dc.contributor.author
Davignon, Laurianne
dc.date.accessioned
2018-06-07T23:18:45Z
dc.date.available
2018-05-29T09:15:15.373Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10333
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14531
dc.description
ACKNOWLEDGMENTS SUMMARY ABBREVIATIONS LIST OF FIGURES LIST OF TABLES PREFACE
INTRODUCTION I. SKELETAL MUSCLE TISSUE I.1 Muscle tissue (s) I.2 Skeletal
muscle II. SKELETAL MUSCLE CONTRACTION II.1 Muscle contraction unit: the
sarcomere II.1.a Thick filaments and associated proteins II.1.b Thin filaments
and associated proteins II.1.c Titin filament as a third component of the
sarcomere II.2 The triadic junction III. MYOGENESIS III.1 Muscle specific
transcriptional factors III.1.a Paired box (Pax) transcription factors III.1.b
Muscle Regulatory Factors III.2 Myogenic determination and differentiation
III.2.a Induction of MRF III.2.b Cell cycle and progenitors expansion III.2.c
Cell cycle withdrawal
III.2.d Induction of differentiation and fusion III.3
Embryonic myogenesis III.3.a Specification of domains III.3.b Specification of
muscle primitive progenitors III.3.c Embryonic pathways regulating muscle
progenitor cell fate III.3.d Foetal myogenesis and muscle growth III.4 Adult
myogenesis III.4.a Quiescent satellite cells III.4.b Activation III.4.c
Satellite cell heterogeneity
III.4.d Satellite cells and their niche IV.
CONGENITAL MUSCULAR DISORDERS IV.1 General presentation IV.2 Congenital
muscular dystrophies IV.2.a General presentation IV.2.b Muscle
collagenopathies IV.3 Congenital myopathies IV.3.a General presentation IV.3.b
Cap disease IV.4 Specific focus: Multiminicore disease V. METHODS OF
INVESTIGATIONS IN MONOGENIC DISORDERS V.1 Human genome and monogenic disorders
V.2 Classical strategies used in human mutation screening V.2.a Linkage
analysis V.2.b Positional cloning
V.2.c Concrete case: Investigation in
consanguineous families V.3 Second generation sequencing
V.4 Third
generation sequencing VI. AIMS OF MY PROJECT MATERIAL & METHODS I. GENETIC
INVESTIGATIONS I.1. Patients DNA samples and consent I.2. Linkage analyses
I.3. Next Generation Sequencing I.4. Positional cloning and Sanger sequencing
II. CELL CULTURE II.1 Human material II.2 Murine myoblastic cell line II.3 RNA
silencing III. TRANSCRIPTOMIC ANALYSES III.1. RT PCR & q RT PCR III.2.
Microarray III.3. Luciferase assays IV. PROTEIN ANALYSES IV.1. Western
Blotting IV.2. Animals tissues sampling IV.2. Immunofluorescence VI.
STATISTICAL ANALYSES RESULTS I. COHORT PRESENTATION II. IDENTIFICATION AND
CHARACTERISATION OF A TRANSCRIPTIONAL COACTIVATOR MUTATED IN AN UNREPORTED
FORM OF CONGENITAL MYOPATHY II.1 Original phenotypical presentation
II.2
Novel locus associated to a human condition II.3 Positional candidate genes
II.4 Relevance of the TRIP4 mutation II.4.a A nonsense mutation leading to
messenger RNA degradation
II.4.b The nonsense mutation leads to the complete
absence of protein II.4.c Absence of ASC-1 impairs the intracellular
localisation of known protein partners II.5 ASC-1 as a novel actor in muscle
physiology
II.6 Function of ASC-1 in an in vitro model II.6.a Transcriptomic
analysis of a transient knock down model II.6.b ASC-1 has no major impact on
myoblast proliferation in vitro II.6.c ASC-1 transient knock down induces a
delay in late myogenic differentiation II.7 TRIP4 mutation as a privative
condition III. INVESTIGATIONS IN A SERIE OF PATIENTS WITH MmD AND SCOLIOSIS:
IDENTIFICATION OF NEW CAUSATIVE GENES III.1 Strategies used III.2 Families
status and candidate genes DISCUSSION Identification of TRIP4 as a novel MmD
gene: towards a reassessment of the classification of congenital muscle
disorders TRIP4 deficiency and muscle disease: potential genotype-phenotype
correlations ASC-1 as a novel key player in muscle physiology and
pathophysiology Search for new genes in MmD: efficiency and limitations of the
current genetic methods of investigation CONCLUSION & PERSPECTIVES
BIBLIOGRAPHY ANNEXES ABSTRACT
dc.description.abstract
Congenital myopathies are rare genetic disorders characterized by neonatal
hypotonia, delayed motor development and muscle weakness, associated with
characteristic histological changes in the structure of muscle fibres visible
on the patients’ muscle biopsies. Our laboratory is particularly interested in
the study of core myopathies, which are emerging as the most prevalent form of
congenital myopathy, and especially of multi-minicore disease (MmD), which is
characterised by multiple focal short areas of mitochondria depletion and
sarcomere disorganisation (cores) within muscle fibers. Our group identified
most of the genes associated to this genetically and phenotypically
heterogeneous condition. However, at least 30% of multiminicore disease cases
are not associated with the known genes and remain genetically
uncharacterized. During my PhD, my objective was to identify and characterize
new genes responsible for this condition. The study of a large consanguineous
family by homozygosity mapping allowed the identification of a homozygous
nonsense mutation in the coding sequence of a transcriptional coactivator
(named thereafter TCA), which had never been associated with a muscle
condition. The 3 affected patients presented with a novel, very severe form of
congenital myopathy with an unreported histological pattern associating
minicores, nuclear internalization and cap lesions. qPCR and western blotting
showed absence of messenger and protein on patient samples, suggesting NMD
(nonsense mediated decay). The increased TCA expression profile in murine
axial skeletal muscles is consistent with the clinical presentation. Also, I
found increased protein expression during in vitro C2C12 myoblastic cell line
differentiation, which is compatible with a contribution to myogenesis.
Subsequently, I performed microarray analysis on a transient TCA silencing
model, which disclosed a tendency to downregulation of muscle and contractile
proteins (in differentiation conditions), and an upregulation of cell cycle
proteins (in proliferative conditions), suggesting a role of TCA in regulating
the proliferation/differentiation balance in muscle. Consistently, Dual
Reporter Luciferase assays performed on proliferative C2C12 identified p21 as
an activated target of TCA suggesting a role of the protein in the cell cycle
exit regulation more specifically. Thus, we report a novel congenital muscle
condition with a unique histological pattern, stressing the histological
overlap of different forms of congenital myopathies and muscular dystrophies.
We characterize a new gene in human genetic conditions and a novel regulator
of the proliferation/differentiation balance in muscle. In parallel, to
identify other genes associated with MmD, I investigated four highly
informative and consanguineous families with MmD non-associated with the known
genes. By crossing homozygosity mapping data and massive parallel sequencing,
I identified a candidate gene, which encodes a protein potentially implicated
in cell stemness and linked to p53 activity. Confirmation of the
pathogeneicity of this change and gene are in progress in our laboratory. A
novel transcriptional coactivator is pivotal in regulating the balance between
proliferation and differentiation of myogenic progenitors and is mutated in a
novel form of congenital myopathy. Davignon et al. – in preparation
de
dc.description.abstract
Identifikation und Charakterisierung eines neuen Genes das mit einem
unbeschriebenen Phänotyp der Kongenitalen Myopathie korreliert. Kongenitale
Myopathien sind seltene genetische Erkrankungen zu deren Symptomen neonatale
Hypotonie, eine verspätete motorische Entwicklung und Muskelschwäche gehören.
Sie sind mit charakteristischen histologischen Veränderungen in der
Muskelfaserstruktur assoziiert. Unser Labor beschäftigt sich mit der
Erforschung der Kongenitalen Myopathien – insbesondere der Multiminicore
Krankheit (MmD), die durch multiple fokale kurze Areale mit mitrochondrialem
Abbau die zur Auflösung des Sarkomers führen charakterisiert ist. Unsere
Arbeitsgruppe identifizierte die meisten der mit dieser Krankheit assoziierte
Gene. Dennoch sind 30% der Multiminicore Erkrankungen sind nicht mit diesen
Genen assoziiert und noch nicht genetisch charakterisiert. Das Ziel meiner
Promotionsarbeit war die Identifikation und Charakterisierung neuer MmD Gene.
Als Vorarbeiten hatte unser Labor eine Großfamilie mit drei Patienten
untersucht, die ungewöhnliche Minicores mit Kerninternalisierungen und Cap-
Läsionen aufwiesen, als Zeichen einer bisher unbekannten, schweren Form der
Kongenitalen Myopathie. Die zugrundeliegende homozygote Nonsens-Mutation des
Transkriptionscoaktivators (TCA) wurde zuvor nicht mit der Kongenitalen
Myopathie in Verbindung gebracht. Der Verlust von TCA mRNA und Protein wurde
in Realtime PCR und Western Blot dokumentiert und impliziert nonsense mediated
decay (NMD) als moleklulare Grundlage der Erkrankung. Das Expressionsprofil
von TCA im Skeletmuskel in vivo als auch in vitro (C2C12). Letztere wiesen
eine erhöhte Expression von TCA während der Differzierung auf. Dies
unterstützt die Hypothese der Beteiligung von TCA an der Myogenese.
Nachfolgend untersuchte ich TCA defiziente C2C12 Zelllinien mit Hilfe einer
Microarray Analyse. Die Ergebnisse zeigten eine Runterregulierung von
kontraktilen Muskelproteinen und gleichzeitig die Hochregulierung von Zell-
Zyklus-Proteinen. Dies suggeriert die Beteiligung von TCA an der Regulierung
der Proliferation und der Differenzierung im Skelettmuskel. Zudem zeigten
Reporter- Luciferase-Assays in proliferierenden, TCA überexpremierenden C2C12
Zellen eine direkte und aktivierende Interaktion zu p21, was die Rolle von TCA
auf das Ende des Zell-Zyklus spezifiziert. Wir beschreiben somit eine neue
kongenitale Muskelkondition mit einem einzigartigen histologischen Muster, die
eine histologische Überlappung zwischen verschiedenen Kongenitalen Myopathien
und Muskeldystrophien aufzeigt. Zudem charakterisierten wir unter humanen
genetischen Bedingungen ein neues Gen, welches die Proliferation und
Differenzierung des Muskels reguliert. Weitergehende Untersuchungen des Gens
werden in unserem Labor bereits durchgeführt. Parallel untersuchte ich fünf
weitere Familien mit MmD. Dabei identifizierte ich ein weiteres Gen dessen
Protein potentiellen Einfluss auf den Differenzierungsmechanismus hat und mit
der Aktivität von p53 verknüpft zu sein scheint. Die Pathogenität der
Veränderung und das Gen werden in unserem Labor weiter untersucht. Eine
Veröffentlichung mit dem Titel „A novel transcriptional coactivator is pivotal
in regulating the balance between proliferation and differentiation of
myogenic progenitors and is mutated in a novel form of congenital myopathy.”
ist in Bearbeitung. Davignon et al
de
dc.format.extent
191 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
multiminicore disease
dc.subject
transcription coactivator
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
Identification and characterisation of new genes associated to multiminicore
disease
dc.contributor.contact
davignon.laurianne@gmail.com
dc.contributor.firstReferee
Prof. Dr. Michael Gotthardt
dc.contributor.furtherReferee
Prof. Dr. Simone Spüler
dc.date.accepted
2015-01-20
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000106695-3
dc.title.translated
Identifizierung und Charakterisierung neuer Gene assoziiert mit der
Multiminocore-Krankheit
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000106695
refubium.mycore.derivateId
FUDISS_derivate_000000023536
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access