doz.Dr.med. Alexander Oksche
dc.contributor.furtherReferee
Priv.-Doz.Dr.med. H.-D. Orzechowski
dc.date.accepted
2005-11-22
dc.date.embargoEnd
2005-11-24
dc.identifier.urn
urn:nbn:de:kobv:188-2005003170
dc.title.translated
Ligand-induzierte N-terminale Proteolyse des humanen Endothelin-B-Rezeptors
de
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDISS_thesis_000000001842
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2005/317/
refubium.mycore.derivateId
FUDISS_derivate_000000001842
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access