
Chapter 5

Algorithmic challenges

Introductory comments. For model discrimination of dynamical systems as

introduced in (2.1), the implementation of the model–data–overlap consists out

of two major parts: First the calculation of the model variability M, which

is mainly a density propagation problem, and second, the optimization of the

overlap functional FO itself.

Optimization. The biggest challenge within the optimization lies in the num-

ber of entities that are considered. For the optimization within classical param-

eter estimation, the parameters themselves have to be found. After turning to

distributed parameters, one now has to find the optimal distribution’s hyperpa-

rameters. For normally distributed parameters, one now has to optimizes the

mean and the variance, which amounts to twice as many entities to estimate

compared to the classical case.

Propagation. The second problem concerns the model variability propagation

scheme. Three different propagation schemes are suggested in this chapter. The

first approach (section 5.1) linearly approximates the propagation of model vari-

ability, the second one (section 5.2) suggests sampling the initial parameter dis-

tribution and propagate the bundle of trajectories, and the third one (section 5.3)

is a sophisticated non–linear propagation scheme that combines a stepwise linear

propagation with error-control that compensates the loss of nonlinearity. For the

second and third propagation scheme, the choice of the optimization depends on

the considered application. The first approach can be combined with a Gauss–

Newton algorithm.

General comments. The time propagation of densities, as needed to calculate

the model variability distribution, surfaces in many applications and translates
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into numerous settings. For ordinary differential equations like (2.1), the problem

is translated into to differential equations with stationary parameter distribution

functions and is referred to as random differential equations.

Theoretical and numerical investigations on this topic in past decades can be

broadly divided in three groups of approaches. The first group is represented by

Monte Carlo methods based on the sampling of the parameter space and subse-

quent solution of the differential equations for each of the sampled parameters

(c.f. [225], section 5.2). While it is a method of choice for problems with many

parameters and degrees of freedom in order to avoid the ”curse of dimension”,

the questions of numerical accuracy, applicability and adaptivity in higher di-

mensional cases still remain unclear. The second group of methods is known as

the stochastic finite elements (SFEMs) approach, for example, Galerkin methods

(c.f. [133, 140, 168]). These methods are based on the assumption that the over-

all statistical response of the system under consideration can be represented as

a linear combination of orthogonal basis functions. However all these methods

were designed for predominantly problems with small parametric variations and

small number of parameters under consideration. These approaches cannot be

applied to higher dimensional problems with different time and length scales as it

is typical for reaction kinetics systems. The third group is represented by moment

equation based methods, where the statistical moments of the system response

distributions are derived from the solutions of deterministic ordinary differential

equations. However, only simple systems with few degrees of freedom have been

studied as yet.

5.1 Linear propagation

Linear Sensitivity. For complex and high dimensional systems, the calculation

of the numerous trajectories takes much computational effort. The problems

intensifies as the overlap has to be calculated several times within the optimization

procedure. As an alternative, one could consider only the linear approximation

of the model variability propagation. This means one only considers the linear

effects of a parameter perturbation. Therefore, only linear effects are incorporated

in the linear overlap FL.

In other words, one takes a look at the linear parameter sensitivity

θ0 �→ θ0 + δθ
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on the model trajectory

y(t) �→ y(t) + δy(t).

For the remainder of this section, let the parameters be normally distributed

with π ∼ N (θ0,∆θ2). The linear propagation of the parameter perturbations δθ

that later assemble the model variability Mt can be described by the sensitivity

matrix S

δy(t) = S(t; θ0) δθ, (5.1)

which is the Jacobian of the flow with respect to the parameter θ (taken compo-

nentwise)

S(t; θ0) = D Φt y0| = 0 = J(θ, t) (5.2)

and fulfills the sensitivity equation for initial value problems (2.1)

S′(t; θ0) =
∂

∂y
f(y(t),θ0)S(t; θ0) +

∂

∂θ
f(y(t), θ0)| = 0

with S(t0,θ0) = 0 (c.f. [75]).

Since the initial parameter distribution is supposed to be normal and is propa-

gated linearly, the gained model variability distribution is therefore normal also

(c.f. [14]). Consequently, it suffices to propagate its mean and its standard devi-

ation. In the implementation to be presented, the mean is exactly propagated by

the trajectory Φt y0, while the variance-covariance matrix of the model variability

distribution is given by

ΣM(θ,∆θ, t) = J(θ, t)∆θ2 J(θ, t)T . (5.3)

The variance of the ith dimension of the model variability at time t is the ith

diagonal entry of the variance-covariance matrix in (5.3) and is denoted by

Σi(θ,∆θ2, t)2. They are calculated by using (5.3) and (4.4)

Σi(θ,∆θ, t)2 =

p∑
j=1

(
∂

∂θj

(
Φt

θy0

)
i

)2

∆θ2
j

∣∣∣∣∣
θj=θj0

. (5.4)

Consequently, the linear overlap functional at time t is given by

FL(Φt
θy0,ΣM(θ,∆θ, t), d(t), σ(t)) =

D∑
i=1

√
2 σi(t) Σi(θ,∆θ, t)

σi(t)2 + Σi(θ,∆θ, t)2
exp

{
−1

2

(Φt
θy0 − di(t))

2

σi(t)2 + Σi(θ,∆θ, t)2

}
. (5.5)

The linear overlap FL in (5.5) is calculated in each direction of the state space,

since only there information about the data is available. Therefore, the off-

diagonal entries of ΣM are not considered.
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Algorithmic Realization. In order to apply commonly used optimization

methods, the original problem

(θL, ∆θL) = arg max
( ∗,∆ ∗)

(FL(θ∗,ΣM(θ∗, ∆θ∗, t),d(t),Σ(t))) . (5.6)

is reformulated into a minimization problem

(θL, ∆θL) = arg min
( ∗,∆ ∗)

(1 −FL(θ∗,ΣM(θ∗, ∆θ∗, t),d(t),Σ(t))) , (5.7)

which is possible as the overlap is normalized. From now on, the notation is

slightly misused: ∆θ denotes the diagonal entries of ∆θ, with ∆θ = diag (∆θ).

In principle, one could adopt very different strategies to solve this minimization

problem, f.e., stochastic techniques like simulated annealing or other approaches

to global optimization. However, the costly evaluations of FL suggest the ap-

plication of a Gauss-Newton-type minimization, more specifically a (damped)

Gauss–Newton algorithm or Levenberg–Marquardt of section 3.1 with

statistical dimension reduction (c.f. [90]). The numbers of model variability cal-

culations are significantly lower than for the stochastic methods.

The general Gauss-Newton-algorithm solves a series of linearized problems

zoptinc = arg min
inc

‖JF(z)zinc −F(z)‖2 (5.8)

with zinc being an update for znew = zold + zoptinc, JF the Jacobian an of target

function F with respect to z (c.f. [75]).

In comparison to the standard application of (damped) Gauss-Newton strategies

to residuum minimization like FLS in (3.2) or FNLS in (3.13), one faces a new

challenge: Due to the dependency of the overlap on the variances ΣM(θ,∆θ, t)

of the model, the parameter variabilities ∆θ are to be optimized simultaneously.

Consequently, (a) the dimension of the optimization problem is doubled in con-

trast to residuum optimization for the same model, (b) statistical correlations

between parameters and the associated numerical problems will be more pro-

nounced (since one has to expect correlations between a parameter θi and its

variance ∆θi), and (c) one will see that the numerical effort for the evaluation of

the Jacobian for each Gauss-Newton step increases quadratically.
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For the linear problem in (5.8), one can analytically calculated the Jacobian JL
with the notation of (2.1) and write it in a compact way

JFL = (J1,J2) (5.9)

J1 =

[
∂FL

∂Φt y0

· ∂Φt y0

∂θ
+

∂FL
∂Σ(θ, ∆θ, t)

· ∂Σ(θ, ∆θ, t)

∂θ

]
( ,∆ ,t)

J2 =

[
∂FL

∂Σ(θ, ∆θ, t)
· ∂Σ(θ, ∆θ, t)

∂∆θ

]
( ,∆ ,t)

.

One observes that this requires the evaluation of second derivatives of the flow,

since from (5.4) one gets that,

∂Σ(θ, ∆θ, t)

∂θ
=

1

Σ(θ, ∆θ, t)

p∑
j=1

(
∂

∂θj

(Φt y0)i

)(
∂2

∂θ2
j

(Φt
θy0)i

)
∆θ2

j .

This obviously will not happen if one has to deal with the residuum functional

FR instead of FL. The computational effort for evaluation of the Jacobian will

increase like p2 (with θ ∈ �p) for FL instead like p for the residuum FR. The

numerical evaluation of the derivatives involved is realized by numerical differen-

tiation as it has been implemented within PrestoTM1.

Software package. Presto is a professional software tool used within re-

search and development by many of the leading chemical and pharmaceutical

companies internationally. This software package focusses on the modelling and

dynamic simulation of arbitrary kinetic reactions. It provides general reaction

step patterns for reaction kinetics and biokinetics as well as possibilities for the

input of arbitrary ODE-systems. Therefore, Presto is the software of choice

for investigations of the kind presented herein. It contains a quite general Gauss-

Newton framework for parameter estimation for dynamical systems with damping

strategy, convergence monitor, and update strategy as given in [75, 118]. This

framework has been extended to implement and test the stochastically damped

Gauss-Newton approach to overlap optimization as presented in the following.

In order to determine the initial values θ0 and ∆θ0 of the parameters and their

variances for the Gauss-Newton iteration, one may, for example, use box search.

In the following it is assumed that there is a unique (local) maximum of FL in the

vicinity of these initial values. With this preparations, the stochastically damped

Gauss-Newton-algorithm consists of the following steps:

i) Initially set k = 0.

1Presto is a registered trademark by CiT GmbH Rastede
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ii) Compute FL(θ(k), Σ(θ(k), ∆θ(k), t), d(t), σ(t)). Compute a set of realiza-

tions of the Jacobian J = JFL at (θ(k), ∆θ(k)) by numerical differentiation.

iii) Conduct dimension reduction by means of a truncated singular value de-

composition (c.f. [90]).

iv) Compute the increment (z, ∆z) to (θ, ∆θ) by solving

J(θ(k), Σ(θ(k), ∆θ(k), t))(z, ∆z)T = FL(θ(k), Σ(θ(k), ∆θ(k), t),d(t), σ(t))

in the sense of (5.8) while possibly incorporating the dimension reduction.

v) Set

(θ(k+1), ∆θ(k+1)) = (θ(k), ∆θ(k)) + κ (z, ∆z)

with damping parameter κ. Verify monotony as reported in [118].

vi) Test convergence by means of the stopping criteria given in [74]. If not

converged, set k = k + 1 and iterate from ii) onwards.

Overlap optimization. As mentioned earlier on page 61, one is interested

in small model mean deviations. Therefore, to improve the convergence of the

optimization, one can extend the functional to

Fext = 1 −FL + αFNLS. (5.10)

The choice of α depends on the user himself. It is sensible to gradually decrease α

within the optimization scheme, so that the influence of FL dominates and FNLS

vanishes. This algorithmic scheme is also implemented.

Condition Jacobian. Before turning to the next section, a last remark on

the condition of the Jacobian with the adapted Gauss–Newton in (5.9) is nec-

essary. As the hyperparamters to optimize, namely θ and ∆θ2 do belong to

certain parameter distributions, it is likely that they are also correlated to some

extend. Therefore as mentioned before, the Gauss–Newton step within the

optimization problem becomes ill–conditioned. For some examples, it is possible

to use some truncated Gauss–Newton–method (c.f. [90, 213, 242]) to avoid an

ill-conditioned problem.

By means of a singular value decomposition (c.f. [103]), one calculates the spec-

trum of the Jacobian of (5.9). Depending on a user given threshold, one can
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eliminate some not essential direction for the optimization. If such an dimension

reduction is possible, concentrating on the essential improves the convergence

significantly (c.f. [227]).

However, not for all applications, it is possible to find a spectral gap and therefore

separate the hyperparameters into essential and non–essential ones. The follow-

ing two figure2 document the mentioned situation. In the left one, a spectrum

taken from an optimization for a polymer reaction, one can see such a gap and

find a sensible threshold. The right figure shows a biokinetic reaction, where

detecting a gap is not possible.
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Figure 5.1: Spectrum of Jacobian

The separation between essential and non–essential hyperparameters is not static.

This means, after each iteration step, different hyperparameters can be identified

as essential or non–essential.

5.2 Sampling and propagation

Sampling. As an analytical solution for the model variability Mt in (4.2) is

virtually impossible to find, one has to numerically calculate it. A very canonical

approach is to sample the parameter distribution, solve the ordinary differential

equation (2.1) for each draw of the parameter ensemble individually and reassem-

ble the density for Mt.

There are several ways to generate the ensemble of parameters. Very commonly,

the sample is drawn randomly from the distribution. Several sophisticated ran-

dom sampling methods have been developed over the last years (c.f. [156]) and

2A special thank to Elmar Diederichs for providing the figures in [211].
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are available in numerous standard software packages.

For calculating the model variability one is only interested in the approximation

quality of the distribution to perform the integration (4.1) and not in statistical

properties of the sample itself. Therefore, one could use more suitable sampling

methods than the Monte Carlo methods that only converges with N1/2. Two

alternatives are pseudo– and quasi–random numbers. The latter is of interest for

the overlap setting.

Quasi–random numbers. Quasi–random numbers are a sequence of con-

structed numbers that uniformly cover a volume. The three most commonly

used algorithms to construct this sequence were introduced by Faure in [86],

by Niederreiter in [185] and by Sobol in [218]. The ”uniformly distributed”

sequence constructed there is then transformed into the desired parameter distri-

bution. As a thumb rule literature suggest to use the quasi–random number for

problems with less than 15 to 20 dimensions. Beyond that, the ”normal” random

numbers shall be used.

Unlike in the previous section, the propagation method does not favor a specific

optimization algorithm. In many applications, some simplex optimization method

can be employ, despite knowing about the convergence problems (c.f. [148]).

Therefore, it is suggested that before starting an optimization by some simplex

method, a linear optimization of section 5.1 should be conducted prior to it in

order to gain reasonable starting values.

Before turning to the model variability propagation by the TRAIL algorithm,

the advantages and disadvantages of using the sampling method as an ”exact”

method shall be discussed.

One advantage of using parameter sampling is certainly the flexibility of the initial

distribution’s type. In comparison to the previously employed methods, one can

abandon the normal parameter distribution and choose arbitrary ones. In many

cases, also for biokinetics, a parameter is associated with a certain interpretation

that only allows positive values. This can happen if a parameter is for example

interpreted as a reaction rate. Therefore, it sensible for use a distribution with

strict positive definition values like a log–normal distribution.

Another natural advantage is that during the propagation all the effects of all

orders are considered and not only the ones of first and second order when using
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FL. Nevertheless, in order to reduce the computations effort when sampling the

parameter distribution, one has to use an efficient way to do so.

Optimization. At this point, the optimization is revisited. All sampling simu-

lation are programmed in MatlabTM are performed with quasi–random numbers

kindly contributed by Elmar Diederichs. Further, the following illustrations

and calculations are done for a log–normal parameter distribution (c.f. [83]). The

density is given by

f(x) =
1

xs
√

2π
exp

{
−1

2

(
log x − m

s

)2
}

, (5.11)

where s and m are referred to as the hyperparameters of the distribution. Besides

the positive state space of the distribution, it also possesses higher momentums,

namely the expectation µ, standard deviation σ, skewness η1 and kurtosis η2:

µ = exp

{
2m + s2

2

}
(5.12)

σ =
√

exp {2m + 2s2} − exp {2m + s2} (5.13)

η1 =
(
exp s2 + 2

) ·
√

exp s2 − 1 (5.14)

η2 = exp 4s2 + 2 exp 3s2 + 3 exp 2s2 − 3. (5.15)

Therefore through a choice of the hyperparameters s and m,

m = log

{
µ2√

σ2 + µ2

}
(5.16)

s =

√√√√log

{(
σ

µ

)2

+ 1

}
(5.17)

the parameter distribution can take an almost symmetric or asymmetric form as

seen in figure 5.2. Unlike in (5.7), the formulation of the optimization problem

into a linear overlap optimization problem is not possible. Among others, one

cannot rely on the invariance of the model variability distribution family. Only

for the special case of linear transformation, normally distributed variables re-

main normal. Therefore, despite the convergence challenges, a simplex optimizer

was used (c.f. [148]).

The following simulations were done for the Monod kinetics (6.9), but for log–

normally distributed parameters. In the figure 5.3, the vertices of the simplex
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Figure 5.2: Quasi-symmetric and asymmetric shapes of the log–normal distribution

during the last 200 iterations steps of a simplex optimization are plotted. Us-

ing a sloppy language, one could say that they show the ”path of the simplex”.

Through the projection one sees that the surface of the overlap functional is some

sort of cliffy (see figure 5.3).

This is supported by the plot in figure 5.4. There a very time consuming boxplot

search for the overlap functional over the entire parameter space was performed.

In the upper two plots, one can recognize some sort of frontier or a clear funnel,

respectively, towards the optimal hyperparameters. However, the two lower plots

indicate that the hyperparameter take on equally optimal values for several se-

cluded values. This indicates the possibility of having several local suboptimal

for the hyperparameters.

To avoid such convergence problems due to complex functional surface, the opti-

mization of the functional FO can be preceded by a linear overlap optimization

which results serve as a starting points for the FO optimization. Further, opti-

mization results should be clearly seen as local and not global results.

Discretization. Within the simulation one choose the appropriate sample size

for the parameter distribution. The larger, the better the approximation quality

is going to be. The smaller, the faster simulation is going to become, since

unnecessary calculations are avoided. The plot in figure 5.5 shows the connection

between the approximation quality and the sample size. The number that is

actually employed has to be chosen individually.
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Figure 5.3: Simplex vertices within the optimization
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Figure 5.5: Approximation quality of the overlap integral
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5.3 Nonlinear propagation

This sections presents a theoretical framework and adaptive numerical realization

of deterministic ordinary differential equations with stationary parameter distri-

butions consisting out of the linear propagation with a non–linear correction

scheme. The approach is based on the reformulation of the problem (2.1) in the

context of the Fokker–Planck theory for the evolution of multidimensional

distribution functions as needed to describe the model variability. In order to

solve the resulting partial differential equation (PDE) numerically, the adaptive

Gaussian-based particle method designed in the context of molecular dynam-

ics (c.f. [119, 121, 122, 123]) is modifies and applied. The nonlinear sensitivity

problem follows two consecutive steps: A linear prediction of the evolving density

function being represented by an ensemble of Gaussians is consequently corrected

by the controlled approximation of nonlinear effects within the adaptive solution

of the linear regression problem. The performance of the method is illustrated

with the parameter sensitivity analysis of enzyme–substrate reaction kinetics and

compared with alternative propagation results.

This adapted algorithm can be regarded as the further development of the frozen

Gaussian technique that was introduced by Heller and others in numerous ap-

plications (c.f. [11, 50, 80, 111, 142, 150, 166, 167, 172, 209, 241]).

Theoretical setting

Fokker-Planck equation. Abandoning the particle in favor of the ensemble

presentation results in considering a distribution u(x, t), symbolizing the bundle

of trajectories over time t, instead of a single trajectory Φtx0. The density u

symbolizes the time dependant model variability distribution with Mt ∼ u(., t).

This translation is a very common approach in statistical physics, especially in

molecular dynamics (c.f. [29, 69, 210, 212]).

The time propagation of an initial density u(x, t = 0) can be described by the

general Fokker-Planck or Liouville-equation (c.f. [97, 132, 200])

∂

∂ t
u(x, t) = −

d∑
i=1

∂

∂ xi

(fi(x, t) u(x, t))

= −
d∑

i=1

(
∂

∂ xi

fi(x, t) u(x, t) + fi(x, t)
∂

∂ xi

u(x, t)

)
. (5.18)
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Challenge. Whereas solving ordinary differential equations like (2.1) numeri-

cally for real world application is well established (c.f. [75]), solving the partial

differential equations like the Fokker-Planck-equation (5.18), especially in the

context of molecular dynamics, still is a challenge. The curse of dimension, f.e.,

results in exponentially growing computational costs for many traditional grid

discretization techniques.

As a consequence, for each class of applications, an individual procedure, employ-

ing the structure of the problem, has to be employed. For the density propagation

of Liouville type problems, Horenko and Weiser have developed the TRAIL

algorithm (Trapezoid Rule for Adaptive Integration of Liouville dynamics) as it

is shown in f.e. in [119, 121, 122, 123]. The next sections describes the concept of

the TRAIL algorithm within the framework of Fokker-Planck-type transport

problems.

The TRAIL-algorithm

The TRAIL-algorithm is a multidimensional, fully adaptive particle method, us-

ing a superposition of Gaussians, to describe the propagation of sensitivities in

nonlinear dynamical systems. The adaptive discretization scheme employed is

based on the adaptive Rothe method (c.f. [36, 76, 204]) followed by an adaptive

method of line approach for solving the deduced but locally linearized spatial

problem.

The (in most cases nonlinear) structure of the distribution in question u(x, t)

is dissolved by a superposition of Gaussians. Locally at each time propagation

step t → t + ∆τ , a linearized Fokker-Planck-transport problem is solved. To

maintain a suifficient approximation quality of the solution, however, the locally

linearly propagated Gaussians ought to be corrected or their spatial discretization

adapted, respectively. As a result, the algorithm’s strategy can be summarized

in two steps: (1) linear prediction and (2) correction and adaptivity control.

Linear prediction

Since in all linearized transport problems, as considered in the linear prediction

step, Gaussians remain Gaussians, one merely needs to describe the propagation

of a single Gaussian (as an ansatz function)

u(x, t) = A(t) · exp
{

(x − x0(t))
T G(t) (x − x0(t))

}
= A(t) · exp T (x, t), (5.19)
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with A(t) being the amplitude, x0(t) the center of the Gaussian, G(t) the shape

matrix, and T (x, t) the abbreviation for

T (x, t) = (x − x0(t))
T G(t) (x − x0(t)) . (5.20)

Shape matrix. For biokinetic and pharmacokinetic applications, correlations

between the state space coordinates can be observed. In order to apply the

TRAIL algorithm efficiently there, one has to extend the existing concept by

propagating the shape matrix G(t) of the Gaussian in (5.19), too. The partial

spatial and temporal derivatives

∂

∂ t
u(x, t) =

(
∂

∂ t
A(t)

)
· exp T (x, t) + A(t) · exp T (x, t) ·

(
∂

∂ t
T (x, t)

)
∂

∂ xi

u(x, t) = A(t) · exp T (x, t) ·
(

∂

∂ xi

T (x, t)

)

of the Gaussian are assembled in (5.18) and devided by exp T (x, t)

∂

∂ t
A(t) + A(t) · ∂

∂ t
T (x, t) =

−A(t)
d∑

i=1

(
∂

∂ xi

fi(x, t) + fi(x, t)
∂

∂ xi

T (x, t)

)
. (5.21)

Separating the amplitude and shape matrix. According to (5.20), T (x, t)

does depend on x quadratically. The same applies for its partial spatial and

temporal derivatives. Therefore, one can separate the spatial and non-spatial

terms of (5.21) and gets an differential equation for the amplitude A(t) and the

spatial coordinates

∂

∂ t
A(t) = −A(t)

d∑
i=1

∂

∂ xi

fi(x, t) (5.22)

∂

∂ t
T (x, t) = −

d∑
i=1

(
fi(x, t)

∂

∂ xi

T (x, t)

)
. (5.23)

Linearization. A linearization of the original model system’s right side in (2.1)

around the Gaussian’s center x0(t)

fi(x, t) ≈ fi(x0, t) + ∇x fi(x, t)|x=x0
(x − x0(t))

f(x, t) ≈ f(x0, t) + Jx(x − x0(t)),
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with Jx being the Jacobian of the RHS, approximates (5.23) by

∂

∂ t
T (x, t) =

−
d∑

i=1

(
fi(x0, t) + ∇x fi(x, t)|x=x0

(x − x0(t))
) ∂

∂ xi

T (x, t),

which results in

(x − x0(t))
T Ġ(t) (x − x0(t)) =

−(x0 − x)TJxG(t) (x − x0(t)) − (x − x0(t))
T G(t)JT

x (x − x0(t))

and finally in the differential equation for the shape matrix G

Ġ(t) = −JxG(t) − G(t)JT
x . (5.24)

Shape matrix symmetry. All shape matrices of Gaussians are symmetric, so

does the initial one G(0). Since the locally linearily propagated distribution stay

Gaussian, its shape matrix G(t) ought to remain symmetric: G(t) = G(t)T , too.

Demanding this property, the ordinary differential equation (5.24) for G(t) also

shows that symmetry

Ġ(t) = −JxG(t) − (
JxG(t)T

)T

= −JxG(t) − (JxG(t))T . (5.25)

That final equation (5.25) has the analytical solution (c.f. [10], [16])

G(t) = exp (−Jxt)
T · G(0) · exp (−Jxt). (5.26)

Final system. To implement the TRAIL algorithm for Gaussians with linearily

propagated shape matrix, one needs to implement the three equations (2.1), (5.22)

as well as (5.26) for as propagation equations for the Gaussians

ẋ(t) = f(x, t), (5.27)

Ȧ(t) = −A(t)
d∑

i=1

∂

∂ xi

fi(x, t) and (5.28)

G(t) = exp (−Jxt)
T · G(0) · exp (−Jxt) (5.29)

considered in the predictor step.
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Nonlinear correction and adaptivity control

In order to meet a global approximation tolerance, the ensemble of Gaussians

might have to be constantly enhanced during the propagation process. Even

though, the linear transport problem itself can be solve exactly, the finite ensem-

ble of Gaussians, however, is an approximation for the true density only. This

especially applies for the initial one at t = 0, whose approximation errors are

propagated as well. In either way, by enhancing the approximation quality one

is embedding the linear problems into a nonlinear propagation scheme.

Two strategies for enhancing the approximation quality of the Gaussians are em-

ployed: correcting the Gaussians themselves or adapting their spatial discretiza-

tion. For both cases, the local approximation error of the integrator used (implicit

trapazoid rule) is used as an quality indicator.

Correction. The Gaussians’ amplitudes are fitted to minimize the local ap-

proximation error of the integrator used (implicit trapezoid rule). Since the am-

plitudes are fitted only, the optimization problem is a linear least square one.

The result of the predictor step is used as a starting value for the optimizer.

Spatial adaptivity. Since the shape structure of the approximated density

might change over time as well, the spatial discretization has to be controlled

and adapted, too.

Adapting the spatial discretization means either to generate (spawn) new Gaus-

sians, when the approximation quality is not met or the distribution starts show

a more complicated structure, or to drop (prune) one when two Gaussians are to

close together or the distribution starts to show a more simpler structure than

originally.

Spawning case: The local approximation error estimator of the employed implicit

trapezoid rule spots the spatial coordinates in whose vicinity new Gaussians are

to be created by some Monte Carlo sampling.

Pruning case: Doing an integration step by means of the implicit trapezoid rule

numerically means to solve a least square problem in order to adapt the amplitude

and the center of each Gaussian. The observation of two Gaussians being to close

together translates into the linear least square problem become ill-conditioned.

An analysis of the problem’s subcondition spots the particles that ought to be

removed.
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Time step size. The estimation error from the trapazoid rule is also used to

determine the time step for the Rothe method, dictating the time discretization.

The local approximation error for the time integration of the integrator used

(implicit trapezoid rule) along with the predefined user accuracy translates into

a temporal step size ∆τ . That semi-discretization produces stationary PDEs,

which is solved as described above: by a method of lines approach with adaptive

spatial discretization using Gaussians as ansatz functions. By that, the spatial

discretization error can be matched with the temporal one.

In the further course of the article, the extended TRAIL algorithm shall be applied

and compared with other numerical methods for the class of Michaelis-Menten-

Kinetics. Before that, it is necessary to describe the mathematical system behind

the kinetic to apply.

Parameter sensitivity analysis

As mentioned before, in many applications, one is interested in the impact of

parameter variability. This curiosity can easily be integrated in the existing

framework. By considering parameters as ”normal” constant variables, the model

in equation (2.1) can be extended to an (d + p)−dimensional problem

ẋ = f(x, θ, t), x(0) = x0 (5.30)

θ̇ = 0, θ(0) = θ (5.31)

The density to propagate u is also extended to an (d + p)−dimensional one:

u(x, θ, t). For reasons of convenience, however, the notation itself is not changed

and the temporal dependencies are omitted.

The derivation of the equations (5.27), (5.28) and (5.29) is not effected by in-

cluding the parameters. Due to the structure of the extended problem, the shape

matrix shows the structure. For reasons of better readability, the time dependen-

cies are omitted. Let Jx and Jθ be the Jacobians of f in (5.30) with respect to the

spatial coordinates x and the parameters θ, then the Jacobian of the extended

problem has the structure

J =

(
Jx Jθ

0 0

)
. (5.32)

The joint density’s general shape matrix u(x, θ, t) of state and parameter space

has the structure

G =

(
Gx Gm

GT
m Gθ

)
. (5.33)
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Gx or Gθ describe the statistic interdependencies within the space or parameter

coordinates, respectively; the sub-matrix Gm the ones between the parameter

and state space. Then calculating Ġ by (5.25) results in

Ġ = −
(

G1 G2

GT
2 0

)
, (5.34)

while using the notation

G1 = JxGx + JθG
T
m +

(
JxGx + JθG

T
m

)T
(5.35)

G2 = JxGm + JθGθ (5.36)

or similar to the analytical solution of equation (5.26) in

G(t) = exp

{
−

(
Jx Jθ

0 0

)
t

}
·
(

Gx(0) 0

0 Gθ

)
· exp

{
−

(
Jx Jθ

0 0

)
t

}T

.

In order to reduce the computational effort in higher dimensional cases, one should

make benefit out of the structure of the shape matrix as well as of the rest of the

problem.
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