5 Kompositionsabhängige strukturelle und elektrische Eigenschaften von Cu_xGa_ySe₂/GaAs(001)

Ziel dieses Kapitels ist die Beschreibung der erreichten Qualität der Epitaxieschichten bezüglich ihrer strukturellen und elektrischen Eigenschaften.

Schwerpunkt in Kapitel 5.1 bilden Untersuchungen an quasi-stöchiometrischen Schichten. Es wird zunächst aus der kristallographischen Charakterisierung mittels Röntgenbeugung (XRD) und elektronenmikroskopischer Methoden (Rasterelektronenmikroskopie und Electron-Channeling SEM/ECP, energiedispersive Röntgenspektroskopie EDX, Transmissionselektronenmikroskopie und -beugung TEM/TED) gezeigt, daß epitaktisches Wachstum des ternären Chalkopyrits CuGaSe₂ auf GaAs(001)-Substraten erreicht wurde. Die genannten begleitenden Charakterisierungsmethoden gehören zu den Standardmethoden bei der Untersuchung von Festkörpern. Ihre experimentellen Grundlagen werden hier nicht weiter ausgeführt.

In Kapitel 5.2 werden Ergebnisse aus den MOVPE-Experimenten mit verschiedenen p_I/p_{III} -Partialdruckverhältnissen diskutiert. Das gezielte und reproduzierbare Einstellen der chemischen Zusammensetzung der Schichten war der Schlüssel für systematische Untersuchungen kompositionsabhängiger Merkmale.

5.1 Quasi-stöchiometrische Schichten

5.1.1 Orientierung und Nachweis der Epitaxie

Ein typisches Kennzeichen von Pulverdiffraktogrammen von CuGaSe₂-Einkristallen ist – neben dem intensivsten Reflex der (112)-Netzebenen – das paarweise Auftreten von Reflexen (220)/(204), (312)/(116), (400)/(008) etc. (Abb. 5.1, unten). Diese Aufspaltung ist eine Folge der tetragonalen Verzerrung $\eta \neq 1$ (vergleiche Abschnitt 2.1.1.1). Das in Abb. 5.1 gezeigte Spektrum wurde an der Pulverprobe eines schmelzgezogenen Einkristalls aufgenommen. Das

Abb. 5.1: θ-2 θ-Röntgenbeugungsspektren einer quasi-stöchiometrischen CuGaSe₂/GaAs(001)-Epitaxieschicht und einer CuGaSe₂-Pulverprobe.

Tab. 5.1: Aus XRD-Daten (Abb. 5.1) berechnete Gitterparameter eines pulverisierten CuGaSe₂-Einkristalls.

Herstellung	a[nm]	c [nm]	η
Schmelzzucht	0.5617	1.1025	0.9814

Spektrum enthält außer den für die Chalkopyritphase typischen Reflexen keine zusätzlichen Signale von etwaigen Fremdphasen. Aus der Nachweisempfindlichkeit der XRD-Messung ergibt sich als Maß für die Phasenreinheit dieses CuGaSe₂-Kristalls ein Wert von etwa ± 0.2 at.%.

Die aus den 5 Reflexpaaren im Beugungswinkelbereich $40^{\circ} < 2\theta < 90^{\circ}$ bestimmten Gitterparameter in Tab. 5.1 stimmen gut mit den in der Literatur angegebenen Daten überein (vgl. Tabelle 2.1, Abschnitt 2.1.1.1). Der hier untersuchte CuGaSe₂-Einkristall diente im Rahmen der PL-Untersuchungen (Kapitel 6) als unverspanntes Referenzsystem.

Dem Pulverdiffraktogramm ist in Abb. 5.1 (oben) das θ -2 θ -XRD-Spektrum einer CuGaSe₂/GaAs(001)-Schicht mit quasistöchiometrischer Zusammensetzung gegenübergestellt. Neben den Substratreflexen GaAs(002) und -(004) sind nur zwei weitere Reflexe zu erkennen, die beide von Netzebenenscharen der CuGaSe2-Schicht herrühren, deren Normale die c-Achse ist: $CuGaSe_2(004)$ und -(008). Die Wahl des Substrats GaAs(001) führt somit zu einem hochorientierten Schichtwachstum, wobei die c-Achse der tetragonalen Chalkopyritstruktur senkrecht zur Substratebene ausgerichtet ist (Fall I, Abb. 5.2).

Der zweite Orientierungstyp bei der Heteroepitaxie von I-III-VI₂-Chalkopyriten auf (100)-Substraten – Fall II, c-Achse liegt in der Substratebene – wurde im Heterosystem CuGaSe₂/GaP(001) beobachtet [59]. Hierbei können (aufgrund der Symmetrie entlang [100] und [010]) in der aufwachsenden Schicht Orientierungsdomänen (Ref. [136]) sowie vermehrt Kristallbaufehler wie Zwillingsbildung und Stapelfehler (Ref. [137]) auftreten. Im hier vorliegenden Fall des c[001]-orientierten Wachstums ist daher durch die Vermeidung von Orientierungsdomänen und den damit verbundenen Kristallbaufehlern eine höhere strukturelle Perfektion zu erwarten.

Electron-Channeling-Aufnahmen (ECP, für engl.: electron channeling pattern, Abb. 5.3) bestätigen die Orientierung in c[001]-Richtung der CuGaSe₂/GaAs(001)-Heterostruktur. Es ist deutlich der zentrale Pol der [001]-Richtung und die 4-zählige Symmetrie zu erkennen (Ref. [138]).

Folgende Informationen werden zur qualitativen Beurteilung der Schichtqualität aus der EC-Aufnahme A (Epitaxieschicht mit geringem Ga-Überschuß der ternären Zusammensetzung Cu/Ga < 1) gewonnen:

 gute Oberflächentopographie: Gegenüber Aufnahme B bleiben typische Ringmuster aus, die im Falle einer hohen Rauhigkeit durch fehlorientierte Ausscheidungen an

Abb. 5.2: Kristallorientierung bei der Heteroepitaxie von I-III-VI₂-Halbleitern (tetragonale Chalkopyritstruktur) auf (001)-Substraten vom Zinkblende-Typ: c-Achse senkrecht I) oder parallel II) zur Substratebene.

Abb. 5.3: Electron-Channeling-Aufnahmen von $Cu_xGa_ySe_2/GaAs(001)$ -Schichten unterschiedlicher Zusammensetzung: (A): Cu:Ga:Se = 25.3:25.9:48.8 [at.%] und (B): Cu:Ga:Se = 26.9:22.0:51.1 [at.%] gemäß EDX; geringe (A) und hohe (B) Rauhigkeit der Oberfläche. Beide Proben zeigen die für c[001]-orientierte Schichten typische 4-zählige Symmetrie.

der Oberfläche beobachtet werden. Im Falle der Aufnahme B (Cu/Ga > 1) stammen diese von Wachstumsinseln, die bei Präparation in hohem Cu-Überschuß auftreten (Abschnitt 5.2.1, Abb. 5.8).

– epitaktische Qualität der Schicht: Aufnahmen mit hohem Kontrast und Schärfe entstehen nur an einkristallinen Proben mit hoher struktureller Perfektion [139]. Während die θ-2θ-XRD-Spektren (symmetrischer Reflex) nur auf eine hohe Ordnung der Netzebenen in Wachstumsrichtung schließen lassen, kann die EC-Aufnahme A als Nachweis für die Epitaxie von CuGaSe₂ auf GaAs(001) angesehen werden. Die zur Aufnahme beitragenden Flächen messen typisch 100×100 μm².

Für Untersuchungen im Transmissionselektronenmikroskop (TEM) wurden Querschnittspräparate der CuGaSe₂/GaAs(001)- Spaltflächen von Probe A aus Abb. 5.3 angefertigt. Die Schichtdicke des CuGaSe2 betrug 400 nm und lag daher oberhalb der kritischen Schichtdicke von etwa $d_c =$ 120 nm; die Schicht kann deshalb bezüglich der Gitterfehlanpassung als relaxiert betrachtet werden (vgl. Abschnitt 2.1.1.2). Abb. 5.4 zeigt die TEM-Aufnahme einer hochauflösenden Messung an der Grenzfläche. Deutlich ist die Fortsetzung der Netzebenenscharen des GaAs-Substrates in der CuGaSe₂-Schicht zu erkennen. Im Abstand von etwa 30 Netzebenen werden an der Grenzfläche Fehlanpassungsversetzungen beobachtet. Wegen des gegenüber dem Subetwas kleineren Gitterparameters strat $(a_{Schicht} < a_{Substrat})$ ist dieser Versetzungstyp

Abb. 5.4: TEM-Querschnittsaufnahmen der CuGaSe₂/GaAs(001)-Grenzfläche. Oben: Übersicht; unten: Ausschnitt eines Bereichs (oben weiß umrahmt) mit Gitterfehlanpassungsversetzung: Innerhalb des eingezeichneten Rechtecks werden im Bereich des GaAs 9, im CuGaSe₂ dagegen 10 Netzebenen beobachtet.

durch eine zusätzlich eingeschobene Netzebene in der Schicht charakterisiert (vergrößerter Ausschnitt Abb. 5.4, unten).

Abb. 5.5 zeigt ein Transmissionselektronen-Beugungsbild (TED) der CuGaSe₂-Epitaxieschicht, wobei der einfallende Elektronenstrahl entlang der [111]-Zonenachse ausgerichtet ist. Der zur Beugung beitragende Bereich hat eine Fläche von etwa $0.25 \,\mu\text{m}^2$. Die mit Pfeilen gekennzeichneten Reihen von Beugungsmaxima sind auch im Fall der Zinkblendestruktur erlaubte Reflexe (die Indizierung (hkl) in der Abbildung entspricht der im tetragonalen System). Dazwischen werden die für die Chalkopyritstruktur mit ihrer charakteristischen Ordnung des Kationenuntergitters erwarteten Reflexe (kursiv indiziert) beobachtet. Dazu gehören alle Reflexe mit ungeradem Index 1 und gemischten, d. h. gerade/ungerade, (h,k) (Ref. [140,141]). Nur die Kationen tragen zu diesen Reflexintensitäten bei. Im Fall des Zinkblendegitters sind diese Reflexe ausgelöscht - sie eignen sich daher zur Unterscheidung zwischen Zinkblende- und Chalkopyritstruktur.

Neben der Chalkopyritordnung des Kat-

Abb. 5.5: Transmissionselektronenbeugung (TED) an der epitaktischen CuGaSe₂-Schicht entlang der [111]-Zonenachse. Die Pfeile markieren Beugungsmaxima, die sowohl für die Chalkopyrit-, als auch für die Zinkblendestruktur erlaubt sind.

ionenuntergitters sind noch andere Strukturphasen möglich, die ebenfalls durch eine regelmäßige Kationenordnung gekennzeichnet sind: Im Fall der CuPt-Ordnung sind die (111)-Ebenen des pseudokubischen fcc-Kationuntergitters abwechselnd ausschließlich mit Cu- oder Ga-Atomen besetzt. Bei der CuAu-Ordnung gilt entsprechendes für die (001)-Ebenen des Kationenuntergitters (siehe z. B. hierzu Untersuchungen an CuInS₂ [142]). Das Auftreten zusätzlicher Beugungsmaxima aus CuPt- oder CuAu-Ordnungsdomänen wird bei der hier untersuchten CuGaSe₂-Epitaxieschicht nicht beobachtet.

TED-Beugungsbilder können außerdem Informationen bezüglich der Defektstruktur des Kristalls enthalten. Die Defektdichten sind jedoch so gering, daß weder zusätzliche Reflexe aus Schichtbereichen mit Verzwilligungen, noch linienförmige Ausläufer zwischen den Hauptreflexen als Folge von Stapelfehlern zu erkennen sind. Letztere sind nur vereinzelt in HRTEM-Aufnahmen zu beobachten, nicht jedoch in der Beugung.

5.1.2 Verspannung

Das Pulverdiffraktogramm des CuGaSe2-Einkristalls in Abb. 5.1 kann als unverspannte Referenz zur Beurteilung des Verspannungszustandes in den Epitaxieschichten benutzt werden. Abb. 5.6 zeigt den Ausschnitt des CuGaSe₂(008)-Reflexes. Im Falle des Einkristalls beträgt dessen Intensität laut JCPDS-Daten (engl.: Joint Committee on Powder Diffraction Standards) nur noch etwa 1 % des (112)-Reflexes und hebt sich daher bei dieser Messung nur schwach aus dem Untergrund ab. Als zusätzlicher Anhaltspunkt ist daher der Beugungswinkel aus der $2\theta = 67.915^{\circ}$ JCPDS-Datenbank eingezeichnet. Ein Vergleich mit der Winkellage des CuGaSe₂(008)-Reflexes der CuGaSe₂/-GaAs(001)-Probe zeigt eine deutliche Verschiebung zu größeren Winkeln um $\Delta 2\theta =$

Abb. 5.6: $CuGaSe_2(008)$ -Reflex: Vergleich zwischen den Beugungswinkeln einer Pulverprobe und einer 900 nm dicken epitaktischen Schicht. Die Markierung bei 2 θ = 67.915° zeigt die Winkellage laut JCPDS-Daten. Die Aufspaltung des Signals der epitaktischen Schicht stammt von den K α_1 und K α_2 -Beiträgen der CuK α -Röntgenlinie.

0.287° im Falle einer 900 nm dicken Epitaxieschicht. Dies entspricht einer Verringerung der Netzebenenabstände in c[001]-Richtung, also einer Kompression des Kristalls in Richtung der c-Achse, wie in Abb. 5.7 gezeigt wird. Neben dem Gitterparameter c des unverspannten Einkristalls sind hier die aus den Beugungswinkeln berechneten Werte für c₁ von CuGaSe₂/-GaAs(001)-Proben mit verschiedenen Schichtdicken aufgetragen. Der angegebene Fehlerbalken wurde aus der Genauigkeit bei der Bestimmung der Beugungswinkel 20 abgeschätzt. Mit zunehmender Dicke der Epitaxieschicht nähert sich der Gitterparameter c immer mehr dem Wert für den unverspannten Fall an. Daß dieser auch für d $>> d_c$ nicht erreicht wird, weist auf den Verspannungsbeitrag hin, der von der thermischen Fehlanpassung herrührt.

Neben der experimentell bestimmten Größe c_{\perp} sind außerdem die aus den Modellen zur Verspannung im pseudomorphen bzw. thermisch verspannten Fall berechneten Werte aufgetragen (vgl. Abschnitt 2.1.1.2):

Als untere Grenze für c_{\perp} ergibt sich im pseudomorphen Grenzfall mit

$$a_{II} = a_{GaAs}$$

und Gl. (2.6) und (2.7):
 $c_{\perp} = 1.090$ nm.

Da die Elastizitätskonstanten von CuGaSe₂ nicht bekannt sind, wurden Werte von AgGaS₂ verwendet [143]; dies ist die einzige Verbindung aus der I-III-VI₂-Materialklasse, bei der Meßdaten vorhanden sind:

$$C_{13} = 5.92 \times 10^{11} \text{ dyn/cm}^2$$

 $C_{22} = 7.58 \times 10^{11} \text{ dyn/cm}^2$

Unter der Annahme, daß auch für CuGaSe₂ die Beziehung [144]

$$C_{11} > C_{33} > C_{12} \approx C_{13} > 0$$

gilt, sollte trotz möglicher Abweichungen der Absolutwerte unter Verwendung dieser Daten die Tendenz richtig wiedergegeben werden.

Abb. 5.7: Gitterparameter c_{\perp} von CuGaSe₂/-GaAs(001) als Funktion der Schichtdicke. Die Gitterkonstante c einer unverspannten Referenz ist als gestrichelte Linie eingezeichnet. Die durchgezogenen Linien kennzeichnen die berechneten Gitterkonstanten für den pseudomorph (kleine Schichtdicken d < d_c) bzw. thermisch verspannten Fall (d > d_c).

Im zweiten Grenzfall für dicke Schichten ergibt sich für a_{II} im Modell der thermischen Verspannung (Gl. (2.9)) bei einem Unterschied zwischen Wachstumstemperatur und Raumtemperatur von etwa 550 K

 $a_{||} = 0.5633 \text{ nm}$

und damit für die c-Achse:

$c_{\perp} = 1.0964 \text{ nm.}$

Da dieser Grenzfall von einer vollständigen Relaxation der Schicht bei Wachstumstemperatur ausgeht, sollte der berechnete Wert für c_{\perp} die obere Grenze angeben. Die im Experiment beobachteten Gitterparameter liegen zum Teil oberhalb dieser Grenze, was auf einen höheren Relaxationsgrad hinweist. Als Ursache kommen verspannungsreduzierende Effekte wie die Bildung von Rissen oder bereits zu Wachstumsbeginn ein unvollständiges Anwachsen der Schicht auf der Substratoberfläche in Betracht.

5.2 Kompositionsabhängige Merkmale

5.2.1 Morphologie

In Abb. 5.8 sind repräsentativ für verschiedene Cu/Ga-Verhältnisse SEM-Aufnahmen der Oberflächen von Cu_xGa_y-Se₂/GaAs(001)-Schichten dargestellt. Für quasi-stöchiometrische, etwas Ga-reiche Epitaxieschichten (Cu/Ga = 0.95) werden Oberflächenmorphologien mit den geringsten Rauhigkeiten beobachtet. Solche Oberflächen wurden für die Untersuchung der Bandanpassung an der ZnSe/CuGaSe₂(001)-Heterogrenzfläche gewählt (vgl. Kapitel 7).

Typisches Merkmal sind (bei Betrachtung mit bloßem Auge) spiegelnde Oberflächen, die in der Rasterkraftmikroskop-Topographie mittlere Rauhigkeiten von etwa 3 nm zeigen. Die SEM-Aufnahmen zeigen scharfe Linien, die auf Rißbildung durch die thermische Fehlanpassung hinweisen, wie sie für Epitaxieschichten unter Zugverspannung charakteristisch sind [145].

Bei einem geringfügig erhöhten Cu-Gehalt der Schichten wird die Ausbildung von Wachstumsinseln an der Oberfläche beobachtet, deren Dichte und Größe mit steigendem Cu/Ga-Verhältnis zunimmt (vgl. Abb. 5.8, Cu/Ga = 1.05 bzw. 1.45). Unter Berücksichtigung des Phasendiagramms ist in diesem Kompositionsbereich eine Phasenkoexistenz zwischen CuGaSe2 und Kupferseleniden (Cu_xSe) Z11 erwarten. Die naßchemische Nachbehandlung der Cu-reich präparierten Epitaxieschichten mittels wässriger KCN-Lösung weist auf die Entfernung eines Cu_xSe-Oberflächenfilms hin. So wird zum einen ein Rückgang des Cu-Anteils an der integralen Komposition (siehe Abschnitt 6.4.1.1, Abb. 6.15) sowie eine Abnahme der Leitfähigkeit beobachtet (folgender Abschnitt). Die Inseln selbst lassen sich jedoch nicht durch diese KCN-Behandlung entfernen. Die Ausbildung der Wachstumsinseln scheint daher auf der Seite Cu-reicher Kompositionen (Cu/Ga > 1)durch die Entstehung von Kupferseleniden zu Wachstumsbeginn verursacht zu werden, die sowohl als Nukleationskeime als auch als Flußmittel [146] dienen. Die Inseln an der Oberfläche der Schichten bestehen jedoch nicht aus binären Cu_xSe-Verbindungen, die mit Hilfe eines KCN-Ätzschritts entfernt werden können.

Auf der Seite Ga-reicher Kompositionen (Cu/Ga < 1) steigt die Oberflächenrauhigkeit allmählich an (Cu/Ga = 0.7), bis schließlich aufgrund der hohen Stöchiometrieabweichungen kein epitaktisches Schichtwachstum mehr beobachtet wird (Cu/Ga = 0.42). Die beobachteten scharfkantigen, schmalen Kristallite wurden auch bei polykristallinen Dünnfilmen mit Ga-reicher Komposition gefunden [57].

Abb. 5.8: SEM- Bilder der Oberflächenmorphologien von nominell 400 nm dicken Cu_xGa_ySe₂/GaAs(001)-Schichten unterschiedlicher integraler Komposition (vgl. Abschnitt 4.4.2). Für jedes Cu/Ga-Verhältnis sind je zwei Aufnahmen mit unterschiedlicher Vergrößerung abgebildet; die Maßstäbe sind unter den Aufnahmen angegeben.

5.2.2 Elektrische Transporteigenschaften

Die Charakterisierung elektrischer Transporteigenschaften der Epitaxieschichten erfolgte mit Hilfe der Vierpunktmethode nach van der Pauw [147]. Als Kontaktmaterial wurde Molybdän verwendet, das als Punktkontaktstruktur durch eine Maske aufgesputtert wurde.

Alle in dieser Arbeit untersuchten Cu_xGa_y-Se₂/GaAs(001)-Epitaxieschichten waren pleitend. Die bei Raumtemperatur bestimmten Leitfähigkeiten zeigen eine starke Abhängigkeit von der Komposition. In Abb. 5.9 sind die an Epitaxieschichten ermittelten Meßdaten als Funktion der Zusammensetzung dargestellt. Das Cu/Ga-Verhältnis wurde aus integralen EDX-Messungen, d. h. über ternäre Chalkopyritphase und etwaige Sekundärphasen mittelnd (vgl. Abschnitt 4.4.2), bestimmt. Auf der Seite Cu-reicher Kompositionen ist die Leitfähigkeit um etwa drei Größenordnungen höher als für quasistöchiometrische Schichten. Es werden Nettoladungsträgerkonzentrationen um p = 10^{18} cm^{-3} gemessen, gegenüber $p = 10^{15}$ - 10^{16} cm⁻³ im quasi-stöchiometrischen Fall. Dieses Verhalten wurde für polykristalline Dünnschichten ebenfalls beobachtet [148] und auf die Bildung von Cu_xSe zurückgeführt. Die binäre Verbindung Cu₂Se ist z. B. ein Halbleiter mit einer Bandlücke von etwa 1 eV und hohen Raumtemperatur-Leitfähigkeiten und -Nettolöcherkonzentrationen von typisch $\sigma = 10^3 (\Omega \text{cm})^{-1}$ und $p = 10^{20} \text{ cm}^{-3}$ [149].

Auch bei den hier untersuchten Epitaxieschichten führt somit die Segregation von Cu_xSe im Fall Cu-reicher Wachstumsbedingungen zur Ausbildung eines hochleitfähigen Films an der Oberfläche. Dieser läßt sich durch Ätzen in Kaliumcyanid-Lösung entfernen. Die zurückbleibende Schicht ist dann im Rahmen der Meßgenauigkeit der

Abb. 5.9: Leitfähigkeiten von $Cu_xGa_ySe_2/-GaAs(001)$ -Epitaxieschichten in Abhängigkeit von der Zusammensetzung (Cu/Ga-Verhältnis der integralen Komposition). Die Messungen wurden bei Raumtemperatur durchgeführt.

Abb. 5.10: Leitfähigkeiten, Nettoladungsträgerkonzentrationen und Beweglichkeiten aus Hall-Messungen (300 K) an ungeätzten (geschlossene Symbole) und KCN-geätzten (offene Symbole) Epitaxieschichten. Alle Meßdaten sind über dem Cu/Ga-Verhältnis der ungeätzten Schichten ("as grown") aufgetragen.

EDX-Analyse quasi-stöchiometrisch. Abb. 5.10 zeigt Leitfähigkeiten, Nettoladungsträgerkonzentrationen und Beweglichkeiten aus Hall-Messungen an Epitaxieschichten vor und nach dem KCN-Ätzschritt. Alle Meßdaten sind über dem Cu/Ga-Verhältnis der ungeätzten Proben ("as grown") aufgetragen, um den Einfluß der naßchemischen Behandlung auf die elektrischen Eigenschaften zu verdeutlichen. Nach Entfernen des Cu_xSe-Films ist ein deutlicher Rückgang der Leitfähigkeit zu beobachten. Die Nettoladungsträgerkonzentration sinkt um 2 bis 3 Größenordnungen auf Werte von etwa 10¹⁶ cm⁻³. Die Hallbeweglichkeiten der Löcher in den hier untersuchten quasi-stöchiometrischen Schichten liegen typischerweise bei 250 cm²/Vs. Die in der Literatur erwähnten Beweglichkeiten für CuGaSe2Einkristalle liegen im Bereich von 40-60 cm²/Vs [43,44,47]. Auf der Seite Gareicher Kompositionen sinkt die Leitfähigkeit gegenüber der quasi-stöchiometrischer Schichten deutlich, so beispielsweise um etwa 2 Größenordnungen bei einem Cu/Ga-Verhältnis von 0.9 (Abb. 5.9). Ebenso sinkt die Beweglichkeit bereits bei geringen Abweichungen der Komposition in Richtung Ga-Überschusses; eines schon bei Cu/Ga = 0.95 geht die Löcherbeweglichkeit um etwa eine Größenordnung zurück. Wie in Kapitel 6.5 anhand der kompositionsabhängigen PL-Merkmale gezeigt wird, ist der Rückgang von Leitfähigkeit und Hall-Beweglichkeit mit einer Zunahme des Kompensationsgrades in Ga-reichen Schichten korreliert.

Zusammenfassung von Kapitel 5

Quasi-stöchiometrische Schichten

- CuGaSe₂ wächst auf GaAs(001) c[001]-orientiert, d. h. die c-Achse des tetragonalen Chalkopyrit-Kristallgitters steht senkrecht zur Wachstumsoberfläche.
- Mittels elektronenmikroskopischer Untersuchungsmethoden, wie Electron-Channeling, Transmissionselektronenmikroskopie und -beugung konnte die epitaktische Qualität der CuGaSe₂/GaAs-Schichten nachgewiesen werden. Hochauflösende TEM-Querschnittsaufnahmen der Schicht-Substrat-Grenzfläche zeigen das epitaktische Anwachsen von CuGaSe₂ auf GaAs unter Ausbildung von Stufenversetzungen. Die Aufnahmen aus Messungen der Transmissionselektronenbeugung (TED) zeigen die für die Chalkopyritordnung des Kationenuntergitters charakteristischen Reflexe und weisen auf eine geringe Dichte an Kristallbaufehlern hin.
- Die Fehlanpassungen der Gitterkonstanten und der thermischen Ausdehnungskoeffizienten bei der Heteroepitaxie von CuGaSe₂ auf GaAs(001)-Substraten verursachen eine biaxiale Zugverspannung in der Schichtebene. Infolgedessen kommt es zu einer Kompression des Kristallgitters entlang der c-Achse, welche mit zunehmender Schichtdicke abnimmt.

Kompositionsabhängige Merkmale

- Die Oberflächenmorphologien mit der geringsten mittleren Rauhigkeit von 3 nm werden für quasi-stöchiometrische etwas Ga-reiche Kompositionen (Cu/Ga = 0.95) beobachtet.
- Alle in dieser Arbeit untersuchten Cu_xGa_ySe₂/GaAs(001)-Epitaxieschichten waren pleitend. Auf der Seite Cu-reicher Kompositionen ist die Leitfähigkeit durch die Segregation von Cu_xSe um 2 bis 3 Größenordnungen gegenüber der von quasi-stöchiometrischen Schichten erhöht. Typische Ladungsträgerkonzentrationen und Hall-Beweglichkeiten quasi-stöchiometrischer Epitaxieschichten liegen bei 10¹⁶ cm⁻³ und 250 cm²/Vs. Mit zunehmendem Ga-Gehalt geht die Leitfähigkeit zurück.
- Durch die hohe erreichte Kristallqualität der quasi-stöchiometrischen CuGaSe₂/-GaAs(001)-Epitaxieschichten und die gezielte Variation der Zusammensetzung wurde die Grundlage für systematische, kompositionsabhängige Photolumineszenz-Untersuchungen geschaffen, die im folgenden Kapitel dargestellt werden.