
Chapter 6

Examples

Introductory comments. After introducing the model–data–overlap in chap-

ter 2, illustrating the approach in chapter 4 and discussing computational aspects

in chapter 5, it is now time to show how the concepts works for applications.

In the first section, the linear initial value problems (2.7) and (2.8) from chap-

ter 2 are re–used. In addition to there, also the linear overlap functional FL is

calculated and compared to the exact case FO. In the second section, biokinetic

models are under consideration. It is shown how one can discriminate biokinetic

models. The section afterwards shows how biokinetic models can be included

into pharmocokinetic models and demonstrates how such models can be vali-

dated by the model–data–overlap. The chapter is closed by showing how the

TRAIL algorithm can be used for calculating the model variability distribution

for a Michael–Menten–model.

The difference between the four sections concerns the methods used for calcu-

lating the model variability distribution. The first section deals with a linear

approximation method, the second and third one with an ”exact” and the fourth

one shows a method that is based on a linear approximation with a nonlinear

correction afterwards, namely the TRAIL algorithm.

6.1 Linear Initial Value Problems

At this point, the introductory example is reactivated. The prominent member

of the class (2.1), namely linear initial value problems,

d

d t
y(t, θ) = J(θ)y(t) + b(θ) with y(0) = y0, (6.1)
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is used for calculating the linear and exact overlap FL and FO, respectively.

As already mentioned, the linear one can be calculated analytically, since the

trajectory can be written as

Φt y0 = exp (tJ(θ))y0 + J(θ)−1 (exp (tJ(θ)) − 1)b(θ). (6.2)

and therefore the derivative with respect to the parameters θ can be calculated.

For reasons of better readability, the dash ’ shall denote the partial derivative

with respect to θ and the parameter dependency with respect to θ is omitted.

Then the flow derivative, needed for ΣM(θ,∆θ2, t) in (5.4), can be written as

∂
∂θ

Φt
θy0 = exp (tJ)′ y0 − J−1J′J−1 exp (tJ)b + J−1J′J−1 b

+ J−1 exp (tJ)′ b + J−1 exp (tJ)b′ − J−1 b′.
(6.3)

Example. The two possible candidate, the two–dimensional models M1
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are to be discriminated. Both models coincide for θ = 1 (see figure 6.1). The

same data is used as in chapter 2.
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Figure 6.1: Model and data plot: For θ = 1, the trajectories of M1 and M2 coincide. These
trajectory values were taken to produce the data by perturbing them. The data is symbolized
by points with attached error bar.
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The data is produced artificially by taking trajectory values for θ = 1 at

some instances tk and perturbing them. The variance for perturbing at

each tk was set to be proportional to the variance of the model variability

ΣM(θ = 1,∆θ = 0.15, t = tk) of model 1 at each point tk. On the other hand,

the experimenter assumes the data variances for the x- and y-component to be

σ2
x(t) = σ2

x = 0.25 and σ2
y(t) = σ2

y = 0.75, respectively.

After this generation of data, the target functionals FL from (5.5) as well as

FR from (3.13) were numerically optimized with respect to θL, ∆ θL and θR,

respectively.

θL ∆θL FL in x FL in y FL total

M1 0.934 0.367 83.1 % 72.3 % 77.7 %

M2 0.744 1.433 58.4 % 74.4 % 66.4 %

θR σR ci gof. FR
M1 0.910 0.036 0.073 0.969 0.196

M2 0.913 0.024 0.048 0.974 0.178

Table 6.1: Linear overlap parameter estimation by FL and residual parameter estimation FR
for model M1 and M2. (notation: σR = standard error, ci = half length of the 95 % confidence
interval, gof. = goodness of fit),

The linear overlap optimization by FL favors model M1 over M2. The results show

significantly different estimated values of θL and ∆θL for both models. Whereas

θL for model M1 is reasonably close to 1, the parameter used to produce the data,

θL for model M2 differs significantly shows a very high parameter variability ∆θL
in addition.

In contrast, the residual case leads to a different conclusion. For both models,

the estimated parameters θR are close together, the residual FR as well as the

goodness of fit (gof.) indicate almost the same quality of fit. Only the standard

error1 σR distinguishes the parameter θR in M2 to be estimated more precisely.

However, in neither case, the 95%-confidence interval does include the parameter

θ = 1, originally used for perturbing the data. At last, the example shows the

different informational value of the parameter variability ∆θL and the standard

error σR. In the overlap concept, the model variability ∆θL for θL is smaller for

1The standard errors are the corresponding diagonal entries of
(
JT Σ−1

D J
)−1

defined in (3.6).
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model M1, whereas the relation is changed in the residual framework, where the

standard error σR is smaller for θR of model M2.

The concept of model–data–fitting for the presented example is illustrated in fig-
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Figure 6.2: Optimal overlap of data error (symbolized by error bars) and linear model variability
(symbolized by the 95%-confidence strips) for model M1 (top two pictures) and M2 (bottom).

ure 6.2. In both components, the qualitative course of the model variability strips

is different. For component x of model M1 and component y of model M2 the

parameter sensitivity vanishes at some instances, whereas for other components,

the strips are diverging. The extremely diverging strips for the x-component of

model M2 are ”responsible” for the worse overlap compared to M1.

Comparison linear and non–linear propagation

Previously it was argued that in complex and high–dimensional application set-

ting the requirements the total on computing time prevents us from computing

the exact parameter distribution propagation for arbitrary models. This consid-

eration has led us to the linear overlap functional FL of (5.5). For very small

systems, however, like model M1 and M2, it is justifiable to calculate FO instead
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of FL by sampling the parameter distribution π, propagating the trajectories and

re-assembling the model variability distribution Mt as it is described in (2.2).

If one takes the parameter θL and its variability ∆θL from table 6.1, the resulting

overlap FO is – as expected – different to the one of FL. As shown in table 6.2,

in some cases the exact propagation yields a larger, in other ones a smaller value

FO compared to the approximation FL.

in x in y total

M1 for FL 83.1 % 72.3 % 77.7 %

M1 for FO 79.6 % 73.1 % 76.7 %

M2 for FL 58.4 % 74.4 % 66.4 %

M2 for FO 47.8 % 61.7 % 54.8 %

Table 6.2: Comparison of linear overlap FL and non-linear overlap FO using the optimal
parameters for FL in table 6.1.

To understand the reasons of these deviations, one can for example compare the

standard deviations of the linearly and nonlinearly propagated model variabil-

ity Mt as shown in figure 6.3. In some cases the deviations almost coincide

(c.f. y-component of M1), are moderately diverging (c.f. x-component of M2 or

x-component of M1) or structurally differ (c.f. y-component of M2).
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Figure 6.3: Comparison of the standard deviations of the linear and nonlinear model variability
distribution for the models M1 and M2.

Not only the standard deviations can differ, but also the model variability distri-

bution M can become highly non-normal. The normal property, however, was

essential in the construction of FL. In some cases, the normal property of the

distribution is maintained as shown in figure 6.4.
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Figure 6.4: Example where non-linearly propagated model variability distribution can be re-
garded as normal. Two examples for the state space in y for model M1 (left) and M2 (right)
are shown.

In other ones, the nonlinearly propagated model variability distributions M is

highly non-normal, as exemplarily seen in figure 6.5. The documented effects
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Figure 6.5: Examples where the non-linearly propagated model variability distribution cannot
be regarded as normal.

result in different overlaps as shown in figure 6.6. Good coherence can be seen



92 6. Examples

where, for example, the standard deviations almost coincide (c.f. y-component

of M1); strong deviation for qualitative and quantitative deviations (c.f. y-

component of M2) may result in deviating overlap numbers. Non–surprisingly,
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Figure 6.6: Time course of the overlap for M1 and M2 and each component: The linear overlap
FL and the ”exact” overlap FO are shown.

the different propagation behavior results in different optimal hyperparameters.

The resulting optimal parameters for FL and FO are documented in table 6.3.

The optimal hyperparameters can differ significantly (see θ for M2). Neverthe-

less, the qualitative result is the same: the model M1 is discriminated to be the

appropriate one.
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θL ∆θL FL in x FL in y FL total

M1 0.934 0.367 83.1 % 72.3 % 77.7 %

M1 0.916 0.312 80.0 % 73.2 % 76.8 %

θO ∆θO FO in x FO in y FO total

θL ∆θL FL in x FL in y FL total

M2 0.744 1.433 58.4 % 74.4 % 66.4 %

M2 0.978 0.540 47.9 % 74.2 % 61.3 %

θO ∆θO FO in x FO in y FO total

Table 6.3: Comparison of PE results of linear overlap FL and ”exact” overlap FO for models
M1 and M2.

6.2 Biokinetic models

Modelling problems. Biokinetic models describe chemical reactions per-

formed by and between microorganisms like bacteria (c.f. [24]). They represent

parts of the metabolism processes within an organic cell. Presently, one is aware

of several thousands of subprocesses within the organism. The numbers range

from 3000 to 4000. Therefore, macroscopic biokinetic models are difficult to

determine. Even worse due to the complexity of the underlaying process, one

has to anticipate some model–data–deviation and therefore some model uncer-

tainty. Further, if parameters in biokinetic models can somehow be associated

with metabolism rates, then they have to be assumed to distributed, as different

individuals show different behaviors and therefore represent an inhomogeneous

sample. Therefore, the application of the model–data–overlap is suitable.

Models. The overlap concept will now be applied to discriminating biokinetic

models. A simple example for a dynamical system modelling such biological

processes is the following example

d

dt
X(t) = µ(x(t), S(t)) · X(t) − kd · X(t) (6.6)

d

dt
S(t) = −µ(X(t), S(t))

yxs

· X(t) − ms · X(t). (6.7)
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S denotes the substrate that is transformed into biomass X, where S(t) and X(t)

denote the associated concentrations. The rate of the transformation process is

described by the kinetic µ(X,S). The following three types of kinetics

µ(X(t), S(t)) = µmax · S(t)r (6.8)

µ(X(t), S(t)) = µmax · S(t)

ks + S(t)
(6.9)

µ(X(t), S(t)) = µmax · S(t)

ks · X(t) + S(t)
(6.10)

are to be discriminated. The kinetics given in (6.9) and (6.10) are known as

the Monod and Contois kinetics, respectively (c.f. [24]). The third candidate

in (6.8), also referred to as mass action kinetic, does show a significantly different

behavior for example asymptotically one observes S → ∞. It therefore can be

considered as a certain case of a chemically inappropriate model. To complete the

introduction of the kinetics, it shall be mentioned that the constant µmax denotes

the maximum growth rate and YX/S

YX/S =
mass of cells formed

mass of substrate consumed

transformation rate of substance into biomass. Other growth kinetics could be

used for discrimination ([24]) like

µ = µmax · 1

1 + kS · S(t)r
(6.11)

µ = µmax ·
(

1 − e
−S(t)

kS

)
(6.12)

µ = µmax · S(t)

kS + S(t) + S(t)2

kI

(6.13)

µ = µmax · 1

1 + kS · S(t)−r
(6.14)

the Tessier kinetics in (6.12), the Moser kinetics in 6.14 or the substrate inhibition

kinetics in (6.13) or (6.11). They are mostly an extension or approximation of the

three candidates mentioned above and are therefore omitted for a better lucidity.

As seen in figure 6.7, they show many of them show a similar growth scheme.

Linear overlap

Presto. As mentioned in chapter 5.1, the linear overlap is calculated with the

program Presto Kinetics. The program has been proven itself very successful
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Figure 6.7: Four possible candidate biokinetics

in parameter estimation and model exploration for chemical systems in both the

research and application context (c.f. [27, 51, 125, 126, 235]).

Even though the Jacobians JF in the Gauss-Newton-steps (5.8), are relatively

small for our investigated models, namely of dimension 10 × 28 corresponding

to the number of parameters (including their variabilities) times the numbers of

measured data for each dimension, the problem are already mentioned correla-

tions in the matrix.

For the overlap optimization, prepared data was used again, which has been gen-

erated by means of the Monod kinetics in (6.9). The data is shown in figure 6.8.

At the beginning, a number of parameter sets was drawn from an originally given

parameter distribution π, also shown in the last line of table 6.4, corresponding

to the number of data points needed. Then for each measurement point tk, a

trajectory was calculated, using each time a different drawn sets of parameters

and its value at tk was taken. The experimenter, on the other hand, was using a

constant measurement error again.

For the generated data, the linear overlap FL was optimized and the parame-

ters µmax, kd, yxs, ms and r as well as their variabilities were estimated. The

results of the parameter estimation for the linear overlap optimization are shown

in table 6.4. Additionally, a classical residual based parameter estimation with

respect to FR was conducted.
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Figure 6.8: Monod kinetics with the prepared data. The substrate concentration S(t) shown
in the decreasing, the biomass concentration X(t) in the increasing trajectory.

model entity µmax ks/r yxs ms kd

(6.8) parameter θL 0.331 0.999 0.573 0.254 1.213 · 10−2

variability ∆θL 0.076 0.150 0.094 0.648 1.132 · 10−5

parameter θR 0.633 0.397 0.564 1.345 2.179 · 10−4

standard error σR 0.181 0.239 0.222 0.393 1.014 · 10−3

(6.9) parameter θL 1.386 0.737 0.573 0.091 6.102 · 10−2

variability ∆θL 0.203 0.084 0.101 0.048 3.030 · 10−3

parameter θR 1.262 0.793 0.613 0.377 9.208 · 10−6

standard error σR 0.262 0.639 0.125 0.278 1.236 · 10−4

(6.10) parameter θL 2.028 0.981 0.525 0.059 9.872 · 10−2

variability ∆θL 0.421 0.001 0.222 0.003 1.145 · 10−2

parameter θR 1.560 0.902 0.819 0.791 1.106 · 10−4

standard error σR 0.394 0.779 0.155 0.192 1.334 · 10−3

original parameter θ0 1.400 0.730 0.600 0.090 6.000 · 10−2

variability ∆θ0 0.100 0.080 0.100 0.010 1.000 · 10−2

Table 6.4: Linear overlap parameter estimation with respect to . FL and classical parameter
estimation with respect to. FR for biokinetics (6.8), (6.9) and (6.10).

As expected, the parameters θL including their variabilities ∆θL, were best es-

timated for the Monod kinetics, the ones for Contois stayed reasonable close,

whereas the one for (6.8) differ in magnitude compared to the parameters used

to generate the data. The estimation methods by FL on the one and by FR
on the other also allow for different interpretations in the parameters. For the
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Monod kinetics, the parameter kd shows an influence in the overlap setting, but

was estimated lower by the residuum by the factor 1000.

In table 6.5, the targets functionals for the parameters estimated above are doc-

umented.

model FL FO residuum

(6.8) in X 68.97 % 62.64 % FR 0.144

in S 58.15 % 58.68 % avg.traj. 4.578

total 63.56 % 60.66 %

(6.9) in X 77.99 % 68.15 % FR 0.159

in S 66.96 % 55.87 % avg.traj. 0.275

total 72.47 % 62.02 %

(6.10) in X 31.71 % 19.76 % FR 0.144

in S 38.45 % 51.52 % avg.traj. 1.329

total 35.09 % 35.64 %

Table 6.5: Linear overlap parameter estimation with respect to. FL and classical parameter
estimation with respect to. FR for the three kinetics. The values for FO were calculated
for the optimized parameters by FL of table 6.4 to document the deviation between linear and
nonlinear propagation. The residuum in the avg.traj. (left row) is the squared distance between
the mean value of the data distribution and the average trajectory of (4.9) in the overlap setting.

Just knowing the values of table 6.5, the experimenter has to discriminate between

the three model candidate. By merely looking at the classical residuum FR, no

model can be favored. However, according to the overlap information FL, the

Contois kinetic of (6.10) ought to be rejected. For the remaining two candidates,

the squared distance between the mean values of the data distribution and the

average trajectory of (4.9), abbreviated table 6.5 by avg.traj., favors the Monod

kinetics (6.9). The average trajectory is closer to the data for Monod than for

the other one. Combining criteria from the residual on the one and the overlap

framework on the other, one is able to discriminate the given model candidates.

Exact and linear. Table 6.5 also documents again the differences between

a linear FL and ”exact” FO overlap calculation. Most certainly, one wants to

get the exact overlap results. For small example like the ones used here, the

computational effort for discriminating models by the exact overlap is possible.

Due to the computational effort for complex systems, however, only the linear

overlap is sensible to consider. In [227] such complex systems are documented for

the model–data–overlap.
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Optimization. The computations for the example have shown, that it is sensi-

ble to consider a target functional of the form (5.10) first. Then with the help of

the estimated hyperparameters for FL, the optimization of FO shall be started.

By this consecutive procedure, the iteration steps within the optimization pro-

cess is shortened significantly and avoids time consuming calculations of the full

overlap FO.

6.3 Pharmacokinetics

Returning to an already previously mentioned aspect: Biokinetic models con-

tribute to describe the complex metabolism systems (c.f. [101, 181]). A com-

putational discipline that has emerged over the past years and is referred to as

pharmacokinetics. There, the temporal course of concentration of agents and

their degradation products in the body’s tissue and fluids is investigated. These

interaction dictate the applicability of a drug. In the processes of drug design,

these in-silico (computer based) investigation therefore become more and more

important in order to reduce unnecessary experiment with living beings.

One can consider the following compartment model in order to describe the a

metabolism, as for example used by Abraham et al. in [1, 2] as seen in fig-

ure 6.9.
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Figure 6.9: PBPK compartment model according to [1, 2]

Within their investigations, questions of parameter sensitivity are very impor-

tant, when considering a population of people with individual inner physiological

”parameters”. A common procedure is to understand the processes for certain

patients and then transfer the results to different class of people, like for example

the transfer from an adult to a newborn child, where it is much more dangerous

to conduct experiments. Therefore, one has to understand the performance of the

model not only for one individual, but for an entire population. Therefore, one

has to incorporate parameter sensitivity, for example by means of the overlap.

Further, applying the overlap leads to a different averaging philosophy, which is a

consequence of the optimization scheme shown in figure 4.4. In many settings, the

initial parameters are averaged first and then propagated by the kinetics. The re-

verse is done within the overlap concept. For that reason, Bayesian approach are

so popular within pharmacokinetics. Nevertheless, the points concerning model
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uncertainty, as mentioned in section 4.1, can be raised again and the overlap is

favored here.

In the following example2, an adults (73 kg) was exposed to styrene (VOC) for 4

hours. Then the saturable metabolism in the liver was investigated. Two different

models are under consideration: First, a metabolism according to Csanady [63],

abbreviated by C and second a metabolism according to Ramsey and Ander-

son [196], abbreviated by R. Both models also suggest physiological parameters

that were determined beforehand and show different parameter sensitivities.
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Figure 6.10: Metabolism models and their sensitivities according to Csanady [63] as well as
Ramsey and Anderson [196]

For reasons of data disclosure, the following data are slightly modified. The

arterial concentration of styrene was measured hypothetical 15 times at t =

1, 2, 3.6, 5 h.
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Figure 6.11: Propagated densities

2Also shown on the poster: ”A new approach for incorporating variability into model dis-
crimination” by Wilhelm Huisinga, Illia Horenko and Sönke Lorenz
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The data can be fitted equally well to both models in the residual framework.

However, when looking at the parameter sensitivity and the resulting model vari-

ability, one sees that at some time points, C is more suitable (for example t = 1)

and at other points, R should be preferred (for example t = 3.6 h in figure 9).

Calculating the model variability for the entire model as seen in figure 9,
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Figure 6.12: Data and model variability

a gets a model–data–overlap for model C of 0.84 and for R = 0.51. Therefore,

model C would be preferred.
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Figure 6.13: Propagated densities
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6.4 Michaelis-Menten-Kinetics

In the following section, the TRAIL algorithm shall be illustrated for the

Michaelis-Menten-Kinetics, which was introduced by Michaelis and Menten

in 1913 (c.f. [24, 85, 175]) and is a key component in numerous biochemical ex-

periments and describes the conversion of substrate S to product P catalyzed

by some enzyme E. The reaction takes part in two consecutive part-reactions.

First, substrate S and enzyme E form an enzyme-substrate complex ES. Then,

that complex ES decomposes irreversibly into the product P and the enzyme E.

E + S
k+
1−→←−

k−
1

ES
k+
2−→ P + E (6.15)

Therefore, the total concentration of the enzyme [E]T as well as of the substrate

[S]T are conserved with:

[E]T = [E] + [ES] (6.16)

[S]T = [S] + [ES] + [P ] . (6.17)

Since the second reaction is irreversible, only kinetic equations

d

dt
[S] = −k+

1 [E]T [S] +
(
k−

1 + k+
1 [S]

)
[ES] (6.18)

d

dt
[ES] = k+

1 [E]T [S] − (
k−

1 + k+
2 + k+

1 [S]
)
[ES] (6.19)

with the constants k−
1 , k+

1 , k+
2 as well as [E]T are needed to mathematically

describe the problem.

For a negligible ratio of total concentration of enzyme to substrate, one can derive

the Monod kinetic as a limit (c.f. [85]).

The previously described Michaelis-Menten-kinetics is now used to illustrate and

compare the extended TRAIL algorithm. By introducing normally distributed

initial concentration values for the substrate [S] and the complex [ES]

[S] (0) ∼ N
(

4,
1√
10

)
, [ES] (0) ∼ N

(
1,

1√
6

)

and the reaction parameters k+
1 = 0.5, k−

1 = 0.3, k+
2 = 2, [E]T = 3 the problem

suits the setting in (5.18). Three numerical methods have been applied to solve

the resulting partial differential equation:

– Finite element method (FEM) with a uniform 200 × 200−grid
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– Path Monte–Carlo–sampling of the initial values and trajectory propagation

(650.000 trajectories)

– Modified TRAIL–algorithm

All three methods produced almost identical results as it can be seen in figure 6.14.
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Figure 6.14: Propagated densities at t = 0.1 s and t = 1.0 s

Although all the three methods produce almost identical results, the effort to

compute them differs drastically. Whereas the TRAIL algorithm was finished

within 2 minutes, the other more traditional methods calculated the appropriate

results within some hours. Thus, the TRAIL algorithm has been proven to be a

time efficient alternative to the traditional methods, especially when increasing

the number of state space variables.

Numerical experiments revisited. The Michaelis-Menten-kinetic is used

now to illustrate the density propagation for the extended problem. The ini-
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tial values for [S] and [ES] as well as the four parameters k−
1 , k+

1 , k+
2 as well as

[E]T are now assumed to be normally distributed with

[S] (0) ∼ N
(

8,
1√
20

)
, [ES] (0) ∼ N

(
2,

1√
20

)
,

k−
1 ∼ N

(
0.5,

1√
20

)
, k+

1 ∼ N
(

0.3,
1√
20

)
,

k+
2 ∼ N

(
0.7,

1√
20

)
and [E]T ∼ N

(
2,

1√
20

)
.

By incorporating the four parameters, the problems now becomes six dimen-

sional. Therefore, the finite element method has to be rejected as a validation

method, only the Monte Carlo simulation remains. The result of the TRAIL and

the Monte Carlo simulation for the given setting is shown in figure 6.15.
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Figure 6.15: Propagated densities at t = 0.2 s and 0.5 s

The TRAIL algorithm’s results correspond to the Monte Carlo results. However,
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the approximation quality at the transition from the bulk to the quantiles of the

distribution did increased in comparison to the two-dimensional example at the

beginning of this section. However, the computation time difference did remain.

Whereas the Monte carlo algorithm was calculating several hours, it took the

TRAIL algorithm a few minutes to calculate the propagated distribution.
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Figure 6.16: Adaptivity in time and space

Conclusion. In this section, an extension of the TRAIL algorithm was derived

and illustrated. This allowed us to implement a fully adaptive particle method

where the number of involved particles is controlled by a given tolerance. Com-

pared to frequently used Monte–Carlo–methods, a much shorter computation

time was needed to conduct nonlinear propagation and enables to control its

quality. A very important feature of TRAIL is that the numerical effort scales

with the number of particles used and is independent of the problem’s dimension.

However, problems involving distribution functions with a large degree of spatio-

temporal details tend to increase the number of needed Gaussian distributions

significantly and consequently increase the numerical effort. Moreover for highly

nonlinear problems with multiple time scales, the Gaussian shape matrix’s stiff-

ness deteriorates the prediction quality (c.f. 5.26), which results in a higher com-

putational effort to compensate this. Both of these problems are connected to the

choice of Gaussians as basis functions. However, the TRAIL–algorithm is not re-

stricted to Gaussian particles, but can rather be used for any set of distributions,

assuming an reliable analog of the linear predictor (c.f. (5.27) – (5.29)) exists.


