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Kurzfassung	
  

In dieser Arbeit habe ich Mechanismen des menschlichen Gehirns untersucht, 

die zur Anpassung des Entscheidungskriteriums führen. 

Bei Wahrnehmungsentscheidungen, wie z.B. dem Erkennen der 

Bewegungsrichtung eines Objekts (z.B. nach links oder rechts), wird aufgrund 

theoretischer und empirischer Befunde angenommen, dass sensorische 

Information kontinuierlich bis zur Überschreitung eines 

Entscheidungskriteriums gesammelt wird. Dieser Prozess lässt sich durch 

theoretische Modelle, sogenannte Akkumulatormodelle, mathematisch 

beschreiben. Aufgrund umfangreicher Verhaltensdaten, neurophysiologischer 

und bildgebender Befunde, wird angenommen, dass diese Modelle den 

zugrundeliegenden Informationsverarbeitungsprozess im Gehirn sehr gut 

abbilden. Ein zentraler Parameter dieser Modelle ist dabei das 

Entscheidungskriterium, weil es den Entscheidungsprozess determiniert. 

In dieser Dissertation werden zwei Projekte diskutiert, in denen neuronale 

Mechanismen des Entscheidungskriteriums von mir untersucht wurden. 

Zentral im ersten Projekt ist die Frage nach dem neuronalen Mechanismus 

der Anpassung des Entscheidungskriteriums (engl. decision threshold 

modulation). Ausgehend von einem biophysikalischen Modell das den 

erwähnten Entscheidungsprozess in einem Neuronalen Netz implementiert, 

untersuchte ich die Veränderbarkeit des Entscheidungskriteriums. In dem 

Neuronalen Netz wird das Entscheidungskriterium durch die Anpassung von 

Interaktionen zwischen Kortikalen Akkumulator- (engl. integrator) und 

Striatalen Neuronen moduliert. Unter Anwendung bildgebender Verfahren und 

komputationaler Modelle konnte ich zeigen, dass das Entscheidungskriterium 

durch die Modulation von Interaktionen, zwischen Hirnregionen, die für eine 

Entscheidung relevant sind, angepasst wird. 

Akkumulatormodelle lassen sich theoretisch aus statistischen Tests über 

optimales Entscheiden herleiten. Ausgehend von einem komputationalen 

Modell über optimales Entscheiden in kortiko-basalganglionischen 

Netzwerken, habe ich im zweiten Projekt untersucht, wie der Nucleus 

subthalamicus (engl. STN, Subthalamic Nucleus), der in diesem Modell eine 
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zentrale Rolle bei Entscheidungen spielt, bei einfachen, perzeptuellen 

Entscheidungen das Entscheidungskriterium beeinflusst. Dazu nutzte ich die 

Möglichkeit der Tiefenhirnstimulation (engl. DBS, Deep Brain Stimulation) des 

STN bei Parkinson Patienten. In dieser Studie konnte ich die 

Modellannahmen über die Funktion des STN bestätigen. Ebenso konnte ich 

zeigen, dass die DBS des STN die Modulation des Entscheidungskriteriums 

einschränkt. 

Zusammengefasst zeigt meine Dissertation erstens, dass das 

Entscheidungskriterium durch eine Veränderung in der Kopplung zwischen 

Kortikalen und Subkortikalen Hirnsystemen moduliert wird und zweitens, das 

diese Anpassung durch Signale des STN beeinflusst wird. 

 
Schlagwörter: Perzeptuelle Entscheidungsfindung, Entscheidungskriterium, 

Akkumulatormodell  
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Abstract Summary 

This thesis investigates the neural basis of the decision threshold. The neural 

basis of decision making is one of the most central topics in cognitive and 

systems neuroscience. The ultimate goal of this research is to provide a 

complete account of the mechanisms and neural substrates underlying our 

ability to make choices in complex and ever-changing environments. 

Perceptual decision making has previously been described as the continuous 

accumulation of noisy sensory evidence in the brain until a decision criterion 

or threshold is reached. A decision threshold ultimately determines the 

decision process by balancing evidence accumulation and deliberation time in 

order to appropriately select an action.  

Let us consider a simplified scenario in which foragers sample the 

environment for available patches of food. When plentiful resources are 

available, foragers should thoroughly examine and thus deliberately choose 

rich patches over empty patches to maximize reward. Compare this to a 

situation where resources have been nearly exploited. Now, decisions about 

which patch to choose have to happen quickly as foragers compete for the 

remaining resources. While these two situations differ in their incentive 

structure, they do share a common component. The forager adjusts her 

decision criterion in each situation that would appropriately address the 

change in circumstances.  

Whereas accumulation of sensory evidence has been extensively researched 

having acquired a substantial body of knowledge, the mechanisms of the 

flexible decision threshold remain poorly understood. Hence, motivated by 

compelling theoretical frameworks - such as the sequential sampling 

framework of decision making - I have investigated mechanisms of the 

decision threshold during perceptual decision making.  

In the first project, I investigated the neural mechanism of decision threshold 

modulation for reward maximization in a direction of motion discrimination 

task. By combining functional MRI (fMRI) with computational models of 

perceptual decision making, i.e. the drift diffusion model (DDM), it can be 

shown that modulation of the decision threshold is achieved by adjusting the 
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effective connectivity within cortico-striatal and cerebellar-striatal brain 

systems. This change-in-connectivity mechanism, which has the effect of 

balancing different decision relevant sources of information, reflects a central 

aspect of decision making. 

Most importantly, a modulation of the decision threshold influences 

performance: a lower threshold leads to faster but also less accurate decision 

and vice versa. It has been theoretically shown that sequential sampling 

models, especially the drift-diffusion model can adjust the decision threshold 

in an optimal way for simple forms of decision making. Optimality under these 

conditions is defined as the optimal trade-off between decision time and 

performance accuracy. Notably, in these decision situations, time for 

deliberation and error rate are negatively related. The model can minimize 

decision time for a specified performance level. As a consequence, this notion 

of optimality has potential implications for formulations of information 

processes explaining perceptual decision making.  

In the second project, I investigated neurocomputational models of optimal 

decision making via cortico-basal ganglia circuitry to investigate this feature in 

detail. These models have ascribed a crucial computational role to the 

subthalamic nucleus (STN) and are (mathematically) equivalent to the models 

used in the first study. In this project, participants suffering from Parkinson’s 

disease (PD) were also asked to perform a motion discrimination task. Here 

we used a combination of psychophysics, neurostimulation and computational 

modeling and probed perceptual decision making under a) different states of 

deep brain stimulation (DBS) of the subthalamic nucleus (STN) and b) 

changing response instructions. The results indicate that DBS of the STN 

significantly influences a) performance for perceptual judgments under high 

decision conflict, and b) the magnitude of decision criterion adjustment. These 

findings are of particular interest, as they demonstrate on an individual basis 

that STN computation is crucial for an optimal balance between competing 

decision demands.  

Taken together, I investigated mechanisms of the decision threshold and 

showed that the modulation of a threshold for perceptual decision making is 
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instantiated by a change in connectivity between cortio-striatal and cerebellar-

striatal brain systems. In addition, I demonstrated that the optimal adjustment 

of the decision threshold is likely to be based on computations by the STN. 

Together these findings advance the idea of the decision threshold as a 

general mechanism for decision making and shed light on the neural 

mechanisms implementing it.  
 

Keywords: Decision making, perception, decision threshold, sequential sampling 
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1. Introduction 

Decision making is a central cognitive function. We gather information, we are 

in a certain emotional state, we value choice alternatives and we remember 

previous experiences and weigh possible options based on (in)complete 

knowledge in many everyday decisions. Choosing a course of action or 

thought - based on the aforementioned aspects - eventually allows us to 

commit to one choice or another, enabling us to interact appropriately with the 

world. 

Decision Making is an extensive research topic spanning many disciplines 

such as biology, computer science, economics, engineering, psychology, and 

neuroscience, to name but a few (von Neumann and Morgenstern, 1944; 

Wald, 1945; Newell, 1972; Tversky and Kahneman, 1981; Platt and Glimcher, 

1999; Gold and Shadlen, 2007, Heekeren et al., 2008; Rangel et al., 2008; 

Bach and Dolan, 2012).  

	
  
Figure 1. Decision Neuroscience. 
The combination of decision sciences such as psychology, computational sciences and 

economics with neuroscience in order to acquire one coherent framework of neural decision 

making mechanisms. 

Decision neuroscience, the neuroscientific and decision theoretic research of 

decision making is particularly successful in enhancing interdisciplinary 

research on decision making across disciplinary boundaries (Figure 1). For 

instance in the case of neuroeconomics it combines concepts and methods 

from economics, psychology and neuroscience (Glimcher and Rustichini, 

2004; Mohr et al., 2010; Levallois et al., 2012). In the case of computational 
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psychiatry and ageing it spans fields such as ageing, cognitive science, 

computational neuroscience, psychology, and psychiatry (Thagard, 2008; Li et 

al., 2008; Montague et al, 2012).  

The understanding of the neural mechanisms and systems underlying simple 

forms of decision making – such as in perceptual decision making - together 

with concepts and methods from disciplines such as psychology, economics, 

and computational sciences help to generate explanatory rich and detailed 

theories that span different levels of analysis (van Hemmen and Sejnowski, 

2005). One very coherent formulation of this idea, has been put forward by 

David Marr (Marr, 1983). Studying the visual system, he proposed a model-

based approach for thinking about the brain in terms of a complex information 

processing system, which encompasses three distinct but complementary 

levels of analysis:  

1. The computational level, which considers the goal of the system.  

2. The algorithmic level, which considers the representations and processes 

that the system uses to achieve these goals.  

3. The implementational level, which considers how these processes are 

physically realized.  

Following this schema I investigated mechanisms of the decision threshold 

during simple forms of decision making in the human brain. A decision 

threshold ultimately determines the decision process by balancing evidence 

accumulation and deliberation in order to appropriately select an action 

(Diederich and Busemeyer, 2006; Simen et al., 2006; Lo and Wang, 2006). 

Thus this mechanism allows decision makers to flexibly adapt to different 

demands of the decision environment (cf. Chittka et al., 2009; Castellano and 

Carmelli, 2011).  

Inspired by the sequential sampling framework of decision making as well as 

substantial behavioral and neural empirical findings thereof (Smith and 

Ratcliff, 2004; Gold and Shadlen, 2007), I applied computational models 

implementing the decision threshold as a central parameter: such as the drift 

diffusion model (Ratcliff and McKoon, 2008) in order to map it to neural 

processes and structures (cf. Forstmann et al., 2011). According to the 
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sequential sampling framework of decision making, sensory-based decisions 

are formed, by accumulating noisy sensory information until a decision 

boundary or threshold is crossed (Smith and Ratcliff, 2004; Kiani et al., 2006). 

Marr’s framework can thus be applied to my research question as follows: 

The computational and algorithmic levels, in the context of this thesis, refer to 

a correct (and optimal) perceptual categorization (i.e. is it a face or a house 

that I see). For instance, sequential sampling models instantiate the 

algorithmic level of perceptual decisions. It is assumed that a perceptual 

decision is made, by integrating evidence over time until a decision threshold 

is crossed. Finally, the physical level refers to the neural mechanisms and 

neural systems that implement decision processes.  

In the following sections I will review the theoretical and empirical foundations 

of this dissertation beginning with the discussion of perceptual decision 

making. Subsequently I will introduce phenomenological models of perceptual 

decision making, namely variants of the sequential sampling framework. 

Before I describe the research projects in detail, I will state the main research 

questions of this thesis, which concern neural mechanisms of the decision 

threshold. Lastly, I will discuss the findings, their implications and propose 

open questions that are important for future research. 
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2. Perceptual Decision Making 

	
  

	
  
Figure 2. Perceptual Decision Making.  
Decision making is usually assumed to be based on the accumulation of sensory input over 
time until the evidence for one choice alternative reaches the decision threshold. 
Subsequently an action is elicited. 

Perceptual decision making is the process of making decisions based on 

sensory information, i.e. visual, haptic, olfactory signals (Newsome et al, 

1989; Romo and Salinas, 2001; Uchida et al., 2006; Figure 2). Perceptual 

decision making is usually conceptualized in terms of evidence integration 

over time (i.e. using the framework of sequential sampling models; Figure 2, 

middle). Fundamental findings have been made, by studying decision making 

using psychophysical motion discrimination tasks in binary forced choice 

settings (Figure 2A, left and right). For example, a participant has to 

discriminate between two directions of motion (left or right) of a random dot 

kinematogram (RDT) in a limited amount of time (up to one second) and 

indicate her decision by pressing a button (Figure 2, right). The random dot 

stimulus consists of a set of moving dots – visible in a circular area on a 

screen- out of one fraction of dots move coherently into the same direction 

and others move randomly about (Newsome et al., 1989). This paradigm 

lends itself most suitably to the study of decision making since the neural 

basis of motion perception is in this case properly understood (Maunsell and 

Newsome, 1987; Zeki et al., 1991; Logothetis et al., 1994; Tootel et al. 1995b; 

Bair et al., 2002).  
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Figure 3. The neural basis of perceptual decision making. 
Simplified illustration of the neural bases of perceptual decision making. It is assumed that 

different heterarchically interacting brain systems subserve decision making.  
 

Research on perceptual decision making has so far uncovered certain 

mechanisms of decision making in animals and in humans and mapped them 

onto distinct brain systems. For instance, evidence accumulation and the 

formation of a decision variable has been mapped to prefrontal and parietal 

cortical structures in humans as well as planning of a motor response and its 

selection has been mapped to pre-motor and basal ganglia structures (cf. 

Gold and Shadlen, 2007; Heekeren et al. 2004; Ho et al., 2009; Philiastides et 

al., 2011; Hare et al., 2011b). It is assumed that perceptual decision making is 

based upon heterarchically interacting neural information processing stages 

that encompass multiple brain regions (Figure 3; Green and Heekeren, 2009; 

Philiastides and Heekeren, 2010).  

3. Empirical evidence: Neurophysiology 

 

Neurophysiological work in monkeys has provided the first empirical evidence 

observed in sensorimotor neurons (sensory and motor related information 

processing) that accumulate noisy sensory evidence in line with the 
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sequential sampling framework (cf. Romo and Salinas, 2001; Gold and 

Shadlen, 2001; Smith and Ratcliff, 2004; Gold and Shadlen, 2007). Single-unit 

recording studies in monkeys have provided evidence for a close link between 

choice behavior and the activity of neuronal populations in sensory regions, 

i.e. primary somatosensory cortex (SI) and visual area MT (Britten et al., 

1996; Romo et al., 2002). In those studies a decision problem is often framed 

as a simple binary choice difficulty. A monkey has to discriminate the direction 

of motion in random-dot kinetograms with different degrees of motion 

coherence in one of two opposite directions (cf. Newsome et al., 1989). In 

other cases a monkey has to compare tactile frequency differentiation stimuli 

(cf. Romo et al., 2004). The response is usually given via a saccade or a 

button press to indicate a decision. Neural activity profiles of sensory neurons 

in downstream processing areas such as the lateral intraparietal area (LIP) 

and the frontal eye field (FEF) reflect a process analogous to the 

accumulation of evidence (Britten, et al., 1996; Shadlen and Newsome, 1996; 

Gold and Shadlen, 2007). In these studies, electrophysiological recordings 

show that neurons in the macaque LIP increase and sustain firing rates up to 

the moment of a decision and the subsequent action (i.e. a saccade towards a 

target) (Shadlen and Newsome, 2001; Kiani, et al., 2006). Based on this 

research it has been proposed that sensory evidence supporting choice 

alternatives (here the two directions of motion) is integrated in a way 

comparable to a statistical likelihood ratio test (Gold and Shadlen, 2007). This 

claim has been subsequently supported by several quantitative computational 

modeling approaches with varying levels of neural and psychological detail of 

decomposition (cf. Lo and Wang, 2006; Bogacz et al., 2006; Deco et al., 

2012). 

Romo and colleagues (Romo et al., 2002) discovered similar patterns of 

activity for tactile discrimination tasks in neurons located in the 

somatosensory cortex and ventral premotor cortex (PMv, Romo et al., 2004). 

They recorded neural activity from single neurons in primary somatosensory 

cortex (SI) while monkeys performed a vibrotactile discrimination task, in 

which they had to decide which of two sequentially presented flutter stimuli 
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had a higher frequency. Trial-to-trial fluctuations in the firing rate of SI neurons 

predicted the monkeys’ choices, and the average firing rate of SI neurons 

increased monotonically with increasing stimulus frequency pointing again 

towards the evidence accumulation framework. 

All of the above mentioned studies included parametric variations of 

controllable task parameters – such as variations of stimulus or response 

difficulty, for example by changing the stimulus coherence (frequency in the 

vibrotactile task, motion coherence in the random dot stimulus), or by varying 

the allowed time for deliberation. This approach results in a tight link between 

neural activity, task conditions and decision making behavior. In addition, the 

same experimental manipulations enable us to understand that during a 

perceptual decision, different sources of information are combined and used 

by the decision maker to adjust to changing circumstances in an adaptive 

way.  

Finally, electrical microstimulation studies provided causal evidence for a 

close link between neural activity and decision behavior in both the 

somatosensory and the visual domain (Romo et al., 1998; Ditterich et al., 

2003). For instance, when the vibrotactile stimuli were replaced with 

analogous direct electrical microstimulation of primary somatosensory cortical 

neurons, the monkeys showed a very similar decision making pattern as 

under normal experimental conditions (Romo et al., 1998). Similarly, electrical 

microstimulation of directionally selective neurons in area MT caused the 

monkey to choose the neurons' preferred direction more often: when neurons 

tuned to rightward motion were stimulated, the monkey was more likely to 

make an eye movement to the target on the right (Ditterich et al., 2003; Hanks 

et al., 2006). Microstimulation of these neurons also quickened the decision in 

favor of the preferred direction and slowed the decision in the opposite 

direction (Ditterich et al., 2003). Thus, in both instances, the visual and the 

somatosensory domain, microstimulation has provided direct causal evidence 

for a tight link between the representation of sensory evidence in sensory 

regions, an activity-related threshold mechanism and perceptual decisions. In 

summary, these neurophysiological findings in the monkey support the basic 
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hypothesis of evidence accumulation up to a boundary for decision making in 

the brain.  

An important concept that has emerged from modeling neurophysiological 

data of monkey experiments is that perceptual decisions are made, at least in 

part, by integrating over the sensory evidence represented by sensory 

neurons in order to form a decision variable (Gold and Shadlen, 2007). 

Neuronal activity in areas involved in decision-making gradually increases and 

then remains elevated at a stable level until an action is implemented (which 

determines the decision process). Notably, although the rate of increase in 

neural activity is slower during more difficult trials than during easier trials, the 

final level of activity is comparably pointing to a generalizable threshold 

mechanism (Roitman and Shadlen, 2002).  

During the vibrotactile frequency-discrimination task described earlier (cf. 

Romo et al., 2003), neuronal populations in the monkey brain that are 

downstream from the primary and secondary sensory areas, such as the 

prefrontal, medial premotor and ventral premotor cortices, form a decision 

variable. This is done by respectively computing the difference in the activities 

of populations of sensory neurons in the secondary somatosensory cortex 

(SII) that prefer high and low frequencies (Romo et al., 2003; de Lafuente and 

Romo, 2005, Hernandez et al., 2002, Romo et al., 2004). Equally, during the 

direction-of-motion visual discrimination task, cells in regions downstream 

from area MT, such as LIP, FEF, and the dorsolateral prefrontal cortex 

(DLPFC), form a decision by computing the difference in the activities of 

neural populations from area MT that code for opposite directions of motion 

(Kim and Shadlen, 1999). Thus, in both sensory domains an integration by 

comparison operation that is bounded by a decision threshold appears to 

explain decision making. Together these findings indicate that brain areas 

such as frontal cortical as well as sensorimotor areas such as LIP and FEF 

integrate sensory evidence on which subsequent actions (saccades, arm 

movements, button presses) are based. It is noteworthy that regions in the 

monkey brain that have been implicated both in representing decision 

variables and in performing the comparator operation —LIP, FEF, DLPFC— 
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are at the same time areas that participate in selection, planning, and 

execution of motor responses. As such, when monkeys must choose in which 

direction a random-dot motion stimulus moves and indicate their decision with 

an eye movement, decision-related as well as saccade-related activity can be 

found in the FEF (Gold and Shadlen, 2003). Similarly, when monkeys perform 

the vibrotactile discrimination task, activity in medial and ventral premotor 

cortex reflects the temporal evolution not only of the decision-making process 

but also of action selection (Hernandez et al., 2002; Romo et al., 2004). Other 

neurophysiological studies have revealed that decision variables are 

represented in the superior colliculus, a midbrain region involved in the 

generation of saccadic eye movements (Gold and Shadlen, 2003; Horwitz et 

al., 2004). So far, both the predictions by the sequential sampling framework 

(i.e. accumulation of evidence over time), as well as the neurophysiological 

studies in monkeys, strongly suggest that the brain implements abstract and 

generalizable choice selection and action planning mechanisms.  

3.1 Generalizability of the evidence accumulation framework for 
decision making 
	
  
It should be noted that in many of the monkey studies, the monkeys were 

trained to indicate their final choice with a particular action. As the process of 

evidence accumulation is closely linked to the planning and implementation of 

an appropriate action, the monkeys could treat the decision problem as a 

motor problem. Therefore a common critique concerns the generalizability of 

the suggested information processing mechanisms and their mapping onto 

neural systems. It could be that the motor system is linked to perceptual 

decision making, simply because the decision problem can be formulated as a 

problem of which action to elicit (e.g. left- or rightward saccades). However, 

recent neuroimaging research has implicated comparable human brain 

regions into decision making. For instance, the supplementary motor cortex in 

humans has been found to play a role in modulating the decision boundary 

(Forstmann et al., 2008; Wenzlaff et al, 2011). Moreover, subcortical 

structures that are involved in action selection and motor control such as the 
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STN and the striatum have been implicated in decision making (Redgrave et 

al., 1999; Frank et al., 2007; Fleming et al., 2010). In addition, it has recently 

been shown that the STN is involved in decision threshold modulation 

(Cavanagh et al., 2011). It is assumed that the STN computes decision 

conflict and sends a signal to slow down action execution under high conflict 

(Frank et al, 2006, 2007). In line with this proposal, it was shown that the STN 

exhibits specific context dependent activity: STN activity is closely related to 

decision difficulty, reflected by modulated interaction with the inferior frontal 

cortex (IFC) under difficult choice settings (Fleming et al, 2010). Moreover, 

Frank and colleagues have shown that DBS of the STN leads to more 

impulsive (faster and less accurate) decisions when comparing high conflict 

choices (Frank et al., 2007). 

4. Empirical Evidence: Neuroimaging 

 

The general mechanism of evidence accumulation up to decision boundary or 

threshold that has emerged from the neurophysiological work in monkeys is 

also present in the human brain. Human neuroimaging studies have shown 

that accumulated noisy sensory evidence is integrated into a decision variable 

(an entity reflecting the difference in evidence for the choice alternatives, cf. 

Heekeren et al., 2004; Gold and Shadlen, 2007). Accumulated sensory 

evidence as well as action selection are encoded in overlapping and 

interacting neuronal populations throughout cortical and subcortical brain 

areas encompassing the basal ganglia (e.g. Forstmann et al., 2008; Ding and 

Gold, 2010), the parietal (e.g. Wong and Huk, 2008), premotor and motor (e.g. 

Forstmann et al., 2008; Donner et al., 2009; Wenzlaff et al., 2011) and frontal 

cortices (e.g. Heekeren et al., 2004, 2006; Philiastides et al., 2011). Together 

these findings strongly suggest that the latent neural information process 

supporting decision making can be adequately described by sequential 

sampling of sensory information, by which perceptual decision making can be 

understood as an integration of sensory information over time for each choice 

alternative up to a decision boundary. The information processing advantage 
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of this temporal integration means that noise inherent in sensory signals as 

well as in neural systems (i.e. transduction) is averaged out thus improving 

the signal-to-noise ratio. Note that this is very effective when noise is 

temporally uncorrelated (i.e. white noise).  

Crucially, the disruption of neural activity supporting these mechanisms by 

means of neurostimulation e.g. DBS or transcranial magnetic stimulation 

(TMS) directly translates into changes of information processing and results in 

altered decision behavior (Frank et al., 2007; Philiastides et al., 2011; 

Cavanagh et al., 2011). 

It is nowadays widely assumed that the concepts of evidence accumulation 

and decision thresholds represent aspects of general system level 

mechanisms of brain function that have been conserved during brain 

evolution (cf. Redgrave et al., 1999; Heekeren et al., 2008). One of the first 

neuroimaging studies for showing that the idea of evidence accumulation 

holds also for empirical data from the human brain used a simple perceptual 

categorization task in which human participants had to decide whether a 

picture that was presented to them was a house or a face. Notably, neural 

activity as measured by fMRI showed that activity in the left DLPFC covaries 

with the difference in evidence for face and house signals (Heekeren et al., 

2004, 2006). The temporal evolution of neuronal activity during a similar 

perceptual categorization task supports once more the evidence accumulation 

framework (Philiastides et al., 2006a). Similar to the studies in monkeys, 

neural representations of sensory evidence can also be measured (i.e. for the 

Face in the Fusiform Face Area (FFA) and for the house in the 

Parahippocampal Place Area (PPA) using fMRI (Heekeren et al., 2004, 2006; 

cf. Philiastides et al., 2010)).  

Single-unit recordings in monkeys have shown that neuronal activity in areas 

involved in decision making gradually increases and then remains elevated 

until a response is made. Importantly, these studies have shown that 

downstream cortical regions (i.e., further along the processing chain), such as 

LIP and the DLPFC, could form a decision by comparing the output of pools of 

selectively tuned sensory neurons up to a decision threshold and linking them 



	
   12	
  

subsequently to actions. To test whether these results from 

neurophysiological research reveal basic principles that hold for the human 

domain, Heekeren et al. (Heekeren et al., 2006) asked human observers to 

make direction-of-motion judgments about dynamic random-dot-motion stimuli 

and indicate their choices with an eye movement-to one of two visual targets. 

In each individual, the authors localized regions that are part of the 

oculomotor network, namely the FEF and an eye-movement-related region in 

the intraparietal sulcus (IPS) that presumably corresponds to the LIP of 

monkeys (Sereno et al. 2001). During the period of decision formation 

(between the onset of visual motion and the cue to respond), the percent 

signal change of the blood oxygen level dependent (BOLD) signal in both the 

FEF and the IPS was highly correlated with the strength of the motion signal 

in the stimuli (Heekeren et al, 2006). These data are thus consistent with the 

single-unit studies in monkeys that reported that the FEF and the LIP 

participate in the process of forming a perceptual decision. More recently, 

Heekeren et al. investigated whether decisions might be transformed into 

motor actions in the human brain independently of motor planning and 

execution — that is, at an abstract level (Heekeren et al., 2006). Individuals 

performed the direction-of-motion discrimination task and responded with 

either button presses or saccadic eye movements. Areas that represent 

decision variables at a more abstract level should have shown a greater 

response to high coherence (easy) relative to low coherence (difficult) trials, 

independently of the motor system that is used to express the decision. 

Heekeren et al. found four such areas: the left posterior DLPFC, the left 

posterior cingulate cortex, the left IPS and the left fusiform / parahippocampal 

gyrus. Most importantly, the increase in BOLD activity in these regions was 

independent of the motor system that participants used to express their 

decision. The results from this fMRI study are in line with the finding by Kim 

and Shadlen that, in monkeys, neural activity increases proportionally with the 

strength of the motion signal in the stimulus (Kim and Shadlen, 1999). 

However, the findings in humans suggest that the posterior DLPFC is an 

important component of a network that not only accumulates sensory 
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evidence up to decision boundary to compute a decision but also translates 

this evidence into an action independently of response modality. Notably to 

date, neurophysiological studies in monkeys have not found neurons with an 

activity that reflects decisions independently of response modality. In fact, one 

could conclude from the neurophysiological studies in monkeys "to see and 

decide is, in effect, to plan a motor-response" (Rorie and Newsome, 2005). By 

contrast, in humans, various studies found regions of the cortex that 

responded independently of the motor effectors used. For instance, it was 

shown using multivariate fMRI analysis on a motion discrimination task with 

decoupled response modalities that perceptual decisions are independently 

encoded (from motor intentions) in visual and parietal regions of the human 

brain (Hebart et al., 2012). Moreover, a domain general signal of a decision 

variable has been recently discovered in the human brain (O’Connell et al., 

2012). In that study participants observed a continuously presented annulus 

of which the contrast dropped at random intervals. Using 

electroencephalogram (EEG) analysis, it was shown that a decision variable 

is represented by a centro-parietal positivity (CPP) signal, which exhibits the 

characteristics of a decision variable: it is modality independent and also 

tracks decision formation that is independent from an overt motor response. 

Furthermore it has been shown in neuroimaging studies that decision related 

activity in the IPS performs evidence integration from visual motion area MT+ 

(Kayser et al., 2010a). Moreover, this mechanism can be influenced by other 

important factors such as attention (Kayser et al., 2010b). Finally, there is also 

causal evidence supporting the evidence integration framework. One 

particularly noteworthy study shows that TMS of the DLPFC - the region, 

which has been previously assumed to compute the decision variable (the 

integration of accumulated evidence for the choice alternatives) but not the 

decision threshold – in combination with diffusion modeling - degrades the 

evidence accumulation process (Philiastides et al., 2011). 

In conclusion, neurophysiological and neuroimaging results support the 

assumption that evidence accumulation models capture important aspects of 
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the latent information processing supporting simple perceptual decision 

making. 

5. Perceptual decision making as sequential sampling. 
	
  
So far, empirical evidence substantially supports the idea of perceptual 

decision making as the sequential accumulation of (noisy) sensory evidence 

over time up to a decision threshold for short timescales (hundreds of 

milliseconds).  

	
  
Figure 4. The Drift Diffusion model of a two-alternative forced choice task. 
The DDM allows for a detailed analysis of decision processes by using different parameters 

such as the rate of information integration (drift rate), response (motor) preparation time and 

sensory transmission (nondecision time, Ter), bias/prior (starting point, z) or the amount of 

evidence needed for a decision (threshold, a). In general, the diffusion model assumes that 

noisy sensory evidence is sequentially integrated over time (drift) until sufficient information is 

accumulated to make a decision (crossing the threshold) and to elicit a response. The 

diffusion model describes full reaction time data distributions (reaction time and response 

accuracy) for hits (in green on top) and misses (in red on top).  

 

One very prominent instantiation of the sequential sampling framework is the 

DDM, which has been widely applied in psychology and neuroscience 
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(Ratcliff, 1978; Smith and Ratcliff, 2004; Ratcliff and McKoon, 2008, Figure 4). 

This model computationally formalizes a decision process in the following 

way: The difference in (sensory) evidence between choice alternatives is 

sampled continuously in time and drifts towards a decision boundary until it is 

reached. The DDM captures very well behavioral reaction time data 

(distributions of reaction time and accuracy) from psychological (Ratcliff and 

McKoon, 2008), neuroscientific (Basten et al, 2011; Philiastides et al, 2006) 

and neuroeconomic experiments (Krajbich et al., 2011, 2012) and has the 

following properties that lend themselves well for the investigation of the 

decision threshold: 

1. The DDM can be mathematically derived from optimal statistical tests such 

as the sequential probability ratio test (SPRT; Gold and Shadlen, 2001; 

Bogacz et al., 2006; Bogacz and Gurney, 2007). An optimal test is one that 

minimizes the time needed to make a decision given a performance level. 

Thereby it also maximizes the reward rate (Bogacz et al., 2006; Gold and 

Shadlen, 2007). Interestingly, SPRT, which implements optimal (or maximal 

time efficient) hypothesis testing, can be mapped elegantly on cortico-basal 

ganglia circuits, assigning a special computational role to the STN during 

decision making (Figure 5, Bogacz and Gurney, 2007; Gold and Shadlen, 

2007; Ditterich, 2010). Such a reverse engineering approach could help trying 

to establish a unified framework of decision making. 
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Figure 5.The SPRT theory of optimal decision making and it’s mapping on the 

hyperdirect pathway. 

(A) A simplified schematic of the neurocomputational model of cortico-basal ganglia network 

for optimal decision making (Bogacz and Gurney, 2007). The STN receives direct signals 

from cortical integrators and together with the globus pallidus (GP) computes decision conflict 

in order to send a „hold-your-horses“ signal (Frank et al. 2007) to basal ganglia output 

structures in order to adjust decision making. The circles denote neural populations, arrow 

lines, excitatory connections and circles at the end of lines inhibitory connections. Colors of 

the lines in (A) match the hyperdirect pathways schema in (B). (B) The hyperdirect cortico-

basal ganglia pathway (Nambu et al., 2002). The hyperdirect pathway connects the cortex 

directly with the STN, bypassing the striatum (which usually is the entry point to the basal 

ganglia in the other two (direct and indirect cortico-basal ganglia pathways). The STN 

subsequently sends excitatory projections to the internal segment of the GP. 

 

2. Biophysically inspired network models of great neural detail (implementing 

realistic neural dynamics and neural systems connectivity) instantiate a DDM 

like information processing mechanism. They optimally describe empirical 

results from neurophysiological decision making tasks, offer high biological 

realism (neural population dynamics, single cells dynamics and neural 

systems connectivity) and thus allow the formulation of testable system level 

hypotheses (Lo and Wang, 2006; Kiani et al., 2006). 

3. Fundamental decision making phenomena, as observed in psychophysical 

tasks (i.e. forced choice tasks) such as the speed accuracy trade-off (SAT; 

Fitts, 1954; Wickelgren, 1977) can be readily explained using the diffusion 

model (Bogacz et al., 2006, 2010). The SAT describes the trade-off between 
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deliberation and response time. For instance, when a participant in a 

perceptual categorization task is instructed to respond accurately, this can be 

explained by longer evidence accumulation due to a higher decision boundary 

(Figure 6A, 6B). Moreover, it has been suggested that the brain uses this 

mechanism in order to maximize the reward rate (Figure 6C; Gold and 

Shadlen, 2002; Bogacz et al, 2006). 

	
  
Figure 6. Decision threshold modulation, Speed Accuracy Trade-off and Reward 

Maximization. 

(A) Modulating the decision threshold allows for the trade-off between deliberation time and 

evidence accumulation. In case that circumstances require more accurate decisions, this in 

turn leads to a more extensive evidence accumulation and a higher decision boundary: since 

more noisy evidence is integrated over a longer period of time, which results in slower 

decision making. Faster decisions entail less extensive evidence accumulation using a lower 

decision boundary and are thus less accurate. (B) The SAT, in which decision time and error 

rate are negatively related, can be readily explained by a decision threshold mechanism 

(higher boundary à more evidence accumulation à slower reaction time and vice versa. (C) 

Threshold modulation enables reward maximization, as reward is a function of time and 

accuracy (cf. Gold and Shadlen, 2002).  

  

It has been discovered that the variables and mechanisms of the sequential 

sampling framework that support decision making are of compelling biological 

relevance and can be mapped onto different features such as attention, or 

deliberation time (Heekeren et al., 2008; Philiastides and Heekeren, 2010; 

Kayser et al., 2010b). Nevertheless, evidence accumulation up to a threshold 

per se is insufficient to account for effective decision making. A decision also 

has to entail a mechanism that can flexibly adjust the decision criterion in 

order to balance decision-relevant factors such as for example sensory 

evidence, deliberation time, decision conflict, rewards, or values (Figure 6C; 
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Simen et al., 2006, Bogacz et al. 2006; Cavanagh et al., 2011; Krajbich and 

Rangel, 2011). Some theoretical knowledge about mechanisms of decision 

thresholds has been accumulated (Usher and McClelland, 2001; Simen et al., 

2006; Lo and Wang, 2006; Bogacz et al., 2006; Diederich and Busemeyer, 

2006; Simen, 2012). These formal conceptions suggest that modulation of the 

decision threshold is a general mechanism that is a) applicable to different 

variants of computational models, and b) is required for various cognitive 

processes, i.e. temporal duration estimation, memory retrieval, value 

comparison (cf. Kiani et al., 2006; Balci et al., 2011; Hanks et al., 2011). 

However, little is known about how and where in the brain decision thresholds 

are instantiated.  
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6. Research Aims 
	
  
A particular important question thus concerns the neural mechanisms of 

decision thresholds, especially under the assumption that the decision 

threshold constitutes a general mechanism by which different choice relevant 

demands guide decision making. The fact that a decision threshold enables 

us to adjust our decisions and hence the adaptive interaction with the 

environment, constitutes the general motivation for this research project. 

Consider, for example, a reward based perspective (i.e. Ratcliff and Frank, 

2012). Herein, understanding the mechanisms of the decision threshold is of 

particular interest, as the threshold is under the influence of the decision 

maker. 

Previous research has shown that decision thresholds are influenced by 

distinct factors such as value, bias, conflict or reward in order to increase 

reward rate (cf. Gold and Shadlen, 2002; Chittka et al., 2009; Domenech and 

Dreher, 2010; Hare et al., 2011b; Cavanagh et al, 2011). Hence, one very 

straightforward approach is to use situations during which deliberation time 

and evidence accumulation (like in SATs, Figure 5B and 5C) are traded off in 

order to maximize rewards through a modulation of the decision threshold. 

This will allow a better understanding of the implementational as well as the 

algorithmic level of decision making (see Introduction, cf. Marr, 1983). 

Equally important is the computational goal of the system. Here, 

neurocomputational models of optimal decision making and their mapping 

onto neural structures (Bogacz and Gurney, 2007) allow us to test specific 

computational goals that have been ascribed to particular structures, i.e. the 

proposal that the STN computes decision conflict and dynamically modulates 

the decision threshold (Frank, 2006; Bogacz and Gurney, 2007; Cavanagh et 

al., 2011).  

To summarize, my dissertation focused on the following two research 

questions: 

What is the neural representation of decision thresholds? 
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Do neurocomputational models of optimal decision making in cortico-basal 

ganglia networks reflect a neurally plausible mechanism for the regulation of 

decision processes? 

In the following section I will describe in detail the two dissertation projects in 

which I tried to understand these questions. 
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7. Research studies 

This section contains detailed summaries of two research projects. The first 

summary concerns the project on the neural mechanism of decision threshold 

modulation. The second summary elucidates the project on the 

neurocomputational accounts of optimal decision making. 

7.1 Neural mechanisms of reward rate optimization in perceptual 

decision making. 
	
  
Keywords: Reward Maximization, threshold modulation, fMRI, connectivity, diffusion model 

Overview 

Decision threshold modulation is a fundamental mechanism in higher brain 

function as it allows for the flexible adjustment of behavior (i.e. response 

initiation, value anticipation or memory retrieval) for instance under changing 

circumstances.  

Decision makers determine (rewarded) perceptual decisions by collecting 

evidence until reaching a point of choice. They can either make decisions 

quickly, thereby risking more errors, or make decisions carefully, thereby 

risking to have fewer opportunities for being maximally rewarded, i.e. decision 

makers have to trade off speed and accuracy when they try to optimize 

reward. Single unit recording studies in monkeys as well as neuroimaging 

studies in humans have shown that cortical and striatal brain regions are 

involved in this SAT (Gold and Shadlen, 2002; Forstmann et al., 2008; Bogacz 

et al., 2010; Wenzlaff et al., 2011), although their interaction remains unclear. 

Computational network models suggest a modulation of connectivity (synaptic 

efficiency) between striatal and cortical neurons as the neurobiological 

mechanism by which decision makers adapt their behavior and thereby 

optimize their reward rate.  
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Theoretical Background 
From a computational standpoint a modulation of the decision threshold can 

be accomplished either by adjusting the required amount of accumulated 

evidence or by changing deliberation time through the application of a time-

dependent stopping rule (Busemeyer and Townsend, 1993; Gold and 

Shadlen, 2007). However, it is not established how an adjustable decision 

threshold for reward maximization is implemented in the brain.  
Recent evidence suggests that decision threshold modulation is implemented 

in cortico-basal ganglia circuits (Lo and Wang, 2006; Forstmann et al., 2008; 

Cavanagh et al., 2011). A change in synaptic strength between connections 

within those networks has been proposed as a candidate neural mechanism 

supporting decision threshold modulation (Lo and Wang, 2006; Kiani et al., 

2006). This proposal is based on the observation that activity in the basal 

ganglia generally increases until a neural activity bound is reached and motor 

execution is initiated. In this context, the most efficient way to speed up or 

slow down responses to accommodate better or worse stimulus quality is to 

modulate the synaptic strength between cortical neurons accumulating 

decision evidence and the basal-ganglia neurons that initiate motor execution 

when a neural activity bound is reached. 

Hypotheses 

Consistent with previous findings, we hypothesize that brain mechanisms for 

perceptual decision-making mechanisms adjust decision thresholds (to 

maximize reward) by modulating connectivity among brain regions that are 

involved in evidence accumulation, time processing, and action selection. 

These components are represented by the DLPFC, which accumulates the 

relative evidence for choice alternatives in perceptual decision-making tasks 

(Heekeren et al., 2004, 2008; Philiastides et al., 2011, Wenzlaff et al., 2011) 

and the cerebellum, which has been implicated in temporal processing (Ivry et 

al., 1988; Dreher and Grafman, 2002; Lewis and Miall, 2003; Ivry and 

Spencer, 2004; Grondin, 2008). These regions communicate with the 

striatum, the main input structure of the action selection system (Selemon and 

Goldman-Rakic, 1985; Graybiel et al., 1994; Middleton and Strick, 1994; 
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Hoshi et al., 2005). Using a multimodal approach we investigated whether 

decision threshold modulation for reward maximization is accompanied by 

changes in effective connectivity (here defined as psycho-physiological 

interactions; Friston et al., 1997) within cortico-striatal and cerebellar-striatal 

networks during the decision phase.  

Our hypotheses follow from the aforementioned considerations: 

1. We expect people to adjust their decision making to different reward 

schedules in order to maximize rewards. 

2. A threshold modulation version of the diffusion model should account 

for the RT data. 

3. Neural mechanisms underlying threshold modulation for reward 

maximization can be revealed using a connectivity analysis of fMRI 

data, which estimates the effective connectivity between brain regions 

mediating decision making (specifically between DLPFC, striatum and 
cerebellum) during the decision phase. 

Methods 
Task 

22 subjects (11 females, mean age 28, +-3,7 years) were recruited from an in-

house database at the Max Planck Institute for Human Development, Berlin. 

To investigate this connectivity hypothesis, participants performed a two 

alternative forced choice random motion dots task while their brain activity 

was scanned with fMRI at 3T. Participants performed the task repeatedly in 

blocks, in which rewards emphasized either accuracy, or speed, or both. 

Hence participants had to trade off speed and accuracy depending on the 

reward condition to obtain as much reward per block as possible. Assuming 

that participants’ behavior is well described by a sequential sampling model of 

decision making, they could maximize their overall task reward by adjusting 

the amount of evidence required before making a decision.  

Data analysis 
Behavioral data were analyzed with a repeated measures analysis of variance 

(rmANOVA) to assess the effect of payoff conditions on decision making. 

Computational model parameters were estimated using the Diffusion Model 
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Analysis Toolbox (DMAT; Vandekerckhove and Tuerlinckx, 2008). We fitted 

the standard version (i.e., boundary modulation, nondecision time modulation, 

drift rate modulation, etc.) and an extended version (i.e. collapsing boundary, 

by courtesy of Jon Malmaud and Antonio Rangel) of the diffusion model to 

experimental data. The models’ goodness-of-fit values were compared using 

the Bayesian information criterion, a model selection criterion that 

incorporates sample size, number of estimated parameters and a likelihood 

function for the estimated model (BIC; Schwarz, 1978). FMRI data were 

analyzed using a mixed effects general linear model (Mumford and Poldrack, 

2007). FMRI data analysis was performed on the High-Performance 

Computing System Abacus (http://www.zedat.fu-berlin.de/Compute) at Freie 

Universität Berlin with FSL 4.1.2.  

Results  

Behavioral and modeling results indicate that human subjects modulated their 

decision threshold to maximize net reward. Neuroimaging results indicate that 

decision threshold modulation was achieved by adjusting effective 

connectivity within cortico-striatal and cerebellar-striatal brain systems; the 

former being responsible for processing of accumulated sensory evidence, 

and the latter being responsible for automatic, sub-second temporal 

processing. Participants who adjusted their threshold to a greater extent (and 

gained more net reward) also showed a greater modulation of effective 

connectivity. These results reveal a neural mechanism that underlies decision 

makers’ abilities to adjust to changing circumstances in order to maximize 

reward. The results suggest that depending on the prevailing optimal strategy, 

reward optimization is achieved by way of modulating the coupling between 

cortical and striatal regions.  
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7.2 Deep brain stimulation reduces the influence of decision conflict in 

perceptual decision making. 
	
  
Keywords: Deep Brain stimulation, Subthalamic nucleus, Optimization, Speed-Accuracy 

Trade-off, cortico-basal-ganglia circuit, neurocomputational models  

Overview  
Neurocomputational models based on the multihypothesis sequential 

probability ratio test (MSPRT) of the basal ganglia (Gurney et al., 2001; 

Bogacz, 2007; Bogacz and Gurney, 2007) have proposed that the STN plays 

a crucial role for threshold setting during decision making. The STN sends a 

breaking signal to the output structures of the basal ganglia effectively slowing 

down decision making when decision conflict exits (Frank, 2006). This has an 

effect on sensorimotor transformations in PD patients, as DBS of the STN 

impairs this conflict computation leading to more impulsive decision making 

during high conflict choices (Frank et al., 2007; Zaghloul et al., 2012). 

Theoretical Background  

Theoretical models by Bogacz and colleagues (Bogacz, 2007; Bogacz and 

Gurney, 2007) show how the cortico-basal ganglia network and the STN 

specifically can implement an optimal decision making procedure known as 

the MSPRT (Baum and Veeravalli, 1994). In this procedure, sensory evidence 

is accumulated only as long as it is necessary to gain a required level of 

confidence, and thus MSPRT is thought to minimize decision time for any 

specified level of accuracy. The MSPRT model predicts that disrupting 

information processing in the STN as for example with DBS should 

fundamentally change the way in which available sensory information is used 

to form simple decisions. More specifically, the computational models predict 

that DBS, which may disrupt information processing in the STN, should 

diminish the influence of task difficulty on reaction time (RT).   

High frequency stimulation of the STN using DBS alleviates extrapyramidal 

side effects of PD patients. This stimulation elicits at the same time impulsive 

decision making under decision conflict. During high conflict choices, while 

under the influence of DBS, patients tend to respond rather quickly, not 

slowing down their decision making in order to account for the difficulty of the 
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decision (Frank et al., 2007; Wylie et al., 2010; Klostermann et al., 2010; 

Zaghloul et al., 2012). In particular Frank and colleagues (cf. Frank et al., 

2007; Cavanagh et al., 2011) have shown that DBS elicits premature 

judgments under high conflict trials. In their studies, PD patients with DBS 

turned on are unable to appropriately adjust deliberation during high conflict 

decisions between two equally rewarding alternatives. Based on the findings 

that a) the STN encodes decision conflict during decision making (cf. Zaghloul 

et al., 2012) and b) influences the decision threshold (cf. Fleming et al., 2010; 

Cavanagh et al., 2011), we can probe neurocomputational models of optimal 

decision making that ascribe a central computational role to the STN for the 

modulation of the decision threshold. This will enhance our understanding on 

neural mechanisms of decision threshold. 

Hypotheses 

Based on the abovementioned empirical findings and theoretical 

considerations, we put forward following hypotheses:  

1. Response data from the DBS ON condition are better fit by a race 

model account.  

2. Response data from the DBS OFF condition are better fit by a diffusion 

model account.  

3. We expect main effects of DBS, coherence and SAT instruction on RT 

and accuracy.  

4. We expect interactions of these factors, especially during high conflict, 

low coherence trials as STN computation is assumed to be crucial 
during the computation of high conflict decisions. 
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Methods 
Task 

To test our predictions we asked PD patients to judge the direction of 

prevalent motion in RDTs under different DBS states. Patients were asked to 

perform a two alternative forced choice perceptual judgment task while their 

DB stimulator was respectively turned on or off. Trials differed in difficulty 

(motion coherence) and response instruction (fast or accurate). 10 young PD 

patients with implanted bilateral deep brain stimulators (DBS) (2 females, 

mean age, 57,3 +- 5,2 years) were recruited during their annual consultation 

meeting at Charité University Medicine Berlin, Department of Neurology, 

Campus Virchow, Berlin, Germany. All patients were on individually set, 

stable PD medication. The experimental session lasted approximately one 

hour (with short breaks) and began with a short control condition to acquaint 

the participants with the task. This was followed by the testing phase.  

Data analysis 

Data were analyzed in Matlab 2009b (The MathWorks Inc.) using a three way 

(DBS (ON, OFF) x SAT Instruction (FAST, ACCURATE) x Coherence (6 

levels of motion coherence)) rmANOVA. Post hoc comparisons of the mean 

RT and response accuracy were computed by using paired sampled t-tests 

for low coherence, high conflict conditions (1.6% and 4.8 %) with correction 

for multiple comparisons. 

Modeling of behavioral RT data was done in MATLAB (The MathWorks Inc.) 

using the optimization toolbox. We fitted pure race and pure diffusion models 

to data from each participant. Since we hypothesized that race and diffusion 

model fits would differ for reaction time data collected under different DBS 

states, we fitted each of the models separately to participant’s behavior. Due 

to the small number of trials (i.e. 20) per condition (determined by combination 

of DBS state, SAT instruction and coherence) for each patient we decided not 

to compare the shapes of experimental RT distributions with distributions of 

the models, but instead we fitted the models to error rates (ER) and mean RT 

for each condition. This approach was further supported by the low variance 

(high noise) in RT for the different coherence levels (for more see discussion 
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section). Since each patient was tested in 12 conditions within a given DBS 

setting, ER and mean RT provide 24 data points constraining fits of each 

model. Due to limited data points (i.e. 24) to which we were fitting each model, 

we maximally constrained the race and diffusion models and fit them with as 

few parameters as possible, following the approach of Ditterich (2006). We 

ignore variability in parameters (drift, starting point, non decision time) present 

in the full diffusion model. Furthermore, instead of estimating separate drift 

parameter for each coherence condition, we follow the approach of Ditterich 

(2006). 

Results  

Behavioral results indicate that DBS significantly influences performance for 

difficult perceptual judgments as well as for the magnitude of adjustment 

between response instructions. In particular, when DBS is turned off, RTs 

increase substantially as the task becomes more difficult. By contrast, when 

DBS was turned on, the influence of task difficulty on RT was significantly 

lower. Notably, these findings are consistent with computational models, 

which suggest that the STN is crucial for adjusting decision making on difficult, 

high conflict trials. Individual data fits of evidence accumulation models 

demonstrate different information processing under distinct DBS states. 

Together these findings suggest a crucial role for the STN in adjusting 

decision making during high-conflict trials in perceptual decision making. 
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8. Discussion 
	
  
This chapter contains a discussion of the two studies presented in the 

previous chapter. After a separate examination of each project, I will lead over 

to a conclusion, in which I will integrate the results of the two studies. Finally, I 

will consider how the findings can be used for future research and what 

questions can be raised. 

Neural mechanism of threshold modulation 

The first project presents the convergence of evidence encompassing 

behavioral data, neuroimaging data, and computational modeling results, 

which suggests that decision threshold modulation for reward maximization is 

instantiated through a change in connectivity within cortico-striatal and 

cerebellar-striatal functional brain circuits during the decision phase; the 

former being responsible for processing of accumulated sensory evidence 

and the latter being responsible for automatic, sub-second temporal 

processing. Our findings are consistent with previous empirical and theoretical 

accounts (Lo and Wang, 2006; Bogacz et al., 2006; Salinas, 2008; Forstmann 

et al. 2008; Deco et al., 2010; Cavanagh et al. 2011; Mansfield et al., 2011). 

Although our task bears some similarities with recent studies investigating 

neural correlates of the SAT (Forstmann et al., 2008; Forstmann et al., 2010; 

Bogacz et al., 2010; Wenzlaff et al., 2011; van Maanen et al. 2011), it is 

important to note crucial differences between those studies and the present 

study: SAT studies typically instruct participants to respond in a specific 

fashion (i.e. fast or accurate) in fairly easy perceptual categorization trials (for 

example 60 % motion coherence, as in Forstmann et al., 2008). In contrast, 

we manipulated participants’ behavior by changing rewards and costs for hits 

and misses at an adaptively defined performance level (where stimulus 

coherence is low), i.e. participants had to use a combination of elapsed time 

and evidence when they made a decision to maximize net reward. Crucially, 

the task used in the present study has different biological implications and 

relevance compared to the standard SAT task design with explicit response 

instructions in two ways. First, an explicit instruction before the actual decision 



	
   30	
  

leads to a fixed strategy set prior to the decision phase, which is not optimal 

when considering naturalistic choice circumstances with varying levels of 

sensory evidence or available time. Secondly, it will also lead to a different set 

of brain activities and thus models that can explain it: as it is assumed that the 

instruction will lead to a preactivation of brain systems encoding the 

responses. Previous SAT studies looked at changes in brain activity 

especially during the instruction phases, assuming a preactivation of brain 

areas to set the stage for deciding in a specific way. We specifically focused 

our analysis on the actual decision phase (encompassing stimulus 

presentation, decision making and responses) to understand, how 

accumulated evidence and elapsed time influence decision threshold 

modulation on-line. Our data support the view that decision threshold 

modulation for the maximization of reward is implemented as a change in 

connectivity within decision relevant brain systems. This is in line with recent 

studies showing that sensory as well as motor neurons change their activity 

and thus their interaction online when trading speed with accuracy (Heitz and 

Schall, 2012)  

Neurocomputational models of optimal decision making 

The second project combined psychophysical experimental methods and 

computational modeling to test an algorithmic theory of cortico-basal ganglia 

computation for optimal action selection (Bogacz and Gurney, 2007; Bogacz, 

2007). It is important to note that this study extends previous empirical 

findings on STN computation for decision making (cf. Fleming et al., 2010; 

Mansfield et al., 2011; Zaghloul et al., 2012) to the domain of perceptual 

decision making while at the same time confirming computational models of 

decision making based on the MSPRT. It has been shown that MSPRT 

presents a framework for optimal decision making (Bogacz et al., 2006; Gold 

and Shadlen, 2007). This property of optimality has been analytically 

demonstrated for accuracy levels approaching 100% (Dragalin et al., 1999). In 

simulations with lower accuracy, MSPRT achieved faster or equal decision 

times compared to simpler procedures (McMillen and Holmes, 2006). 

Significantly, our modeling approach empirically tests this algorithmic 
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framework. Our modeling results, especially the estimated values of the 

decision threshold parameter, indicate that the integration of decision conflict 

into the decision process relies crucially on the STN. The individual data fits of 

evidence accumulation models demonstrate different information processing 

under distinct DBS states. This illustrates the importance of considering 

different models of information processing to compare different states, both in 

healthy and patient populations when using computational modeling of 

decision making.  

9. Conclusion 
	
  
Both projects shed light on mechanisms of the decision threshold. We have 

approached this mechanism from two different directions, the goal level and 

the implementational level of information processing. The suggested benefits 

of this bidirectional approach are the final combination of both on the 

algorithmic level, resulting in a deeper understanding of the phenomenon we 

are interested in.  

The first project started out from an implementational level perspective on the 

decision threshold, i.e. the question what neural systems support threshold 

modulation inspired by a neural network model (Lo and Wang, 2006; Figure 7, 

lower part in yellow). The second project started out from the goal level in that 

we considered a procedural transparent algorithm with the goal of optimal 

decision making (Bogacz and Gurney, 2007; Figure 7, on top in green). We 

know from these studies that a change in connectivity between decision 

relevant brain regions modulates decision thresholds during simple forms of 

decision making (cf. Domenech and Dreher, 2010; Green et al., 2012). 

Further, we have shown that optimal decision making algorithms capture 

important aspects of decision relevant computations in the STN (cf. Cavanagh 

et al. 2011). Together both approaches result in a better understanding, 

especially of the representations and neural information processes of the 

decision threshold and fill the conceptual gap between algorithms and their 

neural equivalents (see Figure 7; Heitz and Schall, 2012). 
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Figure 7. Combination of both research projects on Marr’s three levels. 
The MSPRT account of optimal decision making starts from the goal level, particularly 

targeting optimal decision making. The threshold modulation study, insipred by a biophysical 

modeling account of neurophysiological data starts at the implementational level. Both 

approaches enhance our understanding of mechanims of the decision threshold, especially 

on the algorithmic level.  

10. Future Research 
	
  
In the last section of this dissertation I will discuss the potential implications of 

our research and future directions. Primarily, both studies show that we have 

to consider different model variants and types when comparing decision 

states.  

Whereas the first study was based on hypotheses derived from a neural 

network model, we could only partly reproduce its predictions. By integrating 

time processing next to evidence accumulation, we explained our results and 

added a potential feature for future models of simple forms of decision 

making. In the second study, we showed that different types of sequential 

sampling models explain different DBS states. These states are related to 

STN functioning. This could be potentially relevant to determine to which data, 

i.e. from patient populations or healthy subjects, a computational model can 

be applied and intelligibly interpreted (cf. Maia and Frank, 2011). 

In conclusion, our findings on the neural mechanism of decision threshold 

modulation could be highly relevant for the computational approach to the 
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understanding of psychiatric disorders that are accompanied by impulsivity, 

inhibitory control or inflexibility: for example approach avoidance disorders like 

anxiety or disorders such as attention-deficit hyperactivity disorder (ADHD) 

and schizophrenia (e.g. Rangel et al., 2008; Thagard et al., 2008; Mulder et 

al., 2010; White et al., 2010; Montague et al, 2012). We currently undertake 

an investigation on the effects of acute stress on decision making, especially 

on decision threshold modulation. Based on models that have suggested an 

alternative formulation of the decision threshold, i.e. urgency gating (cf. Cisek 

et al., 2009) we will test different models comparing for example linear, 

logarithmic, or exponential collapse over time and put them in relation to 

different (biologically defined) levels of acute stress.  

Open questions that I consider valuable in order to arrive at a complete 

account of the decision threshold are first the question on the invariance of 

decision threshold mechanisms across different modalities and tasks. In this 

context we have to consider known effects of slight changes, i.e. stimulus 

duration (Rüter et al., 2012), or model parameterization (Dutilh et al., 2010; 

van Ravenzwaaij et al., 2012; Ditterich, 2012) may all have severe effects on 

the observed results and their conclusions. Secondly, the temporal profile for 

the adjustable decision threshold has been only theoretically investigated 

(Simen et al., 2009). This aspect is potentially very important, in learning or 

temporal processing for instance (cf. Simen et al., 2011). Thirdly, one might 

ask under which naturalistic conditions are optimal strategies achievable (cf. 

Kacelnik et al., 2011). We know that human and animal choices tend to be 

suboptimal in complex naturalistic environments. How does this fit with current 

computational models (cf. Bogacz et al., 2010a; Newell and Lee, 2010)? A 

first step in addressing this question would be to see how current models 

could explain and predict more complex decision situations. An example for 

that would be the investigation of the decision threshold mechanism in 

approach-avoidance situations, in which both cognitive as well as emotional 

attributes influence decision making (cf. Busemeyer et al., 2002).  
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Changes in Neural Connectivity Underlie Decision Threshold
Modulation for Reward Maximization

Nikos Green,1,2 Guido P. Biele,3 and Hauke R. Heekeren1,2
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Using neuroimaging in combination with computational modeling, this study shows that decision threshold modulation for reward
maximization is accompanied by a change in effective connectivity within corticostriatal and cerebellar–striatal brain systems. Research
on perceptual decision making suggests that people make decisions by accumulating sensory evidence until a decision threshold is
crossed. This threshold can be adjusted to changing circumstances, to maximize rewards. Decision making thus requires effectively
managing the amount of accumulated evidence versus the amount of available time. Importantly, the neural substrate of this decision
threshold modulation is unknown. Participants performed a perceptual decision-making task in blocks with identical duration but
different reward schedules. Behavioral and modeling results indicate that human subjects modulated their decision threshold to maxi-
mize net reward. Neuroimaging results indicate that decision threshold modulation was achieved by adjusting effective connectivity
within corticostriatal and cerebellar–striatal brain systems, the former being responsible for processing of accumulated sensory evidence
and the latter being responsible for automatic, subsecond temporal processing. Participants who adjusted their threshold to a greater
extent (and gained more net reward) also showed a greater modulation of effective connectivity. These results reveal a neural mechanism
that underlies decision makers’ abilities to adjust to changing circumstances to maximize reward.

Introduction
When making everyday decisions, we oftentimes incur opportu-
nity costs, spending time deliberating one judgment at the cost of
having time to consider others (Chittka et al., 2009). To maxi-
mize returns in situations in which multiple decisions need to be
made, decision makers have to adjust their decision criterion
(Gold and Shadlen, 2002).

Research on perceptual decision making has provided consid-
erable first steps into general mechanisms of decision making
(Shadlen and Newsome, 2001; Romo et al., 2004; Philiastides et
al., 2006; Gold and Shadlen, 2007; Heekeren et al., 2004, 2008).
Underlying processes have been well described by sequential
sampling models (Smith and Ratcliff, 2004). One distinctly suc-
cessful instantiation of this computational framework, the drift
diffusion model, provides a well-fitting description of mecha-
nisms for simple decisions (Smith and Ratcliff, 2004; Bogacz et al.
2006; Ratcliff and McKoon, 2008). Decisions are formed by con-
tinuously accumulating the relative evidence for the choice alter-

natives over time until a response boundary is crossed. The
distance of boundaries from the starting point of the accumula-
tion process determines accuracy and speed of decisions. More
accurate decisions require longer accumulation and are thus
slower, because more noisy evidence has to be integrated.

From a computational standpoint, a modulation of the deci-
sion threshold can be accomplished by either adjusting the
required amount of accumulated evidence or changing delib-
eration time through the application of a time-dependent stop-
ping rule (Busemeyer and Townsend, 1993; Gold and Shadlen,
2002; Fig. 1A). However, it is not established how an adjustable
decision threshold for reward maximization is implemented in
the brain.

Recent evidence suggests that decision threshold modulation
is implemented in the corticobasal ganglia network (Lo and
Wang, 2006; Forstmann et al., 2010; Cavanagh et al., 2011). A
change in synaptic strength within this network has been pro-
posed as a candidate neural mechanism supporting decision
threshold modulation. This proposal is based on the observation
that activity in the basal ganglia generally increases until a neural
activity bound is reached and motor execution is initiated. In this
context, the most efficient way to speed up or slow down re-
sponses to accommodate better or worse stimulus quality is to
modulate the synaptic strength between cortical neurons accu-
mulating decision evidence and basal ganglia neurons that trigger
motor execution when a neural activity bound is reached (see
Materials and Methods).

Consistent with previous findings, we hypothesize that brain
mechanisms for perceptual decision-making adjust decision
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thresholds (to maximize reward) by modulating connectivity
among brain regions that are involved in evidence accumula-
tion, time processing, and action selection. These components
are represented by the dorsolateral prefrontal cortex (dlPFC),
which accumulates the relative evidence for choice alternatives in
perceptual decision-making tasks (Heekeren et al., 2004, 2008;
Philiastides et al., 2011; Wenzlaff et al., 2011), and the cerebellum,
which has been implicated in subsecond temporal processing
(Ivry and Keele, 1989; Dreher and Grafman, 2002; Lewis and
Miall, 2003; Ivry and Spencer, 2004; Grondin, 2008). These re-
gions communicate with the striatum, the main input structure
of the action-selection system (Selemon and Goldman-Rakic,
1985; Graybiel et al., 1994; Middleton and Strick, 1994). Using a
multimethod approach, we show that decision threshold modu-
lation for reward maximization is accompanied by changes in
effective connectivity [psycho-physiological interactions
(PPIs); see Materials and Methods] within corticostriatal and
cerebellar–striatal networks.

Materials and Methods
Participants. Twenty-two subjects (11 females; mean age, 28 � 3.7 years)
were recruited from an in-house database at the Max Planck Institute for
Human Development (Berlin, Germany). All subjects had normal or
corrected-to-normal vision, were free of neurological and psychiatric
history, and were briefed on the nature of methods used. All participants
gave informed consent to participate according to the protocol approved

by the local ethics committee. Complete datasets of 18 subjects were
included in the full analysis, because two participants dropped out dur-
ing experimental testing and two other participants had severe head mo-
tion during scanning (for details, see below).

Task setup. Subjects had to decide on the direction of motion (binary
choice: left or right) of a dynamic random-dot stimulus and indicate
their choice with a button press. Dots were white on a black background
and were drawn in a circular aperture (�5° diameter) for the duration of
one video frame (60 Hz). Dots were redrawn after �50 ms at either a
random location or a neighboring spatial location to induce apparent
motion. The resultant motion effect appeared to move between 3°/s and
7°/s, and dots were drawn at a density of 16.7 dots per degree per second.
The task was implemented with Presentation (version 0.70; Neurobehav-
ioral Systems), the Psychtoolbox3 (www.Psychtoolbox.org), and an
adapted version of the Variable Coherence Random Dot Motion Code
Collection (www.shadlen.org/Code/VCRDM). Stimuli were displayed
using VisuaStim goggles (Magnetic Resonance Technologies), consisting
of two small thin-film transistor monitors placed directly in front of the
eyes, simulating a distance to a normal computer screen of 100 cm with a
resolution of 1024 � 768 pixels and a refresh rate of 60 Hz. Participants
used VisuaStim Response Pads (Magnetic Resonance Technologies) to
make their response by pressing a button with either their left or right
thumb.

The task was partitioned into blocks using three alternating reward
schedules: (1) �50/�25; (2) �50/�50; and (3) �25/�100 (Fig. 1 B).
These number pairs consist of gained points for a correct answer (left
number) and lost points for an incorrect answer or a failure to respond
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(right number). Blocks in all conditions were maximally 32 s long. These
32 s were filled with as many trials as possible. For example, if a partici-
pant would respond with an average reaction time (RT) of 600 ms per
trial during a block, she would be able to complete 11 trials [32s/(0.6 s
decision � 1.6 s fixation � 0.6 s feedback) � 11.4]. Within a block, a new
trial was only issued if there was enough remaining time for a complete
maximum trial [length of 3.2 s � fixation cross (1.6 s) � maximum
stimulus presentation time (1 s) � feedback (0.6 s)].

Participants did not receive explicit response instructions but were
informed that there is limited overall time for making decisions. Maxi-
mizing net reward under different reward schedules thus required adapt-
ing decision thresholds. For instance, when gains for correct responses
were small and losses for incorrect responses were large, it was reward
maximizing to avoid large losses by collecting more evidence and thereby
increase the probability to respond accurately. Conversely, when gains
were moderate and losses small, it was reward maximizing to respond
faster (albeit on average less accurately) because as a result more deci-
sions could be made during the experiment and in this way net reward
increased. Hence, subjects were required to modulate their decision be-
havior by using either a lower threshold (leading to faster but less accu-
rate responses) or a higher threshold (leading to slower yet more accurate
responses) to maximize net reward in finite time (Fig. 1 A). Performance
was rewarded with up to €25.

Blocks were presented randomized, whereby the reward schedule for each
block was shown once at the beginning of each block, displayed to the subject
for 3 s. The decision phase immediately followed in blocks of trials (amount
of total responses depended on participant’s individual response
speed). In each trial, subjects saw a fixation cross (1.6 s) after which
the stimulus was presented. The stimulus was extinguished by a re-
sponse or after 1 s, followed by feedback of 0.6 s. At the end of each
block, participants were shown their current projected reward in eu-
ros (2 s) for the entire experiment: Reward (in €) � (€25/Total
Score) � ScoreReward Schedule, where Score � Actual_Scoreprojected �
Additional_Scoreprojected. Using the 75% accuracy level as base-level
performance (set by an adaptive staircase procedure; see below) for
the speed condition, we calculated how much the subjects could earn
(whereby the fastest included RT had to be �249 ms and RTs �250
ms were assumed to be fast guesses). Including the points per reward
schedule, we computed a metric for rewards for the entire experiment
with the aforementioned RT constraint. Subject’s scores (which were
determined by accuracy and response times) were then compared
with this metric, and they were rewarded based on their score.

Participants received a 20 min practice immediately before they en-
tered the scanner. During practice, subjects performed direction-of-
motion discriminations for varying coherence levels and received per
trial feedback on accuracy. Participants did not practice under the influ-
ence of reward schedules or response instructions. The subsequent scan-
ning session totaled 1 h. While subjects were lying in the scanner but
before any scanning protocol, an adaptive staircase procedure was used
to determine an individual stimulus coherence level at 75% performance
accuracy (Leek, 2001). This allowed us to obtain enough error responses
for a good fit of the diffusion model to RT data (Ratcliff and Tuerlinckx,
2002; Vandekerckhove and Tuerlinckx, 2007). Moreover, a constant-
coherence level allowed us to exclude effects of stimulus difficulty on
decision threshold adaptation (Vandekerckhove and Tuerlinckx, 2007;
Ratcliff and McKoon, 2008). The coherence level at which participants
achieved 75% accuracy was low (group mean, 12%). We were thus able to
minimize differences in attention between reward schedule conditions. It
is assumed that low-coherence stimuli demand comparable focus on the
task during all task conditions. Participants were debriefed with a ques-
tionnaire and a personal interview.

Behavioral data were analyzed with a repeated-measures ANOVA. For
each individual dataset, all trials with RTs � � 2 SD from the mean were
excluded from all analyses. Computational model parameters such as
boundary height or drift rate were estimated using the Diffusion Model
Analysis Toolbox (DMAT; Vandekerckhove and Tuerlinckx, 2008). We
fitted the standard version of the model with constant decision bound-
aries and an extended version (including a collapsing boundary; courtesy
of Jonathan Malmaud and Antonio Rangel, California Institute of Tech-

nology, Pasadena, CA) of the diffusion model to experimental data. The
goodness of fit of the models values were compared using the Bayesian
information criterion (BIC; Schwarz, 1978).

Neuroimaging. Subjects were scanned in a whole-body 3T Siemens
TRIO MR system by acquiring 46 axial slices (216 mm field of view; 72 �
72 acquisition matrix; in-plane voxel dimensions, 3 � 3 mm; repetition
time of 2500 ms; echo time of 29 ms; 80° flip angle) parallel to the anterior
commissure–posterior commissure plane and covering the whole brain.
Slice gaps were interpolated to generate output data with a spatial reso-
lution of 3 � 3 � 3 mm. High-resolution T1 images (repetition time of
1900 ms; echo time of 2.52 ms; 9° flip angle; 192 sagittal slices; voxel size,
1 � 1 � 1 mm) were acquired, as well as field inhomogeneity measures
and a structural fluid-attenuated inversion recovery image.

fMRI data analysis was performed on the High-Performance Comput-
ing System Abacus (http://www.zedat.fu-berlin.de/Compute) at Free
University of Berlin with FSL [for FMRIB (Functional MRI of the Brain,
Oxford, UK) Software Library] version 4.1.2, the open software toolbox
from FMRIB (http://www.fmrib.ox.ac.uk/fsl/), and in-house developed
MATLAB scripts (R2007a; www.mathworks.de). Regressors were con-
volved using a double-gamma hemodynamic response function. Motion
parameters were checked for outliers [two participants with relative head
movement greater than one voxel size (3 mm) were removed from the
analysis] and added as regressors to the design matrix to reduce motion-
related artifacts. Functional volumes were slice-time and motion cor-
rected and spatially smoothed by using a Gaussian kernel of 6 mm
full-width at half-maximum and high-pass filtered with � � 80 s (2.5
times the maximum block length). Images were registered using lin-
ear transformations [FLIRT (for FMRIB Linear Image Restoration
Tool); Jenkinson et al., 2002] with 7 degrees of freedom (d.o.f.) for
individual functional (EPI) space to T1 and with 12 d.o.f. for T1 to
standard space. For group-level results, individual-level contrasts were
averaged using FLAME (for the FMRIB Local Analysis of Mixed Effects)
1 and 2 (including automatic deweighting of outliers) module in FSL
(Beckmann et al., 2003; Woolrich et al., 2004), and one-sample t tests
were performed at each voxel for each contrast of interest. Significant
clusters on a familywise-error-corrected level of � � 0.05 were identified
with the threshold-free cluster enhancement (TFCE) algorithm imple-
mented in the FSL program randomize (Smith and Nichols, 2009). From
group-level activation maps of the decision phase, we calculated a con-
junction map based on the initial general linear model decision phase
group activation maps using a logical AND conjunction at a p � 0.05
corrected TFCE threshold (Fig. 2A). This conjunction map includes
brain regions that show a significant increase in blood oxygenation level-
dependent (BOLD) activity during the decision phase in all reward
schedules. Considering our hypothesis that threshold adjustments are
instantiated by changes in interaction between those brain regions me-
diating decision making, we selected regions of interest (ROIs) that are
involved in representation and computation of the decision variables
accumulated evidence (dlPFC) and available time (cerebellum) as seeds
for a PPI analysis. To verify that the selected ROIs are functionally in-
volved in the stipulated processes of evidence accumulation and available
time processing, respectively, we compared parameter estimates for the
decision phase under the different reward schedule conditions. Func-
tional ROIs (Poldrack, 2007; Ramsey et al., 2010) were constrained by
using a 50% anatomical probability threshold based on the anatomical
probability atlases included in FSL [the Harvard–Oxford Subcortical At-
las (Caviness et al., 1996) for the dlPFC and the MNI Structural Brain
Atlas (Diedrichsen et al., 2009) for the cerebellum]. ROIs were subse-
quently transformed from standard space into each individual’s func-
tional space using a linear transformation. Each individual ROI was
checked to ensure that it is contained within the brain and within the
anatomical ROI and was subsequently used to extract the time series of
the seed regions for a PPI analysis (Friston et al., 1997). It is worth to consider
in detail if changes in the strength of the cortico (cerebellar)-striatal synapses
can be examined with fMRI by analyzing changes in effective connectivity
with a PPI analysis. According to Friston and colleagues, a change in “effec-
tive connectivity” can be characterized as a change in the correlation of
neural activity (and the dependent BOLD signal) between two neuronal
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populations from one state (or experimental condition) to another (Friston
et al., 1993, 1997; Friston, 2011).

Significance testing of the results of PPIs for two dlPFC (left and right)
and one cerebellar seed regions (left) was done in a predetermined basal
ganglia mask (based on Harvard–Oxford Subcortical Atlas including bi-
lateral caudate, putamen, nucleus accumbens, thalamus, pallidum, using
no probability threshold), and correction for familywise error was
achieved by applying small-volume correction. Next, to investigate
whether voxels were correlated with boundary modulation, a whole-
brain group analysis (high threshold � low threshold) with the addi-
tional covariate of the magnitude of boundary modulation (estimated
with the diffusion model) was performed. Additional whole-brain PPI
analyses were performed for the 10 most highly activated clusters during
the decision phase (see Table 3).

Results
Participants made, on average, 815 decisions during the entire
experiment. Training on the task before the scanning session and
during the scanning session minimized error trials. On average,
2.1 responses (0.25%) were fast guesses (i.e., response time �250
ms) and participants did not respond within 1 s in 7.3 trials (0.85%).

Subjects altered their decision-making behavior to maximize
reward by responding with decision threshold adjustments to
reward schedules. They responded faster (F(1.21,20.57) � 17.361,
p � 0.0001) and less accurately (F(1.722,29.28) � 17.817, p �

0.0001) during blocks of trials in which
faster responses were reward maximizing
compared with blocks in which slower,
accurate judgments were more profitable
(Fig. 1C). The number of completed trials
differed significantly between the high-
threshold condition (mean � SD, 262 �
6.8 trials) and low-threshold condition
(mean � SD, 277 � 9.4; t(17) � 11.8, p �
0.001) (mean � SD, 276 � 9.1 in the
neutral-threshold condition). The num-
ber of completed trials indicates that par-
ticipants adjusted their decision-making
behavior to reward schedules; however,
the examination of reward frequencies
(number of accurate trials per condition)
shows that this did not happen in an opti-
mal manner: average � SD reward frequen-
cies were 207 � 19 in the low-threshold,
215 � 20 in the neutral-threshold, and
212 � 19 in the low-threshold conditions.
The differences high–low and neutral–low
are statistically significant (t(17) � �2.3, p �
0.035 and t(17) � �3.08, p � 0.006, respec-
tively), but high–neutral is not statistically
significant (t(17) � �0.68, p � 0.49). The
lower reward frequency in the low-
threshold condition is unexpected because,
to optimize rewards, a larger number of
completed trials should also lead to a larger
number of accurate trials. The reduced re-
ward frequency in the low-threshold condi-
tion suggests that participants on average
responded too fast in this condition. That is,
they implemented a lower than optimal de-
cision threshold given their discrimination
ability (as measured with the drift rate v of
the diffusion model).

Subjects markedly adjusted their deci-
sion process by modulating their decision

threshold, as indicated by model fits of the drift diffusion model
to observed RT data (Fig. 1F). Model comparisons on different
versions of the diffusion model indicated the modulating bound-
ary version as the best-fitting model (lowest BIC score of 39,227
in the standard DMAT framework; see top part of Table 1). Ad-
ditionally, we fitted an extended model that included an expo-
nentially collapsing boundary parameter (also implemented in
DMAT) to the RT data and compared it with the previously used
versions. Model fits indicated the standard modulating boundary
version as the best-fitting model (lowest BIC score of 25,620; see
bottom part of Table 1). Moreover, subjects with a greater thresh-
old modulation between high-threshold and low-threshold states
gained more rewards (Fig. 1E). It is important to note that the
interindividual differences in threshold modulation we observed
are consistent with previous findings, which indicate that not all
subjects adjust decision thresholds equally well (Bogacz et al.,
2010).

Within each threshold condition, participants were more ac-
curate in trials with faster RTs than in those with slower RTs. The
main effect of response speed on accuracy was significant (F(1,17) �
46.14, p � 0.001). These results are in line with the view that
longer RTs between conditions (associated with increased accu-
racy) are caused by a different process than longer RTs within
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condition (associated with reduced accuracy). Within-condition
slowing is likely to be a result of trial-to-trial variations in diffi-
culty, in that participants slow down response in more difficult
trials to maintain accuracy (although this has only limited suc-
cess). This type of speed–accuracy tradeoff is described by the
model of Lo and Wang (2006). In contrast, between-condition
differences in RTs are not an adaptation to local variations in
difficulty but an adaptation to the reward structure.

Corresponding to our hypothesis that threshold modulation
is reflected in a change in effective connectivity between brain
regions that process task-relevant decision variables and control
action selection during the decision phase (Fig. 2A,C), we fo-
cused on ROIs that are involved in the representation and com-
putation of accumulated evidence (dlPFC) and available time
(cerebellum) and motor execution (basal ganglia). To verify the
putative functional roles of those seed regions in the decision
phase, we compared their respective parameter estimates for
low-, neutral-, and high-threshold conditions (Fig. 2C). BOLD
responses in both dlPFCs showed greater activation during the
high(er)-threshold condition in which more evidence is accumu-
lated compared with the low(er) evidence accumulation condi-
tion, in which faster responses are reward maximizing (Fig. 2C).
For the cerebellar ROI, we observed the opposite pattern. Activa-
tion was greater in the low-threshold condition, which favors
faster decision making compared with the high-threshold condi-
tion when slow(er) but on average more accurate decisions are
reward maximizing. BOLD responses were greater in the cerebel-
lum when deliberation time was of the essence, suggesting that
this ROI is involved in time processing. This is in line with other
evidence that ascribes a prominent role for the cerebellum during
subsecond (interval) time processing (Ivry and Keele 1989; Dre-
her and Grafman, 2002; Harrington et al., 2004; Grondin, 2008).
Together, these results thus demonstrate a functional role for
both the dlPFC and the cerebellum in our task. Note that voxels
in the striatum showed significant activation during the decision
phase across all reward schedules (Fig. 2A,B).

The PPI analysis of both dlPFC seeds indicates a modulation
of neural connectivity between the dlPFC and the striatum when
comparing high-threshold with low-threshold states (Fig. 3A,B;
Table 2). During high(er)-threshold states (in which thresholds
are adjusted for slower and more accurate decisions), effective
connectivity between bilateral dlPFC and the left striatum was
significantly increased compared with during lower-threshold
states (Table 2). According to our connectivity hypotheses, we
expected this neural interaction to be reflected in the magnitude
of boundary modulation from the diffusion model as well. We
calculated Pearson’s correlation coefficient between estimates of
the diffusion model boundary parameter and neural effective
connectivity parameter (i.e., the PPI), correcting for multiple
comparisons. We found a strong, positive correlation for the PPI
estimates of the left dlPFC [r � 0.8 (16), p � 0.0001, two-tailed;
Fig. 3A] and the right dlPFC [r � 0.798 (16), p � 0.0001, two-
tailed; Fig. 3B] with the magnitude of boundary modulation
(high–low threshold) of the computational model. This associa-
tion between PPI estimates and boundary modulation firmly
suggests that corticostriatal brain systems for the processing of
accumulated evidence contribute to the observed changes in
decision parameters. During lower-threshold states, effective
connectivity between the cerebellum and the striatum was signif-
icantly increased compared with higher-threshold states (Fig.
3C). In line with our hypothesis, neural connectivity between the
cerebellum and the striatum correlated negatively with the mag-
nitude of boundary modulation [r � �0.644 (16), p � 0.004,
two-tailed; Fig. 3C, using the same analysis direction as in the
dlPFC analyses].

To further examine the relationship between condition dif-
ferences in boundary parameters and brain activation, we per-
formed a voxelwise covariate analysis with the magnitude of
boundary modulation. This analysis resulted in a cluster of
activation in the left striatum, in particular the left putamen
[center of gravity (COG) (x, y, z), MNI152 � �24, 0, 2; size �
96 voxels; at z � 2.4 uncorrected whole brain]. Significance
testing using small-volume correction in the same basal gan-
glia mask used for the PPI analysis resulted in one significantly
activated cluster that partly overlaps with decision phase ac-
tivity [COG (x, y, z), MNI152 � �29, �1, 5; 169 voxels; TFCE
corrected at p � 0.05; Fig. 2 B].This cluster showed similar
activation during low- and high-threshold decision phases.
Importantly, in the left posterior striatum, the clusters showed
(1) covariation with boundary modulation, (2) PPI with left
dlPFC, and (3) PPI with the cerebellum overlap [COG (x, y, z),
MNI152 � �27, �3, �7; 32 voxels; TFCE corrected at p �
0.05; Fig. 4]. There were no significant whole-brain results
from additional PPI analyses using other ROIs as seeds that
were also activated during the decision phase (corrected for
multiple comparisons; Table 3).

Discussion
We present converging evidence encompassing behavioral
data, neuroimaging data, and computational modeling, which
suggests that decision threshold modulation for reward max-
imization is instantiated through a change in effective connec-
tivity within corticostriatal and cerebellar–striatal functional
brain circuits during the decision phase, with the former being
responsible for processing of accumulated sensory evidence
and the latter being responsible for automatic, subsecond tem-
poral processing.

Neuroimaging studies, along with pharmacological and le-
sion studies, indicate that the cerebellum is crucial for auto-

Table 1. BIC model comparison on different standard (top) and extended (bottom)
versions of the drift diffusion model

BIC score (summed across
individual subjects’ model fits)

Standard diffusion model 	free parameter(s)
across reward schedules


No modulation across conditions 39, 354, � (current model � best
model) � 77

Boundary 39,227 (best model)
Drift rate 39,458, � � 181
Boundary and drift rate 39,623, � � 346
Boundary and � (across-trial variability in

drift rate)
39,603, � � 326

Drift rate and � 39,629, � � 352
Boundary and Ter (nondecision components

of reaction time)
39,538, � � 311

Extended diffusion model 	free parameter(s)
across reward schedules


Boundary 25,620 (best model)
Collapsing boundary 25,686, � � 66
Drift rate and collapsing boundary 25,722, � � 102
Ter (nondecision components) and collaps-

ing boundary
25,731, � � 111

Models were fitted to individual subjects’ RT data. The model with a changing response boundary (across reward
schedules) has the lowest BIC score of 39,227 for standard model and 25,620 for the extended model (summed
individual model fits).
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matic subsecond temporal information processing (Ivry and
Keele, 1989; Hazeltine et al., 1997; O’Reilly et al., 2008; with-
out disregarding the ongoing debate concerning the exact role
of the cerebellum in temporal processing, see Mauk and Buono-
mano, 2004; Coull et al., 2011). We propose that stronger
effective connectivity in cerebellar–striatal brain systems places a
greater weight on available decision time (corresponding to a
time stopping rule; Busemeyer and Townsend, 1993; Gold and
Shadlen, 2002; Cisek et al., 2009) compared with evidence
accumulation during decision making. Conversely, stronger
connectivity between the dlPFC and the striatum during

high(er)-threshold states places a greater weight on the accu-
mulated evidence during deliberation.

These results are generally consistent with previous empir-
ical and theoretical accounts (Bogacz et al., 2006; Lo and
Wang, 2006; Forstmann et al., 2008; Salinas, 2008; Deco et al.,
2010). Notably, however, our results partly diverge from the
predictions of a theoretical model proposed by Lo and Wang
(2006). We observed stronger connectivity in a corticostriatal
network during higher-threshold states, which leads to more
accurate and slower decision making. Conversely, the bio-
physical network model implements strong(er) connectivity
in corticostriatal pathways, producing low(er) decision thresh-
olds for fast(er) responses with lower accuracy. Simulations of
the computational model show that the optimal synaptic effi-
cacy for reward maximization depends on task difficulty (Lo
and Wang, 2006, their Fig. 7 B, C). Lo and Wang show that, for
more difficult choices (low motion coherence), synaptic effi-
cacy is tuned toward higher thresholds. However, the compu-
tational model does not incorporate information about elapsed
time, which is crucial for reward maximization in our task.
Moreover, motion coherence was not manipulated in our ex-
periment; in our task, more difficult choices are rather instan-
tiated by reward schedules that entail a bigger loss and require
therefore more accurate and slower decision making. Addi-

Figure 3. A, From top to bottom, Left dlPFC seed ROIs, functionally interacting region of the striatum (z max � 3), association of neural connectivity parameter with boundary modulation
estimate (high–low threshold states) from the diffusion model. B, Same as A but for right dlPFC (z max � 3). C, Same as A but for cerebellar seed, interaction with left striatal region (z max � 3.1).
Blue squares, red diamonds, and green circles indicate individual subject estimates of neural interaction and magnitude of boundary modulation comparing high- with low-threshold states.

Table 2. dlPFCs and cerebellar PPI results

Seed COG (x, y, z; (MNI152) n voxels z max (low threshold) z max (high threshold) PPI (COG, TFCE p � 0.05) PPI z max (high � 1, low � �1) n voxels (PPI)

Left dlPFC �40, 30, 32 201 4.01 4.211 �18, 2, �7 2.989 219
Right dlPFC 46, 32, 32 51 3.93 4.264 �19, 10, �7 2.986 253
Cerebellum �36, �42, �34 83 5.18 4.281 �24, �6, �1.6 3.131 376

Figure 4. The clusters showing (1) a covariation with boundary modulation, (2) PPI with left DLPFC, and (3) PPI with the cerebellum overlap (COG: �27, �3, �7; 32 voxels, in pink).

Table 3. PPI results for 10 significantly activated clusters for the decision phase

Seed COG (x, y, z, MNI152) n voxels z max

Paracingulate cortex 0, 20, 42 367 7.53
Right occipital cortex 40, �66, �11 108 6.47
Cerebellar cluster 1 29, �59, �53 176 5.86
Right lateral occipital cortex 42, �76, 4 76 5.62
Cerebellar cluster 2 �20, �62, �27 238 5.07
Cerebellar cluster 3 �27, �42, �32 60 4.87
Left precentral gyrus �52, 2, 36 206 4.11
Supplementary motor area �3, 3, 49 57 4.07
Left precentral gyrus �32, �8, 48 73 3.79
Brainstem 5, �24, �12 52 3.66
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tional support for our interpretation of the observed changes
in connectivity may evolve when considering the signal-to-
noise ratio (SNR) in the cortex (cf. Faisal et al., 2008) and how
signal gating modulates it. In the context of adaptation to
stimulus quality, a theoretical analysis (Lo and Wang, 2006)
suggests that the downregulation of the decision threshold is
mediated by an increase of corticostriatal synaptic efficacy.
This mechanism could be suboptimal in the context of chang-
ing reward schedules as we describe below.

We assume that change in synaptic efficacy is mainly in-
stantiated through a gating process, in which stronger gating
leads to weaker synaptic efficacy (cf. Salinas and Thier, 2000;
Chance et al., 2002). Importantly, gating has the effect to in-
crease the SNR because it primarily filters weaker “noise” ac-
tivity (cf. Purcell et al., 2010). The underlying assumption here
is that “signal” spikes have generally higher firing rates than
“noise” spikes, and a low synaptic efficacy effectively filters out
noise (cf. Purcell et al., 2010). Hence, increasing the synaptic
efficacy by downregulating the gating process reduces the
SNR. In the context of adaption to higher quality of perceptual
input, for which the model of Lo and Wang (2006) was devel-
oped, this reduction of SNR is unproblematic because it is
counterbalanced by the greater SNR in cortical accumulation
neurons. However, when the synaptic efficacy is adjusted in
the context of changing reward schedules, no counterbalanc-
ing occurs, leading to a weaker SNR of the accumulation signal
sent to striatal neurons.

In our interpretation, the striatum combines evidence
(dlPFC) and available time information (cerebellum) for the ex-
ecution of a motor response (Middleton and Strick, 1994; Hoshi
et al., 2005; Balleine et al., 2007; Cohen et al., 2009). In a nutshell,
we assume that, independent of orientation toward speed or ac-
curacy, a fixed amount of input to the striatum is required for
action execution (cf. Mink, 1996) (consistent with that, we did
not find that activation differed between conditions in the stria-
tum). This input can stem from either cortical accumulation re-
gions or from cerebellar timing regions (modulating baseline
firing of the striatum). Depending on the response condition, the
connectivity between accumulation and timing region on the one
side and striatum on the other is adjusted. Note that both deci-
sion drivers always influence striatal activation, but the relative
importance can vary. More specifically, in higher-threshold
states, synaptic efficacy in a corticostriatal network should be
greater and in a cerebellar–striatal network should be smaller
compared with the low-threshold state. Thus, the decision
threshold and the reward frequency are sensitive to the relative
strength of corticostriatal and cerebellar–striatal connectivity: the
greater the relative strength of the corticostriatal connectivity, the
higher the threshold, and the greater the cerebellar–striatal con-
nectivity, the lower the threshold. This mechanism can also be
expressed in a simple equation, in which a vector of firing rates
of striatal neurons (NStr) is the weighted average of firing rates
of cortical neurons (Nco) and cerebellar neurons (Nce): NStr �
� � Nco � � � Nce � x, where x are other influences on striatal
activity including noise. From this equation, it is easy to see
that a change in synaptic efficacy, i.e., in the weights � and �,
changes the correlation between the time series NStr on the one
hand and Nco, and Nce, respectively, on the other hand. This
formulation also shows that using changes in effective connec-
tivity (as measured using BOLD fMRI) as a marker for changes
in synaptic efficacy is well justified.

One interesting aspect of mechanisms for threshold adapta-
tion is whether the observed changes in connectivity need to

remain active throughout the entire task. In the mechanisms we
propose, the persistent changes in connectivity represent differ-
ent modes of processing under which decision making is per-
formed in our task to maximize rewards. Persistent connectivity
modulation is observed because, in every trial, sensory informa-
tion and elapsed time are integrated until a decision threshold is
reached (differently, depending on the reward schedule) to form
a decision. Trial feedback and dependent adjustments may be
additionally reflected by this persistent activity. Note that we see
these persistent changes as a complementary process to processes
of state resetting or switching (cf. Rushworth et al., 2002; Forst-
mann et al., 2008).

An alternative account of boundary modulation in the con-
text of an urgency model or collapsing boundary model (cf.
Cisek et al., 2009) is that decision boundaries collapse faster
when the decision time is shorter. To investigate the plausibil-
ity of such a model, we fitted RT data to a diffusion model
implementing an exponentially collapsing boundary (cour-
tesy of Jonathan Malmaud and Antonio Rangel). However,
model comparison indicates that this collapsing boundary
version of the diffusion model does not improve the fit com-
pared to a modulating boundary model. Moreover, we do not
find significant correlations between the difference in collapse
rate of the boundary parameter and the PPI results. Still, fu-
ture work should test alternative formulations of the urgency
model (e.g., comparing linear, logarithmic, or exponential
collapse over time).

One potential alternative interpretation of the PPI results is
the simple “reduced noise through attention” hypothesis.
Subjects might pay more attention in trials with more at stake,
which by reducing noise in the computations performed in all
relevant areas increases the observed functional connectivity
in the trials with emphasis on accuracy. However, this hypoth-
esis is inconsistent with our result of a stronger cerebellar–
striatal correlation in the low-threshold condition. Hence, the
“reduced noise” argument cannot explain all our results.
Moreover, if attention was the main driver of performance
difference between conditions, accuracy differences should
have been greater. This is because we had well-trained partici-
pants who performed the task at relatively low-coherence levels
selected for 75% accurate responses in the neutral threshold con-
dition (see Materials and Methods).

As described above, we propose that the striatum combines
evidence and available time information for the execution of a
motor response, which we assume to be coded in dlPFC and
cerebellum, respectively. The dlPFC has been implicated in the
processing of accumulated sensory evidence during decision
making (Heekeren at al., 2008; Domenech and Dreher, 2010;
Philiastides et al., 2011). Studies on value-based decision making
locate the comparator/accumulator in the dorsomedial PFC
(dmPFC) and the intraparietal sulcus (IPS) rather than the dlPFC
(Basten et al., 2010; Hare et al., 2011). The distinctiveness of the
implicated brain regions (dlPFC vs dmPFC) is not uncommon
and is likely attributable to task and stimulus differences. Percep-
tual and value-based decisions share a common neural mecha-
nism (change in connectivity), but the neural substrate can differ,
even within the domain of value-based choices. For example,
Basten et al. (2010) locate a cost– benefit comparator mechanism
in the ventromedial PFC and the accumulator in the IPS. The
general mechanism of difference-based accumulation of evi-
dence is the same as in the study by Hare et al. (2011) but the
neural substrate differs. Future research based on single or mul-
tiunit recordings and/or high-resolution fMRI will be required to
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clarify the invariance of mechanisms and regions that are in-
volved in these decision-making processes.

In conclusion, we present converging evidence from be-
havioral data, neuroimaging data, and computational model-
ing showing that threshold adjustments to maximize net
reward are instantiated through a change in effective connec-
tivity within corticostriatal and cerebellar–striatal brain sys-
tems. Our findings on the neural mechanism of decision
threshold modulation could be highly relevant for the under-
standing of neuropsychiatric disorders that are accompanied
by impulsivity and or inflexibility (Mulder et al., 2010) and
how temporal information can be used to inform decision
making (cf. Hanks et al., 2011).
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Summary  

Making the correct decision at the right time is a pivotal aspect of behavior. 

Neurocomputational models of optimal decision making ascribe a crucial role - the 

computation of conflict between choice alternatives - to the subthalamic nucleus 

(STN) [1-5]. Specifically, these models predict that deep brain stimulation (DBS), 

which disrupts information processing in the STN, will diminish the influence of 

decision conflict on decision making under high conflict [2, 4, 6]. We asked patients 

with DBS implants to judge the direction of motion in random dot stimuli [7] under 

different states of DBS. The trials differed in difficulty (motion coherence) and 

response instruction (fast or accurate) leading to increased RTs in trials with higher 

task difficulty in healthy subjects. Results indicate that DBS significantly influences a) 

performance for perceptual decisions under high decision conflict, as well as b) the 

magnitude of decision criterion adjustment. In particular, when DBS was turned on, 

the influence of task difficulty on RT was significantly reduced and a race model best 

accounted for observed data. In contrast, when DBS was turned off, RTs increased 

substantially as the task became more difficult and a diffusion model best accounted 

for behavioral data. Individual data fits of evidence accumulation models demonstrate 

different information processing under distinct DBS states. Together these findings 

suggest a crucial role for the STN in adjusting decision making during high-conflict 

trials in perceptual decision making.  

Highlights 

• DBS of the STN reduces the influence of decision conflict in perceptual 
decision making 

• DBS of the STN changes the magnitude of decision criterion modulation. 

• Comparison of fits to different evidence accumulation models suggests altered 
information processing during DBS. 
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Results  

Cortico-basal ganglia (BG) networks control the expression of competing response 

alternatives and mediate decision making [1, 6, 8-11]. A central role in cortico-BG 

network computations for decision making is ascribed to the subthalamic nucleus 

(STN) [2, 4, 6, 12-15]. The STN receives input from the frontal cortex via the 

hyperdirect pathway and from subcortical regions via the indirect cortico-BG pathway 

and reciprocal subcortical connections [16]. The STN is integrated in parallel motor 

and non-motor cortical-BG thalamic loops [17] and distinct motor, limbic and 

associative subterritories have been identified [18]. As a consequence, STN activity 

efficiently regulates the expression of actions [12, 13, 19] as well as executive 

processes such as decision making [6, 15]. Modulation of STN activity – using DBS- 

may influence cognitive, motor and limbic circuits at the same time [14, 20-22]. 

Recently it has been suggested that the STN computes conflict between choice 

alternatives and mediates decision making accordingly [2, 23]. Bogacz and 

colleagues [3, 4] advanced this approach theoretically by demonstrating how cortico-

BG networks that provide conflict computation through the STN can implement an 

optimal decision-making procedure, the Multihypothesis Sequential Probability Ratio 

Test (MSPRT) [24]. In this procedure, sensory evidence is accumulated only as long 

as it is necessary to gain a required level of confidence. Thus, MSPRT is thought to 

minimize the decision time for any specified level of accuracy [5, 24-26]. In the 

MSPRT model, information regarding the activity of sensory neurons selective for 

rightward motion affects the activity of neurons selective for leftward choices via the 

STN and vice versa (Figure 1A and 1B). The model predicts that the disruption of the 

STN using DBS will make the activity of neurons selective for left choices more 

independent from sensory neurons selective for rightward motion. Furthermore, 
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because STN neurons are the only highly non-linear neurons in the MSPRT model, 

silencing of the STN in the model results in activities of neural populations in the final 

stage of the model that are linearly proportional to the integrated evidence for 

corresponding alternative (Figure 1C). Hence, in this framework, the disruption of 

STN activity using high frequency DBS curtails conflict computation and should 

therefore fundamentally change how available information is used to form simple 

perceptual decisions (Figure 1A, B, C, see Supplemental Experimental Procedures 

for details). For instance, it has been shown that MSPRT can (Figure 1A) be 

implemented by a drift diffusion model (DDM, Figure 1B) [3-5, 26]. The DDM 

achieves the most efficient computation by integrating the difference between the 

accumulated evidence supporting the two alternatives and determines the decision 

processes as soon as this difference exceeds a certain threshold (Figure 1B). The 

implementation of the MSPRT by cortico-basal ganglia networks requires specific 

computational functions of the STN, i.e. the computation of conflict [3-5]. This follows 

previous theoretical considerations and empirical results that show that the STN 

mediates decision making [3, 5, 6, 15, 23, 26]. DBS inhibits this specific function and 

results in premature or impulsive decision making [8, 18]. It thus follows that under 

normal STN functioning a diffusion model should best describe RT decision data [2, 

3, 6, 26]. On the contrary, under impaired STN computation such as during DBS, the 

RT data should be best described by a suboptimal simple choice model such as the 

race model as it does not integrate the conflict between alternatives [2, 3, 6, 15, 26]. 

In summary, neurocomputational models predict that DBS applied to STN should 

decrease the effect of conflict on RTs during perceptual decision making [2, 3, 6, 26].  
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We combined psychophysical experimental methods (Figure 2) and computational 

modeling (Figure 1 and Supplemental Information) to test this algorithmic theory of 

cortico-basal ganglia computation for optimal decision making [3-5]. 

BEHAVIOR 

With increasing coherence, participants were faster (main effect of stimulus 

coherence: F (5,35) = 165.157, p < 0.001) and more accurate (F (5,35) = 451.842, p 

< 0.001, Figure 3A, 3B). This is not surprising, as with lower stimulus coherence, the 

sensory information is more conflicting and the task is more difficult. 

Computational models of cortico-BG networks predict that DBS reduces the effect of 

conflict during decision making [2, 3]. Indeed, the rate of change in RT as a function 

of coherence was lower when DBS was turned on than when it was turned off in the 

accuracy condition (Coherence * DBS: F (5,35) = 24.182, p < 0.001; Coherence * 

DBS * Instruction, F (5,35) = 9.219, p < 0.001, Figure 3B). There was also a similar 

but weaker effect on the slope of accuracy as a function of coherence. This slope 

was less steep when DBS was turned on than when it was turned off during the 

accuracy condition (Interaction: Coherence * DBS, F (5,35) = 4.419, p = 0.003; 

Coherence * DBS * Instruction, F (5,35) = 9.219, p < 0.001, Figure 3A). Under the 

speed instruction, the participants had lower mean RTs (main effect of Instruction: F 

(1,7) = 135.039, p < 0.001) and lower accuracy (F (1,7) = 114.701, p < 0.001, Figure 

3A, 3B) compared to the accuracy instruction condition. The effect of instruction on 

RT was greater for low coherence than for high coherence trials 

(Coherence*Instruction: F (5,35) = 15.345, p = 0.001). This result was expected 

because RTs were longer overall during low stimulus coherence. DBS appeared to 

affect the patients’ overall response profiles, i.e., patients on DBS were faster (main 

effect of DBS: F (1,7) = 85.18, p < 0.001) and less accurate (F (1,7) = 120.627, p < 
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0.001) compared to testing with DBS turned off. The effect of instruction was greater 

when DBS was turned off than when it was turned on (DBS * Instruction: F (1,7) = 

6.329, p = 0.04). DBS of the STN resulted in diminished the effects of conflict on both 

the reaction time (RT) and decision accuracy in perceptual decision making (Figure 

3), indicating that STN function is central to sensory-based action selection.  

Participants with DBS were tested against a  group of age-matched controls (see 

experimental methods and supplementary material) as a considerable influence on 

behavior could be related to PD motor deficits with abnormal dopaminergic 

processing. Note that all of our patients were on dopamine medication and the 

comparison between control and PD patients indicates a pattern that in in line with 

the our hypotheses (see Supplemental Information for details). Control subjects did 

not differ in RT from patients under DBS or without DBS during the speed condition 

(Figure 3A, upper panel). However, control subjects differed significantly in RT from 

the patients under DBS during the accuracy condition for the 3 lowest coherence 

levels (RT (controls, DBS_OFF) > RT (DBS_ON, see upper panel of Figure 3B). 

Control subjects did also differ in accuracy from patients under DBS on those low 

coherence /  high conflict trials during the accuracy condition (AC(control, DBS_OFF) 

> AC(DBS_ON), see lower panel of Figure 3B). Moreover, under low conflict (the two 

highest coherence levels) control subjects were significantly better in AC from both 

DBS samples in both accuracy and speed conditions (Figure 3A and 3B lower panels 

right part of both graphs). Taken together these results are in line with previous 

empirical findings in that DBS impairs the ability to adjust decision making by 

modulating the decision threshold under high conflict [2, 6, 15, 27-29].  

These results indicate a) that participants’ behavior is comparable to that of healthy 

participants (i.e. during the speed instruction) and b) that DBS of the SNT leads to a 
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computational silencing of the conflict function during decision making as shown in 

decision behavior during the accuracy instruction, in which the conflict between 

alternatives requires the slow down of the decision process. These findings are in line 

with a recent study that investigated the influence of DBS and dopamine medication 

in a) a comparable patient group and b) applying a similar computational model [30. 

In that study, patients were tested on a memory and a probabilistic choice task. It 

was shown that DBS specifically impairs probabilistic evidence integration whereas 

dopamine medication solely improves memory for learned response associations 

[30].  

MODELING 

Next, we fitted various MPSRT-derived versions of the race and diffusion model to 

individual RT datasets (see Supplemental Information). As predicted, a diffusion 

model account better described the behavioral data when DBS was turned off, 

whereas a race model account better described the behavior under DBS (cf. Figure 

1, and Supplemental Table 1). These model fits were additionally tested against a 

variety of other models in each individual dataset and are in agreement with the 

predictions of the theoretical model of Bogacz and Gurney [3]. The relative quality of 

the model fits to RT and ER was assessed by using the Akaike information criterion 

(AIC) [31]. The combined model (race account for describing DBS ON data and 

diffusion account for describing DBS OFF data) is clearly preferred according to the 

comparison to all other models in 6 out of 8 subjects (Table 1). In two cases the 

combined model has similar AIC values as a model assuming a change in signal 

parameters across DBS conditions. In this case we cannot distinguish the models 

based on the AIC value, the quality is the same, indicated also by the Akaike weights 

(Supplementary Table 2), which give the weight of evidence (between 0 and 1) in 
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favor of each model. Figure 4, depicts the experimental data during DBS OFF 

alongside the estimated model fits of the DBS OFF diffusion model and the baseline 

model (in which parameters were estimated across DBS conditions, see 

Supplement). It is clearly observable that the DBS condition specific version of the 

diffusion model fits the data better than a basic model. 

Finally, to test the effect of DBS on thresholds we extended our models by estimating 

a so-called conflict model that implements separate thresholds for low conflict and 

high conflict trials (low conflict: 1.6%, 4.8 and 8 % and high conflict: 12.8, 20.8 and 

51.2 % stimulus coherence). The AIC values do not distinguish the initially used 

diffusion model (with threshold parameters across coherence levels) from the conflict 

model (see Table 2). It is informative to compare threshold differences from the 

conflict model in order to test whether thresholds are affected differently in high 

conflict trials compared to low conflict trials. The results show that the threshold 

difference for the low coherence trials is smaller than for the high coherence trials: 

t(7) = -3.9002, p = 0.0059; Table 3). This result is in line with our hypotheses that 

DBS affects modulation of decision making specifically under high perceptual conflict.  

Discussion 

Theoretical accounts of brain processes are important because they can provide 

testable predictions about the functionality of specific neural systems during brain 

functions such as for example decision making. Our behavioral and modeling results 

reveal a significant effect of DBS of the STN regarding the accuracy and RT for high 

conflict, low coherence direction of motion judgments. These results are in 

agreement with previous empirical studies as well as theoretical models that ascribe 

a crucial role to the STN during decision making, especially during high-conflict 

conditions [2, 6, 15, 23, 25, 27, 28]. Importantly, the present study extends previous 
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empirical findings [6, 15, 27-29] to the domain of perceptual decision making while at 

the same time supports computational models of decision making based on the 

statistically optimal MSPRT. It has been shown that MSPRT presents a framework 

for optimal decision making [32, 33]. This property of optimality has been analytically 

demonstrated for accuracy levels approaching 100% [25]. In simulations with lower 

accuracy, MSPRT achieved faster or equal decision times compared to simpler 

procedures [33]. Our modeling approach empirically tests this algorithmic framework. 

Individual behavioral datasets are well described by race and diffusion models 

accounting for changes in information processing in the STN under different DBS 

conditions, as predicted by the MSPRT model of cortico-BG network computations. 

These results strongly support the assertion that cortico-BG networks implement 

system-level computations that optimize decision making for specific forms of simple 

decision making. Importantly, our findings also support the view that the STN 

performs crucial computations on conflict between choice alternatives during sensory 

based decisions. Modeling results, especially the estimates of the decision threshold 

parameter, indicate that the integration of decision conflict has a strong STN 

dependence. Our findings indicate that DBS influences the ability to adjust the 

response threshold when required to adjust decision making for accurate decisions, 

albeit under high conflict. When comparing the magnitude of decision threshold 

parameter adjustment between different amounts of conflict under DBS conditions 

(Table 3 and Supplemental Figure 2) it becomes evident that the STN mediated 

computation of decision conflict is used to adjust decision making. This is in line with 

previous work showing that the STN influences the decision threshold online by 

modulating cortico-basal ganglia communication by exerting control over basal 

ganglia output nuclei [6, 15, 23]. Oftentimes we face a trade-off between deliberation 
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time and evidence accumulation [26, 32]. Depending on the circumstances being fast 

offers the potential for higher reward. However, slow decision making increases 

accuracy. The ability to modulate the decision threshold is thus crucial in order to set 

this trade-off effectively, for example during changes of internal and external 

circumstances [6, 34, 35]. The MSPRT model itself is silent about the speed-

accuracy tradeoff (SAT), because it does not describe how this tradeoff is controlled. 

To make any predictions on STN activity using the MSPRT model, one has to 

assume a particular mechanism for controlling the tradeoff. If one assumes that the 

tradeoff is controlled by the increase in the baseline activity with speed emphasis, 

then indeed the activity of STN in the MSPRT model before stimulus onset would be 

higher in the speed that the accuracy condition [3, 4, 26]. However, please note by 

the end of the choice process the expected STN activity would be similar in the 

speed and accuracy conditions, and the STN would modulate the decision process 

for longer in the accuracy than speed condition. Therefore, the disruption of STN 

affects the RTs in the model to a larger extent in the accuracy than the speed 

condition. Moreover, in the MSPRT model, the STN activity is a function of activity of 

the integrators rather than of the sensory input directly [3]. Please note that in each 

coherence condition, the activity of integrators will traverse similar range of values i.e. 

from baseline to threshold, so the STN will also have similar range of activities in 

different coherence conditions. However, in the low coherence conditions, reaction 

times are longer, so that the STN affects decision process for longer, thus its 

disruption has larger effect on reaction times.  

In this study, especially for high conflict, low motion coherence decisions, the top-

down mechanism implementing response instruction based adjustment of decision 
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making appears to be too weak to overcome the automatic bottom-up computations 

of the basal ganglia network [13] under DBS stimulation. This is in line with another 

study [36], in which the application of a race to threshold model to RT data from a 

DBS sample leads to the interpretation that DBS of the STN a) amplifies the 

descending cortical signals to the motor output structure and b) reduces the tonic 

background inhibition that suppresses unwanted premature responses through DBS. 

It may seem surprising that (as shown in Supplemental Figure 2) each model fits the 

data from both conditions relatively well (e.g. the race model can relatively well 

reproduce the steep dependence of RT on coherence in DBS off condition and more 

shallow dependence in the DBS on condition). This is a result of the model being 

fitted with a separate set of parameters for each condition (so for a different sets of 

parameters the race model may produce more or less steep dependence of RT on 

coherence). This illustrates the importance of considering different models of 

information processing to compare different states [37, 38]. 

The STN is comprised of different subterritorries that are involved in parallel cortico-

BG loops [18, 39]. These circuits process distinct information based on a distinct 

topographical organization for cognitive (ventral), emotional (medial) and motor 

(dorsal) loops [18, 21]. Spread of current during chronic DBS to non-motor 

subterritorries may contribute to changes in executive processing such as decision 

making [40-44] or processing of affective information [45, 46]. For instance, DBS of 

the STN elicits premature or impulsive decision making and reduces the ability to 

adjust decision making, especially during highly conflicting choices [6, 15, 23]. Thus, 

we assumed a negative (‘computation silencing’) effect rather then a normalizing 

effect under DBS. We derive our hypothesis that suggests that high frequency DBS 
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of the STN, has adverse effects on conflict computation from theoretical and 

empirical results. First, in the cortico-basal ganglia model of optimal decision making, 

a central function for the computation of conflict is ascribed to the STN [2, 3, 6, 9]. 

This has been corroborated by empirical results such as for instance recordings of 

STN activity [15, 18]. Second it has been empirically shown that DBS of the STN 

reduced the ability to adjust decision making [6, 23, 28]. Taken together, we inferred 

that although DBS of the STN significantly improves tremor, rigidity, akinesia, or gait, 

DBS of the STN at the same time impairs other functions served by the STN, for 

example decision making. Indeed, DBS of the STN has been shown to eliminate 

abnormal rhythmic oscillation thought of causing the motor symptoms in the 

parkinsonian state [47, 48]. Moreover, research findings support the notion that the 

net effect of DBS is to increase the firing of neurons, which would indeed drive the 

output structures of the basal ganglia and lead thereby to premature responding and 

thus reduced modulation of decision making [8, 11, 12, 19]. Additionally, our results 

are supported by the comparisons between a control group and our DBS sample 

(see Behavior section and Supplemental Information). 

In summary, we show for the first time that STN computations on decision conflict are 

crucial during perceptual decision making. Using a combination of psychophysics, 

neurostimulation (with DBS) and computational modeling reveals that the STN is 

crucial for the adjustment between fast and accurate decision making in order to 

balance deliberation and evidence accumulation [31, 35, 49]. We present empirical 

evidence in support of formal models that suggest cortico-BG network capacity for 

optimal computation of decision making under high conflict.  

 
Experimental Procedures  

Detailed description of experimental procedures, data analysis, and computational modeling can be 
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found in detail in the Supplemental Information. 

Participants  

10 PD patients (two females, mean age: 57.3 +/- 5.2 years) with bilaterally implanted DBS electrodes 

in the STN were recruited during their annual consultation in the outpatient clinic at the Charité, 

University-Medicine Berlin, Department of Neurology, Campus Virchow, Germany (Supplemental 

Table 3). All patients had normal or corrected-to-normal vision, were on stable, individually prescribed 

PD medication and on effective subthalamic high frequency stimulation. Patients were briefed on the 

experiment and the nature of the employed methods. All participants gave informed consent to 

participate according to a protocol approved by the local ethics committee. We also tested an age 

matched control group (9 subjects, 4 females, mean age 55.2, +/- 6.03 years). 

Task 

Participants were asked to perform a two-alternative forced-choice perceptual judgment task while 

their stimulator was turned on or off. Participants judged whether the net motion of a dynamic random 

dot stimulus was directed towards the left or right (see Figure 2) and received response instruction 

specific per trial and per block feedback.  

Data Acquisition, Analysis and Modeling 

Complete datasets from 8 patients who participated throughout the entire length of the experiment 

were included in the analysis. All reaction times, except for those collected on missed trials and fast 

guesses (RT < 250 ms.), were included in the statistical analysis. We calculated in total 2 full-factorial 

ANOVAs: one on reaction time (RT) and one on accuracy (AC). Each 3-way repeated measurement 

ANOVA (rmANOVA) includes both speed and accuracy conditions and thus 24 data points (2 

instructions x 2 DBS conditions x 6 coherence levels). Since we had included in our study patients that 

were on continuous DBS for a variable time period (1-8 years), we refrained from correlating UPDRS-

III scores to the modeling results. 

The collected data contains too few data points per condition to fit distinct RT distributions. 

Unfortunately, it was experimentally not possible to obtain more data points, as we had to adhere to 

ethical standards and keep the duration of the experiment at an appropriate duration for the patients, 

especially in the DBS OFF condition. Therefore, due to the small number of trials for each participant 

per condition we fitted the computational models to the error rates (ER) and mean RT for each 

condition (but see Supplemental Experimental Procedures for details).  



! 69!

Due to the limited number of data points to which we were fitting each model, we followed the 

approach of Ditterich [50, see also 26]: i.e., maximally constrain the race and diffusion models and fit 

them with as few parameters as possible. We ignored any variability in the parameters (drift, starting 

point and non-decision time) present in the full diffusion model (see Supplemental Experimental 

Procedures). 

Supplemental Information 

Supplemental Information accompanies this paper. 
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Figure legends, and Tables. 

Figure 1. Computational architectures for models of binary decision making.  

(A) The diffusion model implements the sequential probability ratio test (SPRT) [30, 31].  

The black and gray circles denote neural populations selective for movement toward the left and right, 

respectively. Labels next to the populations denote the brain areas where they are located 

(“Integrators” denotes cortical integrator neurons, “Output” denotes the output nuclei of the basal 

ganglia: the internal segment of the globus pallidus and the substantia nigra pars reticulata). The 

arrows denote excitatory connections, and the lines ending with circles denote inhibitory connections. 

The labels above and below the models indicate the values of inputs and outputs, respectively. The 

labels xT
L and xT

R denote the activities of sensory neurons selective for motion towards the left and 

right, respectively, at the current time T. In panel C, f is a monotonic function equal to f(s) = –
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log(1+exp(-gs)), where g is a positive model parameter and s the sum of the difference between both 

alternatives for each output unit. 

(B) In the diffusion model, the difference between sensory inputs for the two alternative choices is 

integrated. A choice is made once this integrated difference exceeds a decision threshold. Only the 

difference between sensory inputs affects the values of the integrators;  

(C) The simplest model of binary choice is the race model. Two independent integrators accumulate 

sensory evidence supporting each of the two choice alternatives (here, motion to the left or right). A 

choice is made once the activity of any integrator exceeds a fixed threshold. 

 

Figure 2. Experimental design  

(A) Accuracy instruction emphasizing accurate responses.  

(B) Speed instruction emphasizing fast responses. 

Judgments were made in blocks of 20 trials randomly distributed over 6 levels of motion coherence 

(1.6, 4.8, 8, 12.8, 20.8 or 51.2 %) with speed or accuracy response instructions given at the beginning 

of each block for a total of 240 trials per DBS condition. In each trial, participants had up to two 

seconds to respond. Either a response or the deadline terminated a trial. Participants received 

immediate feedback on each trial. 

 

Figure 3. Behavioral Results of patients and controls. 

(A) Mean RT (top panel) and mean accuracy (lower panel) as a function of stimulus coherence during 

speed condition. 

(B) Mean RT (top panel) and mean accuracy (lower panel) as a function of stimulus coherence during 

accuracy condition. 

Blue lines indicate DBS_ON sample, broken black lines indicate control sample (shaded grey areas 

represent standard error of the mean of control sample; red lines depict DBS_OFF sample.  

Error bars represent standard error of the mean (blue: DBS_ON; red: DBS_OFF). Stars indicate a 

significant difference between controls and PD patients on the axis of the specific coherence level. 

 
Figure 4. Experimental data and simulated model data for DBS OFF condition. The DBS condition 

specific diffusion model (in green) fits the experimental data (in black) better than the baseline model 
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(in brown). Left side: RT; Right side: AC.  
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Subject / 
Model 

1 2 3 4 5 6 7 8 

Basic model -204,96 -180,10 -221,11 -181,32 -202,26 -192,55 -183,89 -197,85 

Combined -230,10 -219,89 -240,84 -234,93 -217,75 -213,56 -221,79 -220,24 

Signal_varia
tion 

-230,16 -219,87 -229,64 -231,93 -207,05 -204,39 -217,92 -210,80 

Signal_cons
tant 

-220,97 -206,90 -221,30 -225,45 -211,38 -203,73 -201,75 -206,13 

Threshold_v
ariation 

-221,91 -208,98 -228,90 -227,84 -215,53 -202,15 -202,36 -208,04 

Threshold_c
onstant 

-228,70 -210,44 -236,44 -231,05 -204,92 -207,67 -217,89 -211,03 

T0 variation -204,07 -187,06 -228,64 -212,66 -206,40 -190,96 -193,20 -204,51 

T0 constant -220,15 -215,80 -228,46 -229,24 -206,17 -203,91 -215,50 -208,50 

 

Table 1. AIC values of different models describing information processing under distinct DBS states 

(see Supplement for details). The table lists the AIC values for the BASIC model (all parameters equal 

across DBS conditions) and the combined RACE / DIFF model (Race for DBS_ON and Diffusion for 

DBS_OFF). For each subject, the AIC value indicates a better fit (lower AIC value) for the combined 

model than the basic model. 

 
Table 2. AIC values for the conflict model and the initial version of the diffusion model for the DBS_ON 

condition. The AIC values do not separate the model in terms of relative quality; a deltaAIC (dAIC: AIC 

(best model) – AIC (current model)) score below 2 indicates basically equivalent quality in explaining 

the data. 

Subject HIGH CONFLICT LOW CONFLICT 
1 0,100 0,151 
2 0,096 0,141 
3 0,078 0,113 
4 0,086 0,090 
5 0,072 0,114 
6 0,086 0,127 
7 0,035 0,039 
8 0,018 0,022 

MEAN 0,071 0,100 
STD 0,029 0,047 

Table 3. This table shows difference in decision thresholds between speed and accuracy conditions 

for high and low conflict trials during the DBS condition 

 

Subject / Model 1 2 3 4 5 6 7 8 
Conflict -126,68 -116,02 -123,72 -119,07 -113,11 -123,63 -118,97 -124,78 
DIFF_ON -125,44 -115,12 -122,82 -118,85 -113,00 -122,31 -119,56 -124,56 
dAIC 1,24 1,10 0,90 0,22 0,11 1,32 0,59 0,22 
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Figure 3. 
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