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1 Introduction

Today’s surgery performs a wide range of interventions which alter the mechanical be-
havior of the musculoskeletal system. Examples are total hip or knee replacements
and osteotomies (cutting a bone and resetting it at an angle to remove a limb de-
formation). These methods can be improved considerably if detailed, patient-specific
knowledge about the joint stresses is available. Total joint replacements still tend to
loosen after about 15 years, and this seems to be due to the bone remodelling around
the implant in response to the altered mechanical stimulus. A better understanding of
the mechanics of joints could help to improve prosthetics design. Osteotomies frequently
show unfavorable long-term side effects. The changed loading in the joints can lead to
overly increased cartilage wear which may result in premature arthrosis. Here, a detailed
knowledge about the stresses can help to develop improved surgery procedures.

The healing of bone fractures appears to be influenced by the mechanical loading
conditions. Knowledge of the mechanics of the musculoskeletal system can help to
improve therapies for accelerated tissue regeneration and design better fixation devices.
Modern competitive sport puts an ever-increasing demand on the athlete as a mechanical
system, and high performance combined with a low risk of injury can only be achieved
if athlete-specific biomechanics are taken into account.

Biomechanists have used a wide range of methods to gain insight into the stresses
in bones and ligaments, some analytical and some experimental. Structural analysis of
beams, for example, works fairly well on long bones of reasonably uniform cross-section.
However, whole bones have complex shapes at their ends and are acted on by complex
loads. Hence beam analysis breaks down near the bone ends [49]. Analytical methods are
almost useless in complex structures such as vertebrae or the skull [29]. The presence of
material inhomogeneities, in particular cancellous bone, is another complicating factor.

One experimental method to obtain strains and stresses of bones and ligaments is to
attach a number of strain gauges to a bone or a model of it [49]. This allows to measure
strains directly and to infer stresses from assumed material parameters. On the other
hand it is very time-consuming and restricted to surface strains. Photoelasticity gives
good qualitative insights for planar models. However, it is not straightforward to extend
this to a three-dimensional analysis. Also, material inhomogeneities cannot properly be
taken into account.

These experimental methods measure stresses in models of bone or dead tissue speci-
men. An important step forward was the work of Bergmann et al. [13]. They constructed
hip, knee, and other implants containing a pressure sensor. It was thus possible to mea-
sure dynamic joint stresses in vivo during a wide range of everyday activities. The
downside of this method is that only accumulated stress values for the entire joint are
obtained. No information about the spatial distribution of the stresses within the joint
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becomes available.

Numerical simulation can provide new insights into this difficult problem. In fact,
it is establishing itself as a third fundamental way of gaining knowledge besides theory
and experiments. The term ‘in silico experiment’ is becoming popular as a synonym for
computer simulations [2].

In engineering, the finite element method has proven extremely useful for the simula-
tion of mechanical structures of all kinds. It can, in principle, provide stress distributions
of arbitrarily high resolution for all kinds of loading situations. Also, it allows the easy
study of the dependence of the system on parameters, e.g., material anisotropy [54]. The
catch is that the cost in computer power may be so high as to effectively prohibit many
simulations even on the most powerful hardware available. This cost is determined by
the size of the problem, the equations used to model the system, and the algorithms used
to solve these equations. More challenging equations can be used to gain precision if fast
algorithms are available for their solution. This make the design of efficient algorithms
a key point.

Besides being efficient these algorithms have to be reliable. While a numerical analyst
may be fully aware of the shortcomings of a given algorithm this cannot be expected
from end users which are specialists in other fields. A “great tendency to take the results
[of commercial finite element codes| as they come, without independent checks” (Currey
[29], p. 243) can still be observed. This problem is particularly relevant in biomechanics
as it is very difficult to validate simulation results experimentally. While software users
should constantly be reminded to keep a certain scepticism with regard to the output of
the programs, the makers of such programs should strive to design their algorithms to
be as reliable as possible.

Simulating the mechanical behavior of a human knee using finite elements is an ex-
tremely challenging task. Some of the difficulties are the coexistence of different mate-
rials, the large strains undergone by everything but the bones, the contact between the
various objects, the multiscale nature of the materials and their resulting inhomogeneous
and anisotropic material properties. Any resulting discrete system must be nonlinear,
nondifferentiable, and very large. From the more practical side, at the current state of
technology it is very difficult to get reliable material parameters (see Sec. EH), and to
validate simulation results numerically.

To cope with such difficulties researchers have proposed a wide scale of simplified
models. These range from simple linked chains of rigid bodies to complex finite element
models. Each is suited to a particular purpose. This thesis presents a new model for
the human knee which aims at the top end of this scale. The model incorporates femur,
tibia, and fibula, and the four major ligaments. The bones are modeled using three-
dimensional linear elasticity on patient-specific simplicial grids. Therefore, the model
can provide detailed information about the stress distributions in the bones. The contact
between individual bones is taken into account. For the ligaments Cosserat rods are used.
These are a standard tool in structural engineering used to model long slender objects
undergoing large deformations. While they cannot provide spatially resolved stresses
within cross-sections they do not cause meshing problems the way three-dimensional
finite strain models do. In this thesis we assume the rod cross-sections to be circular



and of constant radius. However the model also allows for cross-sections which are, for
example, ellipsoidal, and which may vary with arc length.

The model is by no means complete and has to be considered as a basis for further
development. Articular cartilage, the patella bone, and the menisci are all crucial for
reliable stress predictions. Also ligaments wrap around bone in some places and therefore
the inclusion of bone-ligament contact is important. Some results concerning dynamic
problems have already been obtained [58]. All this is subject of future work. Nevertheless
the model as it is today can already provide useful information.

Mathematically, the knee model leads to a heterogeneous nonsmooth domain decom-
position problem. The contact problem between the bones is described by a linear
equation with convex constraints, while the Cosserat rod problem is formulated as a
minimization problem on a nonlinear Riemannian manifold. For both problems new
solvers are proposed which are both efficient and reliable. Coupling the two subprob-
lems in a single model also breaks new ground. We propose transmission conditions for
the coupling of a three-dimensional linear elastic body and a one-dimensional nonlin-
ear elastic Cosserat rod in the continuous and the discrete setting. We also describe a
nonoverlapping Schwarz method which solves this coupled problem.

We present two sets of results for biomechanical problems. In Chapter Bl we treat the
pure contact problem between femur and tibia using the Visible Human data set [3]. In
Chapter 6l we give results for the complete knee model additionally incorporating the
proximal fibula and four major ligaments. These simulation runs are purely prototypical.
Their only purpose is to demonstrate the performance of the solution algorithms. The
stress distributions computed do not have quantitative relevance.

Cornerstone of this thesis is the efficient and robust implementation of all algorithms
that are presented. These implementations are based on the DUNE library, which has
been developed over the last years in a joint effort by groups in Stuttgart, Freiburg, and,
as part of this thesis, in Berlin. It is a new framework for high-performance numerical
computations, and is based on three design ideas.

e Abstraction: Since a single grid manager can never satisfy the needs of all appli-
cation writers, DUNE defines an abstract grid interface and provides an extendible
set of implementations for this interface. Hence, applications can be made to
run with different grid managers and switching from one grid implementation to
another only requires minimal changes.

e Efficiency: All interface code is written in C++ using methods from generic
programming. As a result, compilers are able to optimize away most interface
code and DUNE applications run with an efficiency comparable to applications
which are directly attached to a single grid implementation.

e Code reuse: DUNE supports the reuse of existing grid managers as legacy code
hidden behind the abstract grid interface. For example, the grid managers of
the finite element codes UG [10] and ALBERTA [81] are available within DUNE as
UGGrid and AlbertaGrid, respectively.
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Detailed information about DUNE can be found in [11, [12], and on the project home-
page [1].

This thesis consists of five main chapters, which we will now summarize briefly. We
begin with a short introduction to the mechanics of the human knee joint in Chapter 21
There we concentrate on the physiology and material behavior of bones and ligaments,
motivating our modeling decisions.

The next chapter deals with multi-body contact problems in linear elasticity. The aim
is the efficient and robust solution of large problems on domains with curvilinear bound-
aries. The first three sections are devoted to the formal statement of the continuous
and discrete problems. We then introduce the Truncated Nonsmooth Newton Multigrid
algorithm (TNNMG) as a globally convergent, efficient, and reliable method for such
problems. Next we describe how the contact mapping can be implemented efficiently.
We also briefly present a way to automatically construct parametrized boundaries (previ-
ously published in [61, [79]), and a hierarchical error estimation schemes which proves to
be very effective. Numerical results are given which show that the TNNMG solves con-
tact problems on curvilinear domains with the same convergence rate as linear multigrid
methods on corresponding linear problems.

In Chapter Hl we present Cosserat rods as our model for ligaments. Being one-
dimensional, Cosserat rods avoid problems with the meshing of long slender structures
and with grid quality for large deformation elasticity problems. The configuration space
of Cosserat rods has a nonlinear Lie group structure. We introduce geodesic finite
element spaces as a systematic way to discretize function spaces which map onto non-
linear Riemannian manifolds. Standard optimization algorithms cannot be used to find
minimizers of the hyperelastic energy functional due to this nonlinearity. Using ideas
from [83] and [, |i] we present a Riemannian trust-region solver for nonlinear Cosserat
rod problems. The solver converges globally, and locally superlinear. Hence it is both
reliable and efficient. Using the oo-norm for the trust-region allows to use a monotone
multigrid method as the inner solver. We close the chapter with a numerical example.

Chapter Bl covers the coupling of the bone and ligament models. The two main diffi-
culties are the difference in dimension between the two models and the fact that the rod
model is nonlinear and its solutions are generally not unique. Based on the transmission
conditions for the coupling of two three-dimensional objects (which are derived rigor-
ously), we present coupling conditions for the 1d-3d problem. A Dirichlet—Neumann
scheme is then presented which solves the multidimensional coupled problem. In order
to show that the coupling conditions are in fact reasonable we give an existence result
for solutions to the coupled problem in the special case of problems showing certain
symmetries. Uniqueness of solutions cannot be expected as the Cosserat rod problem
by itself does not have unique solutions. In the last section we present a few numerical
results for the Dirichlet—Neumann solver on test problems.

The last chapter then combines all previous results. Simulation results for a knee
model are presented. The model includes the distal femur and the proximal tibia and
fibula; as well as the anterior and posterior cruciate ligaments, and the medial and lateral
collateral ligaments. A special section is dedicated to the DUNE libraries, which have
been codeveloped as part of this thesis and which allow an unseen degree of flexibility



in the choice of grid managers.

An appendix contains the somewhat technical derivation of the gradients of the rod
strains on tangent spaces of the rod configuration space. This is used in Chap. @l

Many people have helped me during the preparation of this thesis. I would like to
thank Prof. Ralf Kornhuber for his constant support and valuable advice; Prof. Dr.
Dr. h.c. Peter Deuflhard for his continued interest in my work; Prof. Rolf Krause for
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gwer and Prof. Peter Bastian for bringing the right tools just when I needed them;
Dr. Stefan Lang for his help with UG; Prof. John Maddocks for introducing me to
Cosserat rods; Dr. Markus Heller and Dr. Bill Taylor for their input on biomechanics;
Prof. Klaus Ecker for his help on differential geometry; Dr. Heiko Berninger, Carsten
Graser, and Dr. Carsten Hartmann for proof-reading and many fruitful discussions; last
but not least, Christian Salzmann for his computer help.
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2 Biomechanics of the Human Knee

This chapter gives a brief overview over the biomechanics of the human knee, particularly
concentrating on the bones and ligaments. We also discuss the attachments of ligaments
to bone and comment on the experimental difficulties encountered when trying to obtain
reliable material parameters. Most of the information on bones in this chapter has been
taken from the book by Currey [29], while the information on ligaments is mainly based
on the review article by Weiss and Gardiner [93].

2.1 Structure and Function of the Human Knee Joint

The human knee is the joint of the lower extremity which connects the femur and the
tibia. It involves four different bones: femur, tibia, fibula, and patella (kneecap). Strictly
speaking, the human knee consists of two joints. The first is the femoro-tibial joint, which
links the femur with the tibia. Its purpose is to transfer the body weight from femur
to tibia and to provide for the freedom of movement necessary for walking. The second
joint is the femoro-patellar joint, which connects the patella and the patellar groove on
the front of the femur. The femoro-tibial joint is a so-called synovial joint, which means
that it is contained in a synovial membrane, or joint capsule, and bathed in synovial
fluid.

The articulating surfaces of the bones are covered with layers of cartilage. These
layers, with a thickness varying locally between 0.5 mm and 3 mm, have a two-fold
purpose. They act as lubrication and allow for nearly effortless motion along preferred
anatomical directions. Also, the viscoelastic cartilage acts as a damping.

The different bones of the knee are held together by the skeletal ligaments, which
are short bands of tough fibrous connective tissue. They guide normal joint motion
and provide stability by restricting abnormal joint movement. Assisting in this are the
congruent geometry of the articulating surfaces and the musculotendinous forces. Even
in everyday activities ligaments can be subjected to very high tensile stresses. When
overloaded they can disrupt completely, which is a common sports injury.

The four major ligaments of the knee are the anterior cruciate ligament (ACL), the
posterior cruciate ligament (PCL), the lateral collateral ligament (LCL), and the medial
collateral ligament (MCL) (see Fig. Zl). Cutting experiments using cadaveric knees
have shown that each ligament has specific primary and secondary functions. The ACL,
for example, acts as a primary restraint against anterior tibial displacements and as a
secondary restraint to tibial axial rotation. The PCL provides the primary resistance
to posterior tibial displacements and also acts as a secondary restraint to external tibial
rotation. The MCL is the primary structure resisting valgus rotations of the knee and
internal tibial displacement. The LCL provides a primary restraint to varus rotation
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Figure 2.1: Anterior view of the right human knee joint. The femur, tibia, and fibula are
shown together with the anterior cruciate ligament (ACL), posterior cruciate
ligament (PCL), medial collateral ligament (MCL), and lateral collateral lig-
ament (LCL). The patella is not shown. (Reprinted from Weiss and Gardiner

fo].)
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and external tibial rotation, and a secondary restraint to anterior and posterior tibial
displacement [93]. Only knee flexions and extensions are unrestricted within a certain
range.

Further joint lubrication and damping is provided by the two menisci. The menisci
have a semilunar shape and are situated between the femoral condyles and the tib-
ial plateau of the knee. They consist of fibrocartilage which contains thick layers of
large collagen fibres. These give the menisci a relatively rough and fibrous appearance.
The mechanical behavior is similar to articular cartilage, but with more pronounced
anisotropies [7(].

Various muscles attach to the bones in close proximity to the knee joint. Muscles
taper off into tendons which then insert into the bone. Tendons differ from ligaments in
their function, but have a very similar structure and mechanical behavior. Contractions
of the muscles provide the forces to move the knee. In static loading situations such as
an upright standing position they provide stability by active stabilization.

2.2 Bones

Bone is a multi-scale material and its composition and properties have to be described at
several length scales. At the lowest level, bone can be considered as a composite material
consisting of a fibrous protein, collagen, stiffened by an extremely dense filling of calcium
phosphate crystals. There are other constituents, notably water, some proteins and
polysaccharides, and, in many types of bone, living cells and blood vessels. The amount
of water present in the bone is an important determinant of its mechanical behavior.

Collagen is a structural protein found in probably all metazoan animal phyla. It
makes up more than half the protein in the human body. The collagen in bone is called
type 1 collagen. The protein molecule tropocollagen aggregates to form microfibrils,
which become stabilized by intermolecular cross-links. Microfibrils in turn aggregate to
form fibrils.

Impregnating and surrounding the collagen is the bone mineral, which is a variety of
calcium phosphate. The precise nature of both the chemistry and the morphology of it
is still a matter of some dispute. The reason is that mineral in bone comes in very small
crystals with a very high surface-area-to-volume ratio. The size of the crystals is such
that in one dimension it is only about 10 atomic layers thick [66]. This makes it reactive,
and so most preparative techniques used for investigating it may cause alterations from
the living state. Some of the bone mineral is the version of calcium phosphate called
hydrozyapatite whose unit cell contains Cajo(POy4)g(OH)s2. Reports of the visualization
of the crystals directly support the view that the crystals are platelet-shaped [29].

Bone is permeated by various kinds of specialized cells. Osteoblasts are responsible
for the formation of bone. They initially lay down the collagenous matrix, in which
mineral is later deposited. Conversely, osteoclasts are bone-destroying cells. Osteocytes
are living cells in the body of the bone. They derive from osteoblasts and their density
varies from about 90,000 mm ™2 (rats) to about 30,000 mm~3 (cows). They are trapped
in the hard bone tissue and connect with neighboring osteocytes by means of processes
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that are housed in little channels called canaliculi, of about 0.2-0.3 pum diameter [21].

Above the level of the collagen fibril and its associated mineral, mammalian bone
exists in two usually fairly distinct forms: woven bone and lamellar bone.

Wowven bone is usually laid down very quickly, more than 4 um a day, most charac-
teristically in the fetus and in the callus that is produced during fracture repair. The
collagen in woven bone is variable, the fibrils being between 0.1-3 pm in diameter and
oriented almost randomly, so that it is difficult to make out any preferred direction over
distances greater than about a millimeter [2(].

Lamellar bone is more precisely arranged, and is laid down much more slowly than
woven bone (less than 1 pm a day [2(]). The collagen fibrils and their associated mineral
are arranged in sheets (lamellae), which often appear to alternate in thickness. The final
degree of mineralization is less than that of woven bone.

On the length scale of millimeters there are four main types of bone that can be found
in mammals. Two of them are woven and lamellar bone which can extend uniformly
for several millimeters in all directions. But lamellar bone also exists in the quite sep-
arate form of Haversian systems. These form when many osteoclasts move forward in
a concerted attack on the bone tissue. This forms a cutting cone of about 200 pym in
diameter. As the cutting cone advances it leaves a cylindrical cavity behind. Almost as
soon as the cavity forms, it begins to fill in. The walls of the cavity are made smooth,
and bone is deposited on the internal surface in concentric lamellae. In humans, the
whole process takes about two to four month. The Haversian system is the classic result
of the process of remodeling, where the bone material is constantly renewed. The fourth
type, fibrolamellar bone, tries to combine the fast deposition speed of woven bone with
the stability of lamellar bone. It is found in sites where bones have to grow in diameter
rather quickly. Essentially, an insubstantial scaffolding of woven bone or parallel-fibered
bone is laid down quickly to be filled in more leisure with lamellar bone.

At the highest level of the hierarchy there is the mechanically important distinction
between compact (cortical) and cancellous bone. The difference is visible to the naked
eye. The former is solid, with spaces in it only for osteocytes, canaliculi, blood vessels
and erosion cavities. In contrast, in cancellous bone there are large open spaces. The
simplest kind of cancellous bone consists of cylindrical struts, about 0.1 mm in diameter.
Each extends for about 1 mm before making a connection with one or more other struts,
mostly roughly at right angles. In variations, the struts are partially replaced by little
plates. Next to the preferred collagen fibril directions in lamellar bone, cancellous bone
is another source of anisotropy, the struts frequently oriented mainly along preferred
directions. The pores of cancellous bone are filled with marrow fat, which, at room
temperature, is a viscous fluid. It seems unclear whether the bone marrow has any
significant mechanical function. See the book by Currey [29], Sec. 7.9, for a discussion.

Mechanical Behavior of Bone Material

As a multiscale material, the appropriate mathematical descriptions of the mechanical
behavior of bone differ on the different length scales. Being mainly interested in modeling
entire joints, we restrict this overview to macroscopic specimen. There it is reasonable
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Figure 2.2: Normal strains (left) and shear strains (right).

to model bone as a continuum (of not necessarily homogeneous and isotropic properties)
and use the well-established techniques of continuum mechanics for its description.

In the engineering and biomechanics literature, introductions to the elastic behavior
of materials usually start with considering small test objects under loadingﬂ Consider
a bar of length L and width B acted on by a force F' tending to stretch it. The bar
will undergo an increase in length AL and a decrease in width AB (Fig. Z2). The
proportional changes in length, AL/L and width AB/B, are called normal strains. If
the force F' is instead acting in parallel to a side of the bar, then the resulting deformation
is called a shear strain. It is measured as the change in angle v undergone by two lines
originally at right angles, measured in radians. In bone we are usually dealing with small
strains, AL/L less than 0.005 and ~ less than 0.1. This justifies the choice of the linear
strain tensor in Sec. Bl

Stresses are defined as the intensity of force acting across a plane. Take an area A
in some plane in a body which is small enough for the forces acting across it to be
essentially uniform. For convenience, choose an orthonormal coordinate system such
that the plane is normal to the z-axis. The vector F' of forces across the plane can be
decomposed into a normal force F., and two shear forces F,, and F,. If we scale the
forces with the area |A| we obtain the normal stress o,, = F,,/|A| and the two shear
stresses T, = F.;/|A| and 1., = F,/|A|. It can be shown mathematically that the
forces across three nonparallel planes are enough to describe the complete state of stress
at a point. In other words, it is always possible to rotate the imaginary test object in
such a way that there are no shear stresses, and there remains just one normal stress on
each face. These remaining normal stresses are called the principal stresses.

The relationship between stresses and strains describes the properties of the material

A more rigorous description of linear elasticity is given in Sec. Bl
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Figure 2.3: A load-deformation curve of a bone specimen loaded in tension.
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Table 2.1: Elastic moduli for human Haversian bone (in GPa) measured by ultrasound.
The data was determined by Ashman et al. [§] and is presented here as cited by
Currey [29]. Cancellous bone material seems to be slightly softer, but exactly
how much is unclear, since it is very difficult to perform reliable experiments.

under consideration, and is termed constitutive law. For all biomechanical materials the
determination of suitable constitutive laws has been subject of much research. Suppose
we load a small specimen of compact bone in tension until it breaks. While doing so
we monitor the load and the deformation it causes. Scaled with the dimensions of the
specimen this yields a stress—strain curve as in Fig. Starting from the origin, there
is a part where the stress varies linearly with the strain. At the yield point the curve
flattens considerable, and now increasing strain involves little extra stress. Eventually
the specimen breaks. Bones seem to be designed so that the loads placed on them in life
usually do not lead beyond the yield point. The slope E of the linear part of the curve
is termed Young’s modulus, and determines the stiffness of the material. It is expressed
in Pascal ([Pa] = Newton per square meter) and in bone it has a value of roughly 10-20
GPa. If a similar experiment is performed for a shear deformation v, the corresponding
slope is the shear modulus G = 7/~. Another quantity frequently given is the Poisson
ratio v = E/2G — 1.

The stress—strain curve in Fig. really only gives part of the truth. Bone is an
anisotropic material, i.e., it behaves differently in different directions. On the length scale
of lamellar bone this is due to the bone tissue being arranged in preferred directions, the
name-giving lamellae. On the macroscopic scale, direction dependence also enters in form
of the trabeculae in cancellous bone. To describe the elastic properties of anisotropic

12



2.3 Ligaments

materials, more parameters than just £ and G are necessary. In the most general case,
the linear approximation of the stress—strain relationship contains 21 free parameters.
Such a number is difficult to handle, and, far more importantly, extremely difficult to
measure. If the material under consideration is assumed to contain at least partial
symmetries, then the number of parameters can be reduced. Table Zllists some moduli
of compact bone that have been determined experimentally by Ashman et al. [§]. Among
the material parameters found in the literature there is quite a lot of variation. Currey
[29], p. 54, conjectures that a large part of this variation is real and not caused by sloppy
experimental work.

The distinction between cortical and cancellous bone is relevant for the modeling of
macroscopic bone specimen. The cortical bone, which forms the outer shell of long bones,
has fairly homogeneous properties. Cancellous bone, due to its sponge-like structure,
shows anisotropic and heterogeneous behavior. Some of these heterogeneities can be
extracted from certain gauged CT scans (see, e.g., Yosibash et al. [917]).

Bone is slightly viscoelastic, and its stiffness is to some extent strain-rate dependent.
Carter and Caler [23] suggested that Young’s modulus is proportional to (strain rate)%0°.
That would mean that a thousandfold increase in strain rate will result in an apparent
increase of Young’s modulus of 40%. Strain-rate dependence can therefore be neglected
in all but certain impact scenarios.

There have been many attempts at explaining the mechanical behavior of bone tissue
on a given length scale by using information from lower scales. This multiscale modeling
is a field on its own; an overview can be found in |29, Sec. 3.7]. Multiscale modeling
can lead to justifications for well-known ad hoc material models as well as to proposals
for new ones. Effective macroscopical material laws can be derived by simulation of the
bone microstructure on a small representative volume (homogenization; see, e.g., [41]).

In conclusion, there is quite a number of choices among the family of continuum
mechanics material laws. The appropriate choice depends on the problem at hand, and
how much effort one is willing to put into the retrieval of material parameters. In this
thesis, we will model macroscopic bones using a simple isotropic, homogeneous, linear
elastic material law. Disregarding anisotropic and heterogeneous effects in bone is not
truly justified when the main interest are the detailed stresses in bone. We choose the
simple model in order to simplify the exposition of the contact handling and the coupling
of the bones and ligaments. There are no conceptual difficulties in using more involved
laws such as the one in [97]. The actual values for Young’s modulus E and the Poisson
ratio v were taken from the literature. We used £ = 17 GPa and v = 0.3 computed as
an average of the values in Table 1] throughout.

2.3 Ligaments

Like bone material, ligament tissue is a multi-scale material. It is a composite which
consists of a ground substance matrix reinforced by collagen fibres and elastin. The
ground substance matrix is composed of proteoglycans, glycolipids, and fibroblasts, and
holds large amounts of water. Indeed, about two thirds of the weight of normal ligament
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Figure 2.4: The structural hierarchy of ligament and tendon. (Reprinted from Weiss and
Gardiner [93], who adapted it from Kastelic et al. [5(0].)

is made up of water. 70 to 80% of the remaining dry weight is made up by collagen,
which is responsible for the great resistance to tensile stresses of ligaments.

Collagen is formed from a structural hierarchy. The exact levels of organization
still seem to be subject of some discussion, and there is evidence that they are tissue-
specific [93]. Fig. B4l shows the hierarchy proposed by Kastelic et al. [50] for the type 1
collagen in rat tail tendon. At the beginning of the process there are certain modifica-
tions of linear polypeptide chains, which coil up to form tropocollagen molecules. Five
such molecules wind up together to yield a collagen microfibril. Similarly to the type 1
collagen found in bone (p. @), these in turn form subfibrils, which then form fibrils
(Fig. Z4)). The fibrils are packed together to form fiber bundles. With a diameter in the
range of 1 to 12 um, these can be observed with a light microscope. Under polarized light
the unloaded fibres display a clear banding. The collagen has a longitudinal waveform
referred to as the crimp pattern. This pattern disappears when the ligament is loaded.

The collagen is surrounded by a connective tissue which is known as the ground sub-
stance matrix. Proteoglycans, which are the main constituent, aggregate with hyaluronic
acid to form hydrophilic molecules. These associate with water to form the gel-like ex-
tracellular matrix. This interaction is in part responsible for holding the large amount
of water in ligament. Although these hydrophilic molecules constitute less than 1% of
the ligament dry weight, their role is very important, as they are partly responsible for
holding the collagen together.

The water and its interaction with the ground substance matrix is also responsible for
some of the viscoelastic properties of ligament tissue. Movement of water molecules is

14



2.3 Ligaments

351 I\

= e
A 304

= longitudinal ﬂ“/

~ 95-

g ]ﬂ

n

failure

5 transverse
+—F
0 - T

0 2 4 6 8 10 12 14 16 18
Strain [%]

Figure 2.5: Stress—strain curves for human MCL, tested parallel (9 specimen) and trans-
verse (7 specimen) to the collagen fiber direction. Error bars indicate the
standard error. (Reprinted from Weiss and Gardiner [93], originally in Quapp
and Weiss [7€].)

inhibited by charged proteoglycan molecules. Because of the large fraction of water many
constitutive equations assume ligaments to be incompressible. Unlike other collagenous
soft tissue, such as skin, which retains most of its water even under high pressure,
ligament tissue has been shown to lose some water under cyclic loading. However, the
exact quantity is unknown. The mechanical importance of this change in hydration, and
hence in volume, is an open question.

The third component of ligaments is elastin, which makes up for less than 1% of the
dry weight. Elastin is an insoluble protein which takes on a complex coiled arrangement
when unstressed. This arrangement stretches out when the elastin is stressed. This
behavior of elastin accounts for a small part of a ligament’s resistance to tension and
its elastic properties. Ligaments with a high elastin content are less stiff and undergo
larger strains before failure [93].

Constitutive Models for Ligaments

When ligament tissue is loaded under tension, the resulting stress—strain plot shows two
distinct regions. While the material behavior is linear beyond a certain strain, for small
strains the curve shows a markedly nonlinear, upwarded-curved behavior (Fig. ZHl). This
initial nonlinear section of the stress-strain curve is frequently called the toe region. A
widely accepted theory sees the collagen crimp as the reason for this nonlinear material
response. In the unstrained state, the collagen fibres are coiled up and do not contribute
noticeably to the macroscopical stiffness. As the ligament is stretched the collagen fibres
straighten. At the beginning of the linear section they are all recruited and the linear
behavior is effectively the behavior of the collagen fibres [93]. Various researchers have
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2 Biomechanics of the Human Knee

found values in the range of 330 MPa for this linear elastic modulus [93, Table 1].

This recruiting theory has lead many researchers to propose microstructural models for
the observed behavior. Viidik [89] and Frisen et al. [39] represented the elastic response
by many individual linearly elastic components. Each of these components represented
a collagen fibril of different initial length in its unloaded and crimped form. Fibres were
recruited as the ligament was loaded, and at high loads the linear behavior of the fibrils
became visible. This simple model was thus able to reproduce the uniaxial response of
ligaments.

To properly capture the spatially varying, anisotropic character of ligament tissue,
a wide variety of three-dimensional constitutive equations has been proposed. Simple
ones describe ligaments as a nonlinear, homogeneous, isotropic material. More advanced
models assume transverse isotropy, with the principal material direction following the
fiber direction of the tissue. Some try to capture the composite structure by explicitly
modeling collagen fibres in addition to the material continuum. The article by Weiss and
Gardiner [93] gives a good overview over existing theories and many further references.

The elastic properties of ligaments are relatively insensitive to the strain rate [4(, 93].
Viscoelasticity does play a role though in situations with very high strain rates such
as impact scenarios. There is also a long-term viscoelastic effect which leads to the
ligaments being slightly softer after a number of load cyclesE A viscoelastic theory for
ligaments has to take both the short-term and the long-term viscoelastic effects into
account.

Among the many viscoelastic models proposed for ligament tissue the quasi-linear
viscoelasticity (QLV) of Fung [4(] has been the most successful. The underlying idea
is to take the stress at a given time as the convolution of the elastic response with a
relaxation function. |[Fung assumed this relaxation function to be scalar, i.e., isotropic,
and proposed a specific form. The expression contains three material parameters m, 7o,
and ¢, which can be measured using stress—relaxation experiments. QLV has been used
successfully to model many types of biological soft tissue [93].

This has been just a very small selection of the material models proposed in the
literature. Both elastic and viscoelastic models come in many different flavors. Also,
there has been a growing interest to include poroelastic effects. The interested reader
is again referred to Weiss and Gardiner [93]. In this thesis, we have chosen to only
model the linear part of the ligament stress—strain relationship, again to not clutter the
exposition with to many details. The extension to nonlinear elastic material models is
straightforward.

Geometric Modelling of Ligaments

The diversity of constitutive models for ligaments is paralleled by the diversity of the
different approaches concerning the geometric modeling. If the interest is the accurate
description of spatially resolved ligament stresses and interactions with the surround-
ing soft tissue and bone, a full three-dimensional continuum representation cannot be

2This effect is well-known to athletes.
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avoided. Few such models have been used, though, because of their inherent difficulties.
Constitutive models for three-dimensional fiber-reinforced continua which describe the
nonlinear anisotropic response are difficult to construct, and the parameters they con-
tain are hard to determine. Also, the large deformations undergone by ligaments can
lead to severe mesh problems. The survey article of Weiss and Gardiner [93] provides
an overview over a few three-dimensional models.

When the interest is more on the overall joint kinematics than on detailed stresses
in the ligaments, one-dimensional models can be used. These can be much easier to
handle, because the constitutive equations for one-dimensional models are simpler and
there are no problems with the mesh quality. The easiest models consist of a single
linear or nonlinear spring. Others use several springs for each ligament, with individual
springs representing fiber bundles within a ligament. Blankevoort and Huiskes [15] used
line elements and allowed them to follow the curved edge of a contacting bone, hence
including contact in their model.

All these one-dimensional ligament models can only represent tensile stresses, and
possibly contact stresses in some models. Yet in vivo, ligaments also experience some
shear and transverse loading. In particular at insertion sites complex loading patterns
are not uncommon [68]. A geometric approach which can support more complex loading
situations are Cosserat rods. In addition to tension, which is also supported by line
elements, they can express large deformation shear, bending, and torsion, while retaining
the advantages of a one-dimensional model. We will use Cosserat rods for the simulation
of ligaments, and they are introduced formally in Sec. 2 To our knowledge, Cosserat
rods have not been used previously to model ligament mechanics.

As a compromise between the simplicity of one-dimensional models and the power of
expression of three-dimensional models, two-dimensional shell models have been used
several times [93].

2.4 The Attachment of Ligaments to Bone

The junction of a ligament or a tendon to bone is called an insertion site, or enthesis.
It is quite complex and can vary greatly from ligament to ligament as well as between
the two ends of a single ligament. When attaching two materials of widely different
Young’s modulus, large stress discontinuities can occur over the interface, which makes
adhesion difficult. In engineering technology, the solution is often a complex knot or
other fastening. In joints the problem has been solved by fusing ligament fibres into the
bone [29].

Broadly, insertion sites have been categorized into two classes, direct and indirect.
Direct insertions occur, for example, at the femoral attachment of the medial collateral
ligament and anterior cruciate ligament of the knee. They are usually well-defined areas
with a sharp boundary between the bone and the attaching ligament (Fig. 20, left).
Most ligament fibrils at direct insertion sites are deep fibrils that meet the bone at
approximately right angles.

Typical direct entheses can be divided in four regions. Going from ligament to bone,
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Figure 2.6: Left: Direct insertion site at the femoral insertion of a rabbit MCL. Four dis-
tinct zones can be clearly observed: ligament (A), uncalcified fibrocartilage
(B), calcified fibrocartilage (C), and bone (D). Right: Indirect insertion site
at the tibial insertion of a rabbit MCL. The fiber (A) enters the bone (B) at
an oblique angle. (Reprinted from Weiss and Gardiner @])

these are
1. Ordinary ligament.

2. A fibrocartilage region, about 300 pm wide. In this region cartilage cells appear,
lying in rows in the extracellular matrix of the ligament. The cross-sectional area
of the tendon increases slightly to accommodate the cells.

3. A mineralized fibrocartilage region, about 200 um wide. There is a sharp boundary
between this region and the last. The mineralization does not start gradually, but
appears as a clear tideline.

4. The mineralized fibrocartilage, containing mineralized tendinous fibers, merges
imperceptibly into the rest of the bone, with no clear point where the fibers stop
and the bone begins.

At indirect insertion sites, the collagen fibres meet the bone at an oblique angle
(Fig. 26l right). The result is a more gradual transition between soft and hard tis-
sue and a larger area of attachment. The superficial fibres dominate at indirect insertion
sites and they attach to the bone mainly by blending with the periosteum. No fibrocar-
tilagenous transitional zone can be observed in indirect insertions. Indirect insertions
can be found at the tibial attachment of the MCL.

Attaching ligaments to bone by blending the former into the latter is certainly me-
chanically effective. The low-modulus material penetrates the high-modulus one and
becomes of high modulus itself within a millimeter or so. There are no real problems,
therefore, in bonding the ligament to the bone. The critically important point is the
continuity in the collagen fibrils right from true ligament into the heart of the bone.
There is no line of weakness. Insertion sites are hence, mechanically, rigid junctions,
and can be modeled as such. There is no torsion or bending possible of the ligament
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end relative to the bone, other than the torsion and bending of the ligament itself away
from the insertion. This motivates the coupling conditions adopted in Chap. H for the
bone-ligament junctions.

2.5 The Problem of Getting Material Parameters

Any numerical simulation of a human joint which is expected to have more than just qual-
itative relevance is faced with the problem of how to get material parameters. A great
many experiments for material properties for bones and ligaments have been published,
and the results are varied. As mentioned in Sec. 2 Currey [29], p. 54, conjectures
that a large part of this variation is real and not caused by sloppy experiments. Ma-
terial values seem to differ from joint to joint, from test person to test person, and are
even nonuniform in each single specimen. Details of the testing procedure can have a
noticeable influence on the results. Important aspects are, for example, the orientation
of the specimen in relation to the bone from which it came, whether the specimen is wet
or dry (dry bone is stiffer and much more brittle), and the strain rate [29].

There are several ways to measure the elastic properties of bone. The most straight-
forward is to apply a load to a specimen and calculate the elastic properties from the
resulting deformation (or vice versa). Using this methods it is relatively simple to de-
termine Young’s modulus in a variety of directions. Cancellous bone and bone full of
cavities can be tested without there being too many worries about what precisely is
being measured. Also, the effect of the strain rate can be investigated.

A second possibility is to measure the velocity of sound waves in bone. The velocity of
sound in a medium is \/E/p, F Young’s modulus, and p the density. So in theory Young’s
modulus can be calculated from a knowledge of the sound velocity and the density. In
reality this simple formula holds only for isotropic materials and is more complicated for
anisotropic ones. Also, there are some methodological problems when it is applied to
cancellous bone. However, ultrasonic testing can make possible the derivation of all the
stiffness coefficients and, with difficulty, their determination all from the same specimen.
Also, it can be applied to complexly shaped specimens, and in some circumstances, it
can be used in vivo. Both the ultrasonically and the mechanically determined values for
the properties show considerable variation as a function of orientation, with the stiffness
measured along the length of the bone being about 1.6 to 2.4 times as great as that
measured at right angles to it.

The ideas about stiffness and strength applicable to compact bone have to be severely
modified for cancellous bone. The arrangement of trabeculae in space means that can-
cellous bone behaves like a structure as well as like a material. The loads in cancellous
bone can be transferred from place to place by bending moments, and compressive loads
may cause individual trabeculae to buckle. End effects are far more important in can-
cellous than in compact bone, and that makes mechanical testing very difficult. Tensile
tests are made difficult by the problem of gripping the sponge-like structure which is
cancellous bone. It may appear easier to perform compressive tests. However, the ends
of cancellous specimen deform much more under compression than the middle, because
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they consist of many isolated struts which are not supported sideways. A calculation of
Young’s modulus, assuming a uniform deformation of the entire specimen will system-
atically underestimate the stiffness of the bone specimen [29].

Most of these experimental methods cannot supply in vivo data, yet patient-specific
measurements appear to be important, considering the natural variation in material
parameters. In recent years there has been progress in using quantitative computer to-
mograph (QCT) scanning to obtain patient-specific in vivo material parameters. QCTs
report the radiodensity of the material, which is measured using the Hounsfield scale.
The radiodensity can be correlated with the material density, which in turn allows to
estimate Young’s modulus. See Yosibash et al. [97] for a comparison of numerical simu-
lations using this spatially resolved Young’s modulus with experimental data.

Testing the properties of ligament material is equally difficult. The testing procedure
can influence the material properties considerably. Depending on precisely what kind of
information is desired it is possible to perform a range of tests such as uniaxial tension,
strip biaxial tension, and shear. All these tests can be performed at a fixed strain rate,
or under creep and relaxation conditions in order to investigate the viscoelastic effects.
Uniaxial tensile tests are commonly used to determine data on the one-dimensional,
tensile properties of ligaments. Strip biaxial tests are used for samples with a low
length-to-width ratio to minimize the tissue’s lateral stretch. Shear tests provide a
means to obtain information about the contributions of the collagen fibers and the
ground substance matrix, by testing with various orientations of the shear deformation
relative to the fiber directions. Further experiments try to quantify tissue permeability
and assess the role of fluid flow in the mechanics of ligament materials.

There are numerous technical difficulties associated with tensile testing of ligament
material. Ligament specimens are frequently small and are prone to slip from the clamps
of the testing machine. Alternatively, the tissue may fail due to the stress induced by
the clamping. Some investigator have tried to freeze the tissue at the clamped area but
care has to be taken not to appreciably change the overall material properties. Also,
test specimens may have irregular geometries which lead to very inhomogeneous stress
distributions. In order to obtain a homogeneous distribution together with a strong
grip, specimens are frequently cut in a dog-bone shape. For tests of bone-ligament
complexes, special bone fixtures are used to ensure a strong grip and a positioning
ensuring longitudinal loading of the ligament.

The calculation of stress in uniaxial tension experiments requires the accurate mea-
surement of the applied load and the tissue cross-sectional area. While the former is
fairly straightforward, the latter can be quite difficult due to the irregular shapes of lig-
ament cross-sections. Calipers have been used extensively. Their advantage is the ease
of use; however, they require the assumption of a regular cross-sectional shape. Also,
they may introduce errors by deforming the tissue. In recent years, noncontact methods,
such as laser micrometers have gained acceptance. Their accuracy is not impaired by
measurement-induced deformations or shape assumptions.

In order to measure strain in soft tissues, many investigators divide the crosshead
displacement of the testing machine by the initial length of the specimen. This may
introduce large errors due to slack in the system, slippage in the clamps, or inhomo-
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geneities in the strain field. To avoid some of these problems, pins have been attached
to the insertion sites and various other testing points and the distances between the
pins have been measured. Different devices have been used for the distance measure-
ment, e.g., calipers, but also liquid metal strain gauges or Hall effect strain transducers.
Noncontact methods include the video dimension analyzer (VDA) which utilizes a video
image of the test specimen. In its simplest form, two or more reference lines are drawn
on the ligament surface perpendicular to the loading axis. The VDA system tracks the
distance between the lines and converts the distance into a voltage. More advanced
video systems use special image processing software to track point markers instead of
lines. To a certain extend, this allows the measuring of two-dimensional strain as well
as quantifying strain inhomogeneities.

Since experimental determination of material parameters is so involved, few groups
can afford to do their own measurements. Most works in biomechanical simulation take
their parameters from the literature. So do we, and all numerical results in this thesis
will use the values F = 17 GPa and v = 0.3 for bone and E = 330 MPa, v = 0.3 for
ligament. The bone values are an average of the results in Table 1], while the values
for ligaments were reported in [93, Table 1].
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3 Two-Body Contact Problems on
Domains with Curved Boundaries

The simulation of contact between femur and tibia is a central difficulty in the reliable
simulation of the mechanics of the human knee. The main problems are the correct
formulation of two-body contact for objects on domains with curved boundaries and
the efficient and robust solution of the resulting systems. This chapter presents an
algorithm for the fast and reliable solution of large two-body contact problems on free-
form geometries. In subsequent chapters this algorithm will be used as part of a solver
for a more complex knee model.

Contact problems have been treated extensively both in the mathematical and engi-
neering literature. Comprehensive treatments can be found in the monographs of Kikuchi
and Oden [52] and Laursen [64]. It is impossible to provide a complete list of articles
on the discretization and efficient solution of two-body contact problems. Our work is
mainly based on results by Kornhuber and Krause [57] and Wohlmuth and Krause [97].
The basic idea of the new solver stems from Gréser and Kornhuber [42].

3.1 Linear Elasticity

We begin by presenting linear elasticity as a mathematical model for the mechanical
behavior of human bone. This choice has been justified in Sec. B2 where a few more
complex material models for bone were also discussed.

Let © be a bounded, open, connected subset of R%. The dimension d can be two
or three; however we will focus on the case d = 3. We shall think of the closure Q of
the set €2 as representing the volume occupied by a body ‘before it is deformed’. For
this reason, the set Q is called the reference configuration. In the absence of external
forces we assume the body to be in equilibrium there. We denote the domain boundary
by 99 and suppose that it is piecewise Lipschitz continuous. Then, by Rademacher’s
theorem, there is an outward unit normal vector defined almost everywhere on 092 [25,
pp. 32-35], which we denote by v. The boundary is further supposed to consist of two
disjoint subsets I'p and 'y, where I'p is expected to have nonempty (d — 1)-dimensional
measure and I'p UTxy = 99Q. We assume that the body is clamped at I'p and that
surface force (Neumann) boundary conditions are prescribed on I'y.

If the body is subjected to surface and volume forces it will deform and take on a
new equilibrium configuration (see Fig. Bl). This new configuration is described by a
function

v: 0 —RY
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Figure 3.1: Reference configuration €2 (solid line) and
deformed configuration (dashed).

which assigns to each point in the reference configuration its position in the deformed
configuration. In order to make sense physically, the mapping ¢ must be orientation-
preserving in € and injective on €. In linear elasticity, the function

u:Q— R u(z) = ¢(x) — =z, (3.1)

is more commonly used. We follow the convention of the continuum mechanics commu-
nity to use bold-face symbols for vector-valued quantities.
Let e;, 0 < i < d be the canonical basis vectors of R?. For a given deformation

function
d—1
Y = Z i€
i=0

we define at each x € Q) the deformation gradient

990 ... _Opo_
Oz 0xrg_1
Ve=1 + -~ | (32)
Opa—1 . Opa-
8330 8md,1

Since, by assumption, a deformation is orientation-preserving, we have

det Vp(z) > 0

for all x € Q. In particular, for all z € Q, V(z) is invertible. We denote the set of all
real d X d matrices with positive determinant by RiXd.

The deformation gradient completely specifies the local deformation to within first
order [25]. However, it does not exhibit the invariance under rigid-body motions one
would expect from a measure of deformation. To obtain this invariance, the right Green—
St. Venant strain tensor

E : Q-8
B) = (V! @)Ve(r) - 10)
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is introduced, where S? is the space of symmetric second-order tensors in R? and Id
denotes the identity. The tensor E is invariant under rigid-body translations and rota-
tions |28, Thm. 1.8-1]. In terms of the displacements u we have

1
E= i(VuT + Vu+ Vul Vu). (3.3)

If it is known a priori that strains and rigid-body motions remain small, then the
quadratic term in (B3]) can be truncated to yield the linear strain tensor

1
€= i(VuT + Vu).

As bone only undergoes small strains when subjected to physiological loadings, we will
use € as the strain measure unless explicitly stated otherwise. The linear strain is
invariant under translations, but not under rotations.

Deforming a body will lead to stresses, which, intuitively, are the forces that want to
return the body to its stress-free configuration. The existence of stresses is stated by
the following fundamental axiom of continuum mechanics. For a detailed treatment of
the necessary smoothness assumptions see [25].

Axiom 3.1.1 (Stress principle of Euler and Cauchy). Consider a body occupying a de-
formed configuration QF = »(Q), and subjected to applied forces represented by densities
£ .09 - R3 and t9 : TS = p(Ty) — R?. Then, if Q®, £, and t¥ are sufficiently
smooth, there exists a continuously differentiable field of symmetric tensors

T : 0% — s,
such that
—div T?(z%) = £9(z¥) for all z# € Q¥ (3.4)
and
TP (x?)v? = t¥(z?) for all 2% € T'%.

The divergence in (BA) is to be interpreted with respect to the spatial coordinates % =
p(x), and v¥® is the unit outer normal vector along T'%.

The equations (B4 are the equilibrium equations on the deformed configuration. They
need to be reformulated as equations on the undeformed configuration 2. To this end,
we introduce the second Piola-Kirchhoff stress tensor o : @ — S by setting

o (x) = det(Vep()) Vip(a) " T(p()) Vep(a) 7

The tensor o is again symmetric. In problems of linear elasticity, where we assume V¢ ~
Id, the difference between o and T¥(p(z)) can be disregarded. Also, the deformed
quantities can be replaced with the undeformed ones. Eq. [B4]) then reads

—dive(z) = f(x) for all z € Q, (3.5)
olx)v = t(x) for all z € T'n.
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3 Two-Body Contact Problems on Domains with Curved Boundaries

These are the equations of equilibrium on the reference configuration. To obtain a
well-posed problem, the Dirichlet boundary conditions

u=20 onI'p

need to be prescribed.

So far our considerations have been independent of a specific material. Properties of
the material in question enter the picture in form of constitutive relations, which link
stresses to strains. A material is called elastic, if the stress o at a point x € 2 depends
only on the deformation gradient at x at the same time, and possibly on z,

o(x) =0(Ve(z),z). (3.6)

The response function & : ]R‘j_Xd x 0 — S? characterizes the material. By the principle
of frame indifference, the dependence on V¢ must be on the strain only, i.e., there is a
second response function & : S x Q@ — S¢ with

&(Ve(a),2) = &(V(a) Vep(a),a).

A material is called homogeneous if ([BH]) does not depend on its second argument. It
is called isotropic if it behaves the same ‘in all directions’, i.e.,

6(FQ,r)=6(F,z)  for all F € R>? and Q € SO(d).
A material is hyperelastic if there exists a stored energy function
W R x Q- R
such that the stress is a derivative of this function

o(z) =6(F,z) = %—‘;/(F,x), for all F = Ve € R and z € Q.

Here OW/OF denotes the matrix of partial derivatives of W with respect to the compo-
nents of F. If, additionally, the applied forces are conservative, i.e., can be written as
gradients of an energy functional, solving the boundary value problem (BH) is formally
equivalent to finding the stationary points of a total energy functional 7, subject to
the constraints that det Vo > 0 and that ¢ assumes the Dirichlet boundary values on
I'p [25]. If the applied loads are dead loads, i.e., independent of ¢, the total energy is
given by

J(p) = /S]W(ch(:n),x) dx —/chp dx — /FN tpds. (3.7

Arguments from thermomechanics suggest that the assumption of hyperelasticity is phys-
ically reasonable, as an elastic material is hyperelastic if and only if the work done in
closed processes is nonnegative [45].

For certain materials one may assume a linear relationship

oc=C:e (3.8)

26



3.1 Linear Elasticity

between the second Piola-Kirchhoff stress o and the strain €. The proportionality factor
C is a fourth-order tensor which is called Hooke tensor. The : symbol denotes tensor
contraction and is defined by the component-wise relation

d—1
Oij = Z Cijrier, for i,j € {0,...,d—1}.
k=0

The d* components of C are subject to various restrictions due to the symmetries of €
and o. If the material is isotropic is turns out that C depends only on two parameters
E and v, and that (B8] reduces to
Ev
(tre)ld +

&) =T -m) 11v

Materials which behave like ([B3l) are called St. Venant—Kirchhoff materials. The pa-
rameters £ > 0 and 0 < v < 1/2 are called Young’s modulus (or elastic modulus) and
Poisson ratio, respectively.

Inserting the linear material law (B8)) into the equilibrium equations (B3] we obtain
the equations of linear elasticity in their strong form

E. (3.9)

—div[C:e(u)] = f inQ, (3.10a)
u =0 on I'p, (3.10b)
ocluy =t on I'y. (3.10c)

This problem will now be reformulated in two useful ways. For further reference
we introduce several function spaces. Let L?(2) be the space of all square-integrable
scalar functions on  and H'(f2) the Sobolev space of scalar functions on 2 which are
weakly differentiable. Let L2(Q) = (L?*(Q))? and HY(Q) = (H'(22))¢ be their vector-
valued counterparts. We denote by H}(2) and H}(€) the subspaces of those functions
in H1(Q) and H!(2), respectively, which are zero in the sense of traces on I'p. Finally,
we introduce HY/2(T'y) as the space of traces of functions in H'(Q2) on 'y C 9.

Hooke’s law corresponds to the quadratic energy density

W(Vep(z),) = %s(v(m)) . C:e(v(a).

With this choice, the hyperelastic energy functional [B1) takes the form

J(v) = %a(v,v) ). (3.11)
with the bilinear form
a(v,w) = /Qs(v(m)) :C:e(w(z))dx v,w € H(Q), (3.12)
and the linear form
l(v) = / fvdx—i—/ tvds, v € HY(Q). (3.13)
Q I'n
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3 Two-Body Contact Problems on Domains with Curved Boundaries

Hence (BI0) corresponds to the minimization problem to find a u € H}(€) such that
Ju) < J(v),  forall ve H)(Q). (3.14)

By Korn’s inequality, if I'p has positive (d — 1)-dimensional measure, the bilinear form
a(-,-) is Hj-elliptic, i.e., there exists a v > 0 such that

a(v,v) > v||v|? for all v € H}. (3.15)
This is used in the following result.

Lemma 3.1.1. Let I'p have positive (d — 1)-dimensional measure. Then J is strictly
convex and coercive on Hy, and J has a unique minimum on H§(Q).

Proof. [35]. O

Alternatively, there is a corresponding variational formulation of the linear elasticity
problem.

Lemma 3.1.2. The minimization problem (BId)) is equivalent to finding u € H}(Q)
such that
a(u,v) =1(v), for all v € HY(Q). (3.16)

Suppose that € is polygonalﬂ and partitioned by a simplicial grid G. We assume that
G resolves the partitioning of the boundary in I'p and 'y, and that it is quasiuniform,
i.e., there exists a constant s such that each element E contains a sphere of radius
pE > hg/k, where hg is the diameter of E. We call V the set of grid vertices. The
scalar quantity h denotes the length of the longest edge in G and is hence a measure of
its resolution.

Since €2 is polygonal, the outward unit normal v is piecewise constant and discontin-
uous across edges of 0{2. In order to obtain a well-defined normal at grid vertices we
introduce the averaged vertex normal

b - > reoaper V(T)
P 1 resqper V(D]

for each vertex p of 9€2. Here we have used T to denote the triangles of the grid boundary.
The set of vertex normals can be extended by linear interpolation to yield a continuous
normal field & : 9Q — S9! where S%~! is the (d — 1)-dimensional unit sphere in R%.

Standard first order finite elements will be used to discretize BI6]). We call V,(G) =
(Vh(G))d the space of vector-valued, continuous functions which are linear on each sim-
plex of G, and Vj, o the subset of those functions of Vj, which are zero on I'p. Let
a(-,-) and I(-) be given by @IZ) and ([BIF), respectively. Since Vo C H} these forms
are well-defined on Vy o, and a(-,-) is Vj,g-elliptic. The discrete counterpart of the
continuous minimization problem [EI4) is to find a uy € Vo such that

(3.17)

J(uh) < J(Vh), for all vj, € Vy,. (3.18)

We will show in Sec. how nonpolygonal domains can be approximated arbitrarily well.
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3.2 Two-Body Contact in Linear Elasticity

Note that since J is coercive and strictly convex on Hé it is so in particular on Vj, .

Making use of the ellipticity of a(-, ) on V}, o we get the following result (see, e.g., [21]).
Denote by |[|-]|; the norm in H'(2) and by H?(Q2) the second-order Sobolev space with
the norm |-||2.

Lemma 3.1.3. The minimization problem BIR) has a unique solution . If u is the
unique solution of the continuous problem BId) and u € H%(Q) then

lup — ully < Chljul
holds with a constant C' independent of h.

Just as in the continuous case there is a variational equality corresponding to the
minimization formulation (BI).

Lemma 3.1.4. The function uy, is a solution of BIF) if and only if up, € Vi o and
a(up,vy) = 1(vy) for all vi, € V. (3.19)

Let v, € Vj, 0 be the scalar nodal basis function corresponding to the vertex p. Using
the canonical basis vectors e;, i = 0,...,d — 1 of R? we also define the vector-valued
nodal basis functions ¥, ; = ¥pe;, p € V\I'p, i =0,...,d — 1. Let n be the number of
non-Dirichlet vertices in G. Writing finite element functions with respect to this basis
we arrive at the algebraic energy functional

1
J(v) = §UTA’U —bv v e R, (3.20)

In an abuse of notation we have given it the same symbol as the corresponding functional

on V. The matrix A € R*" hag a block structure of d x d submatrices. For p,q € V,
the block entry A,,, p,q € V is given by

(Apadis = [ elyi@)): C: elysla) o (3.21)
and the right hand side vector b € R%" is defined by

(by): = /Q £ap, ds + /F 4y ds. (3.22)

Here and in the following we use two indices to specify the components of a vector
b€ R™. By (bp)i we mean the component corresponding to the vertex p and the i-the
coordinate direction. The variational equality (BI6]) reduces to the linear system

Au = b,

where u € R%™ is the vector of coefficients of the solution function uy,.
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3 Two-Body Contact Problems on Domains with Curved Boundaries
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3.2 Two-Body Contact in Linear Elasticity

Figure 3.2: Two-body contact problem.

In this section we introduce the formulation of the contact conditions. Our exposition
is mainly based on [95]. However, there it was implicitly assumed that the two contact
boundaries coincide in their reference configurations. If this is not the case, a contact
mapping is necessary which identifies the two contact boundaries. Formulations including
contact mappings can be found, e.g., in [17, 134].

Let Q1, 9 be two disjoint domains, each with a piecewise Lipschitz continuous bound-
ary, and set {2 = Q; UQs. The boundaries are each supposed to consist of three pairwise
disjoint subsets I'; p, I'; v, I'; ¢ with

oQ; = fi,D Ufi,N U fi,C, 1€ {1, 2}.

Both I'; p and I'; p are expected to have positive (d — 1)-dimensional measure. The
boundary parts I'i ¢ and I's ¢ are the contact boundary, which is where we expect
contact to occur. More precisely, while the actual zone of contact is an unknown of the
problem, the model contains the assumption that it will be a subset of I'; ¢. This is not
a serious restriction in small deformation mechanics.

Under applied loads, the two bodies will deform and take on new configurations.
As is customary in linear elasticity we will specify deformations by their displacement
functions u; : Q; — R%, i = 1,2 BI). In the context of linear elasticity we assume
these displacements to be small. In Sec. Bl it was shown that in the absence of contact
the equilibrium displacement functions are solutions of the following boundary value
problem

—dive(u;) =f; on €, (3.23a)
u; — 0 on Fﬁp, (3.23b)
o(w)v, =t; on I'; v, (3.23¢)

for i € {1,2}. Here, f; : Q; — R% and t, : Iin — RY are prescribed volume and surface
forces, respectively. The outward unit normal vectors of €2; are denoted by ;.
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3.2 Two-Body Contact in Linear Elasticity

In order to model the contact between the two bodies, further conditions have to be
prescribed at I'; ¢. To this end, we introduce a homeomorphism ® : I'y ¢ — I'y ¢, which
we call the contact mapping. It forms an a priori identification of points on I'y ¢ and I'y ¢
which may come into contact with each other. There is a certain amount of choice in its
construction; see [34]. To be specific we take ® to be the normal projection of I'y ¢ onto
'y ¢ and assume that I'y ¢ and I'y ¢ are chosen such that this is possibleE The contact
mapping allows to define the initial gap function g : I'y ¢ — R with g(z) = |®(z) — z|
and the relative displacement

o = J]H' () - HY2(T0),
ule = wilr, o —u2lr,.0?, (3.24)

where o denotes function composition. We can now state the linearized nonpenetration
condition
(ulp,v1) <g, forallzelc. (3.25)

Let v1 have the components v;, 0 < ¢ < d. The Kuhn—Tucker conditions for the con-
straint (B20) are

Ov,y (u1)|F1,c = Oy (u2)|F2,c o® <0, (3'26)

(([ule,v1) = g) - ou (W)lr, e = 0, (3.27)

with the normal pressure o, = Z@ ; Vioijv; playing the role of the Lagrange multiplier.

Condition (20 ensures that the normal stresses at the contact boundary have the
character of a pure pressure. Equation BZ1) states that there can be non-vanishing

normal pressure at I'; ¢ only if there is contact. Setting (o7); = Zj OijVj — Ou, Vi,
i =0,...,d —1 we also prescribe
or(w)lr, o = or(uz)lr, . o ® =0, (3.28)

which is the absence of friction. See |11, 134] for detailed derivations of these conditions.
For existence, uniqueness and regularity results, we refer to [11].
Define the set of admissible displacements

K={ve HH%(Q,) | (V]e,v1) <9, ae.}, (3.29)

and note that it is closed and convex. In analogy to [BI4]) we can write the contact
problem in minimization form [17].

Lemma 3.2.1. Let u be a solution of B23)) subject to B2H) and B2T). Then u € K
such that
J(u) < J(v) Vv ek, (3.30)

where J : H! — R is given by (BI1).

*Note that in contrast to Krause and Sander [6(], we use the normal on I'y ¢ instead of T2 c.
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3 Two-Body Contact Problems on Domains with Curved Boundaries

From Lemma BII] we know that J is strictly convex and coercive on K C H§(Q).
Using convex analysis [35, Prop. 1.2] we can directly show the following.

Lemma 3.2.2. The minimization problem [B3W) has a unique solution.
We further get the following equivalence [17].

Lemma 3.2.3. Let u be a solution of [B3M). Then u also solves the variational in-
equality
uek : a(u,v—u)>Il(v—u) Vv € K. (3.31)

Conversely, let u be a solution of B3). Then it also solves [B30).

3.3 Discretization Using Mortar Elements

Having presented the discretization for the linear elasticity problem in Sec. Bl we now
turn to the discretization of the contact conditions (B220) and (B228]). Various approaches
can be found in the literature. Nodal collocation has been popular for a long time [64].
In recent years, weak formulations have been shown to yield much better estimates [48].
In particular, the mortar approach has been used with great success because it provides
great flexibility and yields stable discretizations for nonmatching grids.

Let W be the trace space of Hol(Ql) restricted to I'y,c. Assuming that fl,(; is a
compact subset of 0§ \fl,D we have W = Hl/Q(I’LC). Let

W+:{w€W| wZOa.e.}

be the cone of positive functions in W.
The mortar method replaces the pointwise inequality in ([B29) by a set of weak con-
straints [4&]

K = {v e [T | n((vla.va) < ul) Vue M),

where the mortar space M is the cone of all positive functionals on W,
MY ={p:W" = R| p(w) >0}. (3.32)

We assume that I'y ¢ is resolved by the grid and denote by Vi ¢ the set of grid vertices
on I'y ¢. Wohlmuth [96] proposed to discretize M+ using dual mortar basis functions
{6}. For simplicial grids the functions 6, : I'i c — R, p € Vj ¢, are defined elementwise
for T' € 'y ¢ such that supp 6, = supp v, and

ap’T = (dwp - Z ¢q)‘T-
q€T,q#p

They are compactly supported, piecewise linear functions, and form a partition of unity.
They are, however, discontinuous (see Fig. B3)). Most importantly they fulfill a biorthog-
onality relation with the nodal basis functions {¢}. Let T be a simplex in R or R? and
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3.3 Discretization Using Mortar Elements

Figure 3.3: Dual mortar basis functions in 1d and 2d.

let v, and 60, be the nodal shape function and dual mortar shape function for the vertices
q,p € T, respectively. Then

/ Opthg ds = 5pq/ g ds.
T T

Since I'y ¢ is resolved by the grid we have

/ Opthg ds = Opg / g ds (3.33)
FLC FI,C

for all dual mortar functions 6, and nodal basis functions 1, associated to vertices
p,q € V1,c. With
W}:L = {wh € Vh(FLC) | wp, > 0}

the discrete cone of positive traces we define the discrete positive mortar cone
M;LL = {,uh € spalper, 0, ‘ /F upwy ds > 0, Ywy, € W,f}
1,C
and the set of discrete weakly admissible displacements

K = {Vh € th,o(ﬂi)

[ idewdmds < [ guds v enf} 330
FLC rll,C

Note that we have discretized the functionals p(-) € M™T by L2-functions pj, € M,
which are functionals in the sense of yup(-) = [p - pnds.

Let J be given by (BIIl). We state the discrete minimization formulation of the
mortar-discretized two-body contact problem, which is to find a uy, € K, such that

J(up) < J(vp) Vv € Kp,. (3.35)

Using the same reasoning as for the continuous case (Lem. B.ZZ2)) we obtain existence
and uniqueness of solutions.
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3 Two-Body Contact Problems on Domains with Curved Boundaries

Lemma 3.3.1. The discrete minimization problem B3H) has a unique solution.

In complete analogy to the continuous case there is also a formulation of the contact
problem as a variational inequality: find uy € K, such that

a(uh, vp — uh) > l(Vh — uh) Vv, € Ky, (3.36)

So far only partial results concerning the a priori error of the mortar discretization
for contact problems are available. For the case that v is constant on I'y ¢ and g = 0,
Hiieber and Wohlmuth [4§] showed that

1
= anlly + = pnll -y, o < CREuls g

if u € H%+€(Q), 0<e< %, and an additional technical regularity assumption holds
M&, Assumption 3.1]. Here, u and uy, are the solutions of the continuous (B31) and the
discrete (B30) problem, and p € M™ and p, € M,‘f are the corresponding Lagrange

multipliers. ||-[[§ = >,_; ol o, is the broken H'-norm, and |-|5, g, is the half-norm in
> »wig 2TE

H%+€(Q). This result is optimal, but it only holds for straight contact boundaries. For

curved interfaces and the Laplace equation —Awu = f on two subdomains with equality

constraints, Flemisch et al. [36] showed the similar result that if u € H?(Q),

< hC(u).

Ti,c =

[ = wnlly + [l = gl -1

Note, however, that the interface normal v1 does not appear in the problem formulation,
since it is a scalar problem. Also, the constraints are equality constraints, that is, the
multipliers p are not restricted to the positive cone. A result for contact problems with
curved, nonconforming contact boundaries seems to still be missing.

Let v € R%" be the vector of coefficients of a finite element function v;, € V},o(2) with
respect to the nodal basis {t/}. We split the vector into four subvectors v{, vlc, vl vzc,
where the vic,z' = 1,2, correspond to the vertices on the contact boundaries I'; ¢, and
the vl-l correspond to the remaining nodes of the respective grids. The set K, of discrete

weakly admissible displacements can then be written algebraically as
Kag = {ve R4" ‘ Dvf — M < g}, (3.37)

where g € RVl with g = fFlC g0, ds. The matrices D and M have dimensions
Vi,c| x dV1c| and V1] x d|Va |, respectively, and the entries

1

D,, = / Op{tqilr, or V1) ds
I'e
B / prq’/{ ds, p,q € V17C7
e
Mpq/ = / 9p<"an’,z‘|l“2,c Oq)’I/1>dS
e

= / Op(thy o @)} ds, pEVic, ¢ € Vac.
e
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3.4 The Truncated Nonsmooth Newton Multigrid Algorithm

If we replace the domain normals v in the expressions for D and M by the averaged
vertex normals ,,p € Vi ¢, we can move them out of the integrals and obtain the
modified admissible set

Kag = {v € R™ | NDv{ — NMv§ < g}, (3.38)

which we will consider exclusively from now on. The matrix N has the dimensions
[V1,c| x d|V1,¢| and is block-diagonal with the entries Ny, = &L, p € Vi ¢. The matrices
D and M have dimensions d|V; ¢| x d|V; ¢| and d|Vi ¢| x d|Va2,c/|, respectively, and the
entries

Dpg = Iddxd/ Opthg ds, p,q € V1,0, (3.39)
T'ie

My = Iddxd/ Op(1g o @) ds, pEVic, ¢ € Ve (3.40)
T'ie

Using B33)) it follows that D is a diagonal matrix. The assembly of the matrix M,
involving the contact mapping ®, is difficult enough to warrant its own section. We will
cover the technical details in Sec.

From (B38)) the advantage of using dual mortar basis functions becomes evident. Since
D is diagonal it is easy to invert and the constraints (B38) can be localized. This will
be used in the next section.

We can now write down the complete algebraic problem. Again there is a minimization
formulation and a formulation as a variational inequality. Using the energy functional
J ([BZ0), we say that u € Ky, is a solution of the algebraic two-body contact problem if

J(u) < J(v) Vo € Kalg. (3.41)

Let A be the stiffness matrix given by (BZIl) and b the force vector [B2Z). The solution
of ([BZI]) can also be characterized as the unique vector u € K,i, for which

ul A(v —u) > b(v — u), Vo € Kalg.

This corresponds to the variational inequality for finite element functions (B30).

3.4 The Truncated Nonsmooth Newton Multigrid Algorithm

Wie wir sehen, kann eine gute Idee eine Menge Arbeit ersparen.
(Deuflhard & Bornemann, Numerik II, p. 242)

Various algorithms have been proposed for constraint convex minimization problems
like (B). Important examples are penalty methods [64], active-set methods [62], and
monotone multigrid methods [95]. Penalty methods involve a parameter which has to
be chosen with care. Active-set methods are expensive, unless the inner problems are
solved inexactly. Then, however, they suffer from robustness problems [59]. Monotone
multigrid methods (MMG) converge globally and with the asymptotic rate of linear
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3 Two-Body Contact Problems on Domains with Curved Boundaries

multigrid. This makes them very useful for biomechanical contact problems [5§]. The
price, however, is a fairly difficult implementation, especially if the domain boundaries
are allowed to have non-constant normals. In this section we present the Truncated
Nonsmooth Newton Multigrid algorithm (TNNMG), which has recently been proposed
by Gréser et al. |42, 43]. It is considerably simpler to implement than the monotone
multigrid method yet retains all the favorable properties. In Sec. we compare the
two methods numerically.

The underlying idea of both MMG and TNNMG is the following convergence result.

Lemma 3.4.1 (|42, Lem. 5.14]). Let

Kag= ][] laibi]l  ai€{-00} UR, b €RU{oo}, (3.42)

0<i<dn

9GS : Kayg — Kayg be the projected Gaufi-Seidel iteration operator and € : Kqy — Kayq
such that
J(E(v)) < J(v) (3.43)

for all v € Kay. Then the iteration
u' = €(47 (u))
1s globally convergent.

In view of this lemma, the essence of designing a good multigrid method is to find
a coarse grid correction operator % which yields ‘good’ corrections while retaining the
monotonicity property (B43]). The monotone multigrid method, which is the spiritual
father of TNNMG, restricts the corrections with certain defect obstacles in order to
ensure admissibility of the iterates. Numerical experiments show that convergence can
be much faster if a linear multigrid step without obstacles is used. Such a correction step,
however, does not map K, onto Kyjg, and LemmaBZ Tl does not apply. To combine both
provable global convergence and fast effective convergence in a single method we propose
to use the linear multigrid correction, but to project it on the defect obstacle and do a
line search in this projected direction [43]. The resulting algorithm is globally convergent
(Thm. BZTl), simple to implement, and shows very good convergence behavior (Sec. B.F]).

Applying TNNMG to multi-body contact problems involves a difficulty not present
in the generic formulation of the algorithm. The set /Cyg, defined in ([B38]), does not
have the product structure (5:42]). However, a special basis {4p} of V}, can be chosen in
which the algebraic admissible set ICaj has the form ([BZ2)). This trick was first used by
Wohlmuth and Krause [95] for the monotone multigrid method.

Each iteration of TNNMG consists of four steps, which are now described in detail.

1. Nonlinear presmoothing
Let O be a block-diagonal matrix with each diagonal block O, the Householder
reflection which maps eg onto ©, if p € Vi ¢ and Idgxq if p ¢ Vi, c. Note that
Op_p1 = Og;). Order the nodal basis vectors {1} in a block vector

() = (! ¢ i p§)"

36



3.4 The Truncated Nonsmooth Newton Multigrid Algorithm

4L 7
uV+2 + dP

ol 5
D a2 +d

Figure 3.4: Guaranteeing monotonicity: the coarse grid correction d is projected onto
Kag. Then a line search finds the minimum u” 1 in the direction from

@tz to @2 + d in Kalg. Since j(gl”r%) < J(u”) by the monotonicity
of the projected block GauB-Seidel smoother and J(u**') < J (ﬂ”+%) by
construction of u¥*! the overall iteration step is monotone.

as for (B37) and introduce the mortar transformation matrix

1 0 0 0

0 I 0 0
B= 0 0 I 0
0 (D°'M)T o0 I
Define the transformed basis
{1} = OB{¥}. (3.44)

Quantities with respect to the transformed basis {1&} will be denoted by a tilde.
In the basis ([B44]), the minimization problem (BTl takes the form

J(@) < J(@)  forall J(7) € Kayg, (3.45)

where the new functional J is defined by

- 1 o~ -
J(®) = 517TA6 — b

with _ B
A=0BABTO" and b= OBb.
The transformed admissible set reads
,Ealg = {U S R™ { Up,o < (D_lg)p, Vp € Fl,C’}-

It has the product structure (8:42)) and hence a projected Gaufi—Seidel method for
the transformed problem (BZH) converges [41]. Let @” be the current iterate in
transformed coordinates. We do one or several projected GauB3—Seidel smoothing
steps, and call the smoothed iterate vt
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2. Truncated defect problem

We now consider the algebraic defect problem with respect to the smoothed iterate
@¥*+2, which is to find a d € R such that

~ - - - . ~pil
d"A@—d) > b— (@) A0 —d) forallveKy?,
with the defect obstacle

~py 1
1/+2

_ ~ 1
Kog? = {v€R™ | v, < (D'g), — (@F2),0, ¥p € T1 0}

Define the current active set
o/ ~u+1 ~p4l —
V(@) ={peVic| (@ 2),0=(D""g)}.

We would like to construct a coarse grid correction d € R such that

dyo=0  forall pe V*(at2).

This can be achieved by truncation [56]. Define the truncation matrix 7% € Rnxdr

by )
(1), =1t P =i péE Ve (at2),
pa 0 else,

and use it to set up the truncated defect problem in canonical coordinates

1
vty

dTA\l/(,U _ d) > f’j(v — d) for all v € lCalg )

(3.46)
with
A = (B'oT)ABrOT")T  and ' = B lOT"(b— (@ T2)TA). (3.47)

This can be computed efficiently since B~! is available by the formula

I 0 0 0
0 I 00

-1 _
B =1y 0 I0
0 —(D*M)T 0 I

1
We do not bother to specify the appropriate obstacle set ICZ;;Q as it will not be

used in the algorithm.

. Admissible coarse grid correction

The next step is a linear multigrid step for the defect problem (BZf), restricted to
the subspace

V4= {v e R™ | (OBv),0 =0, ¥p € V*(i*2)},
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1
and disregarding the obstacles IC;:?.

linear defect problem

In other words, we consider the truncated

Avd =7, (3.48)

The restriction to VY. ensures that ([E48]) is uniquely solvable. In algorithmic terms
the Gauf—Seidel update formula

k+1 _ 1 N Av gk+1 v gk .
d* == =Y AL N AvdE | i=1,2,...dn,
i j<i §>i

is replaced by

1 N7 Av gk+1 Av gk i Av
gk — ) A <7"i - Zj<i Aijdj - Zj>i Aijdj> , 1AL #0,
KL —

0 else.

Let d be the resulting correction after one multigrid step in canonical coordinates
and
d=T"0"'Bd
the correction in transformed coordinates. Since d may not be contained in the
~py1 1 ~p4+ L
defect admissible set IC:IEQ, we project it onto IC;/l;Q in the /2 (Euclidean) sense to
obtain dF.

. Line search

The correction dF is admissible with respect to the defect obstacle l%;;; %, however,
due to the projection step we may not have j(ﬂ”+% +dP) < j(ﬁ”+%). To regain
monotonicity of the method we perform a line search step within 16:1;% in the

direction of d¥ and define the overall new iterate as
@t =@t - ad
Since J is quadratic, the optimal line search parameter @ can be computed effi-

ciently as
T (svtsNT\AGP
a:min{(b (ZL 22~)Ad ,\I’},
(dP)T AdP

with the line search obstacle

a1
= . (D_lg)p — (1 +2)p,0‘

Note that, by construction, "+ € Izalg and we have an admissible next iterate.
Also, J(urth) = J(@*t') < j(gl”r%) < J(@) = J(u”) and hence the overall

algorithm is monotone.
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Using monotonicity and the property ([B42) of Ealga global convergence follows from
Lem. B4T1

Theorem 3.4.1 (|42, Thm. 6.4]). For any initial iterate v’ € K4, the Truncated
Nonsmooth Newton Multigrid algorithm converges to the unique minimum u of J in

Kalg-

In the actual implementation the fine grid matrix uses up most of the memory. It
is therefore inconvenient to store both the transformed matrix A and the truncated
canonical matrix A on the finest grid. It is more efficient to omit the linear fine grid
smoothing and do the linear correction only on the next-coarser level. Truncation,
the transformation [BZ1), and the standard multigrid restriction operator R can be
combined in a single special-purpose restriction operator

R=RBHToTT",

which is used for the transfer from the finest to the second-finest grid.

3.5 Implementing the Contact Mapping
A crucial component of the contact formulation is the homeomorphism
d . PLC — P27C

used in [B24) to identify the nonmortar with the mortar contact boundary. For the
implementation of the mortar-discretized contact problem we need to evaluate the entries

Mpq = Iddxd/ Hp(¢q o ®)ds, pE€Vic, ¢ € Vo,
T'ie

of the mass matrix M (see Sec. B3). For this we need to be able to evaluate ®(z) € I'y ¢
for each = € I'y ¢. We restrict the exposition to simplicial grids in three space dimen-
sions. The generalization to two-dimensional grids and grids involving quadrilateral faces
is straightforward. Since ® will be called many times during the assembly of M, its eval-
uation needs to be cheap. Also, we would not like the construction of the mapping to be
of higher complexity than a multigrid cycle, which is in O(|V|) for first-order Lagrangian
finite elements.

Our implementation of ® has been described briefly in [6(]. We will repeat it here in
some more detail. For ease of notation in this section we will write I'y and I's instead
of I'y ¢ and T'y ¢. We begin with the presentation of a data structure that is suitable to
hold piecewise affine homeomorphisms between triangulated surfaces in R3. Then, we
will show how the projection of I'; in normal direction onto I's can be implemented as
an actual instance of a contact mapping.

As an introductory reminder, remember that a graph G is a finite set of vertices V
together with a set E of unordered pairs of vertices which are called edges. Equip each
vertex v € V with a position p(v) € R2, and each edge e = (vg,v1) with the line segment
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Figure 3.5: The edge graph of I'; ¢ embedded in I'; ¢.

from p(vp) to p(v1). If none of these segments intersect except at vertices then the graph
together with the embedding into R? is called a straight-line plane graph @] Note
that each plane graph divides R? into a set of regions. If each region except for the
unbounded one is a triangle, G is called a triangulation. More generally we can define
embeddings of graphs into general triangulated surfaces.

Definition 3.5.1. Let G = (V, E) be a graph and S C R® a triangulated surface. With
each vertex v € V associate a position p(v) € S, and with each edge e = (vg,v1) € E
associate a set of open line segments n. = {(eo,€0),- .., (en.,en.)}. If

e p(vo) = eo, p(v1) = €n., & = €iy1,

e for each (e;, &;) there exists a triangle T of S such that (e;, &) C T,

'..e.) we have (e;,&;) N (e, &) =0,

e for any two segments (e;,€;) and (€}, €; 5 €

then (p,n) with n ={n. | e € E} is called a piecewise straight embedding of G in S.

A graph embedded into a triangulated surface S subdivides S into regions. In general
these regions do not coincide with the triangles of S.

Let G1,G2 be two simplicial grids that resolve I'y and I's, respectively. Hence I'y
and I'y are triangulated surfaces and we assume that their embeddings into R? are
homeomorphic. This means that there exist functions = : I'y — I'y which are continuous
and have a continuous inverse. We are interested in a data structure that can store
piecewise linear homeomorphisms from I'; to I's.

Definition 3.5.2. Let N, M be triangulated surfaces. A function = : N — M 1is called
piecewise linear if for each pair of triangles Ty € N and Thy € M the restriction of =
to Ty NZE~YTyy) is an affine function.

Denote by V;, i € {1,2}, the set of vertices of the triangulated surface I';, by &; its set of
edges, and by F; its set of triangles. The vertices V5 and the edges & form the edge graph
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Figure 3.6: Implementation of a piecewise linear
mapping = as a graph on I'j. Graph
node types are corner (®), touching
(W), intersection (OJ), ghost (O), and
inner (no symbol).

Gs of the mortar boundary. Let = : I'y — I's be a piecewise linear homeomorphism. The
preimage Z~1(Gs) of G under Z is a graph embedded in T'; with piecewise straight edges
(Fig. BH). This graph embedding contains all relevant information about =. Therefore,
the mapping = : I'y — I's can be stored using a data structure for graphs on I';.

Remark 3.5.1. We actually allow the slightly more general case of functions = whose
domain of definition is a subset of I'; (Fig. BX). See, however, Remark B53l

The foundation of the data structure for piecewise straight homeomorphisms 2 : 'y —
I'y is a data structure for the domain surface I';. We store a set of vertices v; € R3,
0 < i < V1], and a set of triangles represented as triples (jo,j1,72) of vertex indices.
Additionally, for each triangle T' € F7 we store a plane graph consisting of a set of nodes,
each storing its local position on 7', its position on I's, and a list of all of its neighbors.
This graph encapsulates the preimage of the edge graph of Z(7).

We introduce five different types of graph nodes. There are (Fig. B0l):

Inner nodes: These are nodes in the interior of a triangle T'.

Corner nodes: These are nodes on the corners of T" which are preimages of vertices of
[y, If v € V) is the vertex corresponding to corner node ¢ then there is a copy of
c on each triangle 7" € F; with v € T".

Touching nodes: These are nodes p on an edge k& C 9T, but not on a corner of T. If
there is a second triangle T” with k C OT", this adjacent triangle T” also stores a

copy of p.

Intersection nodes: For any edge e = (vg, v1) € &9, the corresponding preimage =~ (e)
is generally not contained in a single triangle of I';. Starting at Z~!(vg) € T} and
following Z~!(e) towards Z~!(v;) € Ty, at some point one will leave T} and enter
another triangle (not necessarily 7). Thus the restriction of the edge graph of
I's to Ty is not a graph in its own right, because the line segment Z~!(e)|7, does
not connect two graph nodes. To remedy this, an intersection node is inserted at
the point where Z71(e) leaves T1, and a corresponding one on the boundary of the
adjacent triangle where the path Z7!(e) continues.
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Ghost nodes: If a corner ¢ of a triangle 7" € F; does not get mapped onto a vertex of
I', a ghost node without any neighbors is added at c.

Thus, only the first three types of nodes correspond to vertices in I's. Each node
p stores its image Z(p) € I'y by storing a triangle 7' € F» with Z(p) € T and local
coordinates of Z(p) with respect to T'. Finally, each triangle T € F; keeps three arrays
containing the nodes on the three triangle edges in cyclic order, and each node on an
edge knows its index in the corresponding array. That way, corresponding nodes on
adjacent triangles are identified, and it is possible to efficiently track preimages of edges
of 'y across multiple triangles of I'y.

Note that while globally Z71(Gy) is a triangulation of its domain of definition, its
restrictions to individual triangles of F; need not be (see Fig. Bfl). Therefore, before
evaluating = we apply the triangular closure to Z71(G), i.e., we add graph edges such
that Z1(Go) is a triangulation on each T' € Fj.

Given a consistent data structure as described above and a point p € I'; specified by
a triangle T' € F; and local coordinates &y, &1 on T, the mapping = can be evaluated at
p in two steps. First, using a point-location algorithm, the region r (with corners ¢(r))
of the graph Z71(G,) containing p is determined, and the three barycentric coordinates
&e(r) of p with respect to r are computed. Barycentric coordinates are well-defined since
we applied the triangular closure and hence all regions of 2~!(Gs)|r are triangles. For
the point-location we use the randomized version of the algorithm presented by Brown
and Faigle [22]. It is simple to implement and its expected run-time is in O(y/|e|), with
le| the number of edges in the triangulation.

Then, since = is piecewise linear and all corners of 7 store their positions on I'g, the
image of p under = can be evaluated by interpolation

E(p) = ZSC(T)E(C(T))
c(r)

We now turn to the question of how to construct the contact mapping for given I'y and
I'y. In Section we have chosen ® to be the projection of I'y onto I's in the linearly
interpolated normal direction & [BI1) of I';. The construction consists of three steps.

1. Computing ®=1(q) for all ¢ € Vs
For a given ¢ € Vs we have to find ®~!(¢) € T'; such that ¢ — ®71(q), as a vector
in R3, is normal to I'y in the sense of FI7). Let T be a triangle of I'; with the
vertices pg, p1,p2, and denote the respective vertex normal vectors by &, Dy, Ds.
Assume there is a point p € T' with ®(p) = p + pu, = ¢ for some p > 0, and call
Ao, A1 the barycentric coordinates of p with respect to T',

P(Ao, A1) = Aopo + A1p1 + (1 — Ao — A1)pe. (3.49)
The normal © at p is

I)()\o, )\1) = Aoy + N7 + (1 — Ao — )\1)192. (3.50)
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L.

R?’ RS

Figure 3.7: Backward normal projection from a point onto a triangle (left), and from an
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edge (qo,q1) onto am edge (po,p1) (right).

Then p = p(Ao, A1) is a solution of
P(Ao, A1) + (Ao, A1) = g, (3.51)

with Ao, A1, 4 > 0 and A\g+ A < 1. Inserting (B49) and B10) yields the nonlinear
system of equations

0 =p2—q+Xo(po —p2) + A (p1 — p2) + Ao (Do — D2) + pA1 (D1 — D2) + pire. (3.52)

This system may in principle be solved analytically yielding at most two solutions.
However, its apparent simplicity is deceptive, as the arithmetic expressions of the
exact solutions get extremely long. It has proven easier to use a standard damped
Newton algorithm [3(] to solve (B5Z) numerically.

If the projection p = ®~!(g) is found to be in the interior of T, an inner node
is added to the data structure on 7. If, on the other hand, it is found to be on
an edge (corner) of T, then a touching node (corner node) is inserted along with
corresponding copies on the other triangles sharing the edge (corner). If several
distinct vertices are found which comply with the normality condition (BX2I]), the
one with the shortest distance |p — ¢| is chosen.

. Computing ®(v) for all v € Vy

At this stage all vertices of I'y appear as nodes in the graph on I'y. We have to add
additional ghost nodes at the vertices of I'y which are not mapped onto vertices of
I's. This is comparatively easy as it does not involve solving nonlinear equations.
Given a vertex v € V), its exact position on I's can be found by considering the ray
r in direction ¥, beginning in v. If r intersects more than one triangle of I'; the
intersection closest to v is chosen. At this point we assume that there is at least
one such intersection, but see Remark If v is mapped onto a vertex of I'y
then it has already been treated in Step [l and the data structure already contains
a node for it.
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3. Adding the edges

In order to enter an edge € = (o, q1) of I'y into the graph on I'; we try to ‘walk’ on
I'; along ®~1(&) from o = ®~!(Go) to g1 = ®1(G1). Since g and q; will generally
not be on the same triangle of I';, we have to find the points where the path from
qo to q1 crosses edges of I'y. Let T € F; be the current triangle in this walking
process. For an edge e = (pg,p1) of T' we have to check whether there are points
p € e and g € € with ¢ — p normal (in the sense of [BI)) to I'y (Fig. B right).
This can be formulated as a nonlinear system of equations

0 =po — Go + A(p1 — po) — (@1 — Go) + o +nA(P1 — ), (3.53)

which can be solved with a damped Newton algorithm. We have found an intersec-
tion if (B53)) has a solution with 0 < A\, <1 and 0 < 7. This intersection is then
inserted as an intersection node and the procedure is continued on the triangle
which borders T" on e.

Assuming that the Newton solvers for (BhZ) and B3] terminate after a constant
number of iterations and using an octree to speed up the search for ray—triangle inter-
sections, the projection algorithm described above requires O(|V¢o|log [Ve|) time. Here
Vo = Vi,c U Vs ¢ are the vertices on the contact boundaries. Asymptotically, |Vc| be-
haves like [V|*®. The construction of ® therefore takes O(|V[*3log |V|*?) € O(|V])
time, which is less than a multigrid iteration.

Remark 3.5.2. In Sec. it was assumed that I'y and I's are such that the normal
mapping ¢ exists. In practice this is difficult to ensure. For example, it is easy to
construct nonpathological cases with an edge e = (p, q) € & such that both ®~!(p) and
®~1(q) are contained in I'y, but ®~!(e) is not. To handle this case it is necessary to
check whether ®~!(e) is defined completely before inserting it. If an edge is left out the
domain of definition of ® is effectively reduced. Practically, this is not a problem as long
as the reduced I'y is still a superset of the true region of contact (cf. Sec. B2). The same
remark applies, e.g., if, in Step B the ray casted from a vertex of I'y does not hit any
triangle of I's.

Remark 3.5.3. Diagonality of the mass matrix D ([39) only holds if the domain of
definition of @ is resolved by the grid. On the other hand, in (B40) and ([B39) the same
domain of integration needs to be used. Therefore, the domain of definition of ® may
need to be truncated further in order to be resolved by the grid.

Remark 3.5.4. The algorithm contains many decision procedures in two- and three-
dimensional geometry. Rays need to be tested for an intersection with a given triangle
in space, points need to be checked on which side of a line in the plane they are, and the
like. The finite precision of normal computer arithmetic becomes a problem, because it
leads to inconsistent test results. The implementor is strongly advised to avoid geometric
testing as much as possible and rely on combinatorial information instead! For example,
the point-location algorithm of [Brown and Faigld expects the edges around a graph
vertex v to be ordered cyclically. Instead of computing angles and sorting it is more
stable to determine the cyclic ordering by using a graph algorithm to determine a longest
path in the subgraph of all neighbors of v.
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Figure 3.8: The advantage of boundary parametrizations. Left: Coarse grid with
parametrization (dashed). Center: uniform refinement disregarding the
boundary parametrization, the approximation of the boundary is a bad as for
the coarse grid. Right: using the boundary parametrization. The geometric
approximation is improved.

3.6 Creating and Using Parametrized Boundaries

Multigrid algorithms rely on a hierarchy of grids to achieve their fast convergence rates,
and with the use of a posteriori error estimation techniques these hierarchies can be
tailored to suite the problem at hand. Grids are usually refined by introducing new ver-
tices at edge midpoints and suitably adding new elements [1§]. For free-form geometries
there is the problem, though, that grid refinement by adding edge midpoints does not
improve the accuracy of the approximation of the true domain (Fig B8)). This is unfortu-
nate, since in biomechanical applications the problem domains have curved boundaries
which cannot be approximated sufficiently by a coarse grid. Segmentation and surface
extraction from CT or MRI data leads to bounding surfaces which are very highly re-
solved. In fact, in order to be able to construct reasonably coarse grids from them, they
have to be simplified enormously. Simplification rates of 95% are not uncommon. The
corresponding geometric information is lost in the process |79, Sec. 2.4].

To overcome this deficiency, various finite element software packages, for example
UG [10], provide grids with parametrized boundaries. Let Gy be a grid approximating
a domain Q in the sense that 02 and Gy are homeomorphic and that v € 99 for all
v € Vo N3Gy, i.e., the vertices on the boundary of Gy are contained in the boundary
of Q.

Definition 3.6.1 (Boundary parametrization). A boundary parametrization is a homeo-
morphism w : 0Gy — 9Q such that w(v) = v for all v € Vy N OG).

With a boundary parametrization at hand, a hierarchy of grids approximating 2 with
increasing accuracy can be constructed as follows. When refining Gy to obtain a new
grid Gy, instead of inserting the edge midpoint o = (vg + v1)/2 when refining an edge
e = (vg,v1) on the boundary, the parametrization function 7 is used to obtain the
corresponding position v, = 7((vo + v1)/2) € 9Q. Hence 0G1 # IGy in general, but we
obtain a piecewise linear homeomorphism hy_.g : 9G1; — dGy. This can be extended to
an arbitrary number of levels of refinement. Let Gj be the grid after j refinement steps.
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Figure 3.9: The surface is simplified by removing vertices and retriangulating the holes.

Then, when refining an edge e = (vp,v1) of G; the position v, = w(hj_o((vo + v1)/2))
can be chosen. We then set hj 1.0 = hj_gohji1.;.

The grids in the resulting hierarchy are still logically nested, but they are not geomet-
rically nested anymore. A multigrid convergence theory which covers this case can be
found in [72]. There, the approximation property of the coarse grid spaces necessary for
multigrid convergence is shown under reasonable assumptions on the parametrization
function 7.

For biomechanical problems, the construction of boundary parametrizations is a se-
rious problem. Unlike in engineering applications, where CAD data provides analytical
descriptions of curved boundaries, computational domains in biomechanics originate
from computer tomograph scans. After segmentation and surface extraction, the de-
scription of the domain boundary is available only in form of a highly-resolved, but
nevertheless piecewise linear surface [79].

In |61, I79] we have presented an algorithm for the automatic construction of bound-
ary parametrizations from highly-resolved triangulated surfaces. It first constructs a
parametrization of the high-resolution input surface over itself, and then successively
coarsens the domain surface while maintaining a valid parametrization at each step.
More formally, let St be the input surface extracted from CT data. We create a se-
quence of surfaces Sy, ...,S; and corresponding parametrization functions 7; : S; — St
such that Sy = St and S is a suitable boundary for a coarse grid.

1. Set Sog = Sp, m9 = 1d, and i = 0.

2. Choose a vertex v* of S; which is optimal in the sense of some suitable error
criterion [79].

3. Remove all segments T} that have v* as a vertex, but do not discard the parametri-
zations 7;|1, they carry.

4. Retriangulate the hole left by removing the 7} (Fig. Bd)). Restore the parametriza-
tion there and call the resulting surface S;4;.

5. If S;11 is coarse enough then terminate. If not increase i by one and go back to 2

With a good criterion for the choice of vertices in Bl this algorithm delivers coarse
surfaces that approximate the actual domain 2 well. These can be used as input for a
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Figure 3.10: The use of boundary parametrizations can lead to severe degradation in
mesh quality. Left: unrefined. Right: refined; the dashed line is the true
domain boundary 0f).

grid generator to produce a coarse finite element grid. The final parametrization 7 ; needs
to undergo a smoothing postprocessing before it can be used. A detailed description of
the algorithm can be found in [61, [79].

Remark 3.6.1. An important ingredient of this algorithm is the data structure that stores
a mapping from one triangulated surface to another. Such a data structure has already
been used for contact mappings in Sec. In fact, the same implementation is used
for both applications.

It should not be concealed that the use of parametrized boundaries can lead to severe
difficulties. With standard red—green grid refinement for tetrahedral grids, the aspect
ratio of the elements can be bounded from above by a constant which is independent of
the grid level [18]. This is not the case when a parametrization function 7 is used. From
Fig. it is clear that the vertex position change induced by a boundary parametriza-
tion can lead to elements of arbitrarily bad aspect ratio. Even elements with negative
orientation are possible, in particular near concavities of the domain boundary. How-
ever, both the standard discretization error estimates for finite element spaces and the
convergence rate of multigrid methods depend on shape regularity of the grid. Therefore
grid improvement techniques may need to be used. This is a topic of great practical rele-
vance and much research effort has been put into it. Since geometric multigrid methods
rely on a hierarchy of logically nested grids, we can only consider mesh improvement
algorithms which preserve the discrete topology. Grid smoothing algorithms that pre-
serve the discrete topology usually work by solving either a sequence of local nonlinear
problems [38, 53], or a single global one [78]. In both cases, the aim is to improve the
quality of the grid by moving interior vertices. However, while this improves the grid
quality on each individual grid level it destroys the geometric nestedness of the grids on
the interior of the domain. This thwarts the improvement of the convergence rates due
to the increased quality of each individual level grid. Some form of grid improvement
strategy should nevertheless be applied at least on the finest grid to improve the finite
element discretization error.
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3.7 Hierarchical A Posteriori Error Estimation

Frequently, the solutions of contact problems in biomechanics show very localized fea-
tures. This justifies the use of adaptive grid refinement. However, while a large body
of theory exists for a posteriori error estimation of unconstrained problems, few peo-
ple have considered obstacle problems. Wohlmuth [94] introduced an estimator for the
mortar-discretized contact problem and gave references to some earlier work. Veeser [87]
presented a residual-type estimator for scalar obstacle problems which additionally pro-
vides an estimate of how well the active set is approximated. Kornhuber [55] extended
the hierarchical approach to elliptic problems with pointwise nonlinearities. Hierarchi-
cal error estimators have the advantage of being parameter-free. We now generalize the
approach of [Kornhuber to two-body contact problems.

We first present the basic idea in a scalar setting. Let a(:,-) be a continuous, sym-
metric, and H}(Q)-elliptic bilinear form and [ a linear functional. The symbol |-|| will
denote the energy norm ||v||? = a(v,v). With S € Q C H} () two nested discrete spaces
and us and ug the solutions of the elliptic problems

us €S :  a(us,v) =1(v) YveS, (3.54)
and

ug € Q : alug,v)=1(v) Yv e Q,
respectively, the difference ||us — ug|| = ||eg|| between the two solutions will be shown

to be an estimate of the true error ||us — u||. The underlying idea is the assumption that
the discretization error decreases if the solution is searched for in a larger space.

Assumption 3.7.1 (Saturation assumption). Call u, us, and ug the solutions of the
variational problem a(-,v) = l(v), for all v, in the spaces H}(Y), S, and Q, respectively.
Then there exists a 3 < 1 such that

Ju = ugl| < Bllu — usll. (3.55)

This assumption is justified if the problem is sufficiently regular and the space Q is
sufficiently large. On the other hand, it is shown in [1&] that for any two spaces S and
Q there exist functionals [ such that the saturation assumption does not hold.

The error e = u — ug is solves the defect equation

ec HY : a(e,v) =1(v) — a(us,v) Vv € HY ().
Discretizing this equation in the space Q we get
eo€Q : aleg,v) =1(v) —alus,v) Vv e Q, (3.56)

and the estimates |19, Prop. 2.1 and Thm. 2.1]

V(A= B)llu—us| < [leg] < [lu— us. (3.57)
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Remark 3.7.1. In practice, iterative methods are commonly used to solve ([B54]). They
yield an approximate solution @ which contains an algebraic error ||us — || along with
the discretization error ||u — us||. We will disregard this algebraic error for the sake of
simplicity.
Since solving (B0l is expensive, a(-,-) is replaced by a different bilinear form b(-, )
such that
e €Q : blep,v) =1(v) —alus,v) Vv e Q (3.58)

is cheaper to solve than (BA0]), and the new estimate ey, is equivalent to eg.

Lemma 3.7.1. Let a(-,-) and b(-,-) be symmetric, positive definite bilinear forms, and
let ¢y and c1 be positive constants such that

b(w, w)
a(w,w)

Co S S C1 (3.59)

for allw € Q, w# 0. Let eg and ey be defined by BhE) and BILE), respectively. Then
colles]| < lleall < eallesll-
Proof. Cf. Bank and Smith 9], Thm. 2.2. O

We now generalize this approach to two-body contact problems. We closely follow
[55], where variational inequalities with pointwise nonlinearities were considered. Let
Q;, 1 € {1,2}, be polygonal domains and let G;, ¢ € {1,2}, be simplicial grids for the
Q;. For & we use the space V}L,O(G) =11 V}L,O(Gi) of first-order Lagrangian finite
elements, where the superscript index denotes the order of the finite elements. We set
Q= V%,O(G), the space of continuous second-order Lagrangian finite elements. This is
the canonical choice; Bornemann et al. [19] discuss various alternatives.

Remember from Sec. that the continuous linear two-body contact problem can be
written as the variational inequality

uek : a(u,v—u)>I(v—nu) Vv e K, (3.60)

with a(-, ) as defined in (BIZ) a continuous, symmetric, and H}(2)-elliptic bilinear form
and the linear functional ! given by ([BI3]). The admissible set

K={ve HHé(Qi) | ([V]e, 1) < g}

is closed and convex. Discretizing B60) using V}(G) we obtained the finite-dimensional

problem (B30)
us € K, : a(us,vp—us) > l(vy, — us) Yvy, € Ky, (3.61)

with Kp, given by ([B3d). The error e = u — ug is the unique solution of the defect
problem

ecKk : ale,v—e)>r(v—e) Vv e K, (3.62)
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3.7 Hierarchical A Posteriori Error Estimation

where we have used the residual

r o HY(Q) =R
r(v) = U(v) —a(us,v)

and the continuous defect obstacle

K= {v e [TH3(@) | n(Vo.v1)) < plg ~ ([usle,1)). Vue M.

Define eg as the unique solution of the discrete defect problem
eo€Ko : aleg,v—eq)>r(v—eg) vv e Ko, (3.63)

with the discrete quadratic defect obstacle

Ro={veViu@ | [ (owmmds< [ (o= (fuslodmds Vi€ Mo},

1,C
(3.64)
The mortar space M ,if o 1s the cone of positive second-order scalar finite element functions
onI'; ¢. Using the triangle inequality and the saturation assumption (B350l one can show
that eg does provide an estimate for the error.

Theorem 3.7.1. Assume that ug provides a better approzimation than us in the sense
of the saturation assumption [3.7.1 Then we have the estimates

(1= 0B)llu—usl| < [legll < (1 + F)[lu - us]|. (3.65)

Note that this is a slightly weaker result than [B21).

In analogy to the unconstrained case we now replace [BEG3]) by a similar problem
which is easier to solve while still yielding satisfactory error estimates. Let b(-,-) be a
symmetric bilinear form. We set ||v||? = b(v, v) the energy norm of b(-, -), and define e,
as the solution of the preconditioned defect problem

e, €Ko : bley,v—ep) >7(v—ep) Vv e Ko, (3.66)

with the quadratic discrete defect obstacle Ko given by (BB4). With a suitable b(-, -)
this is an equivalent error estimator. The proof in |55, Thm. 4.1] for pointwise obstacles
applies in our case as well.

Theorem 3.7.2. Assume that the norm equivalence
Yb(v,v) < a(v,v) < y1b(v,v), v € span{eg, e}, (3.67)
holds with positive constants vg, v1. Then we have the estimates
colleslly < lleall® < cillesl; (3.68)

with co = (35" +2n(1+751) " and e =y + 295 (1 +m).
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3 Two-Body Contact Problems on Domains with Curved Boundaries

Proof. By symmetry arguments, it is sufficient to establish only the right inequality in
BEY). Inserting v = e, € Kg in the original discrete defect problem (B63]), we obtain

legll* < aleg, ey) + r(eq — ep).

This can be bounded using the inequality 2a(eg,e) < |legl|? + ||lep||? and (BEE7). We
get
leall® < villeslls +2r(eq — ).

Inserting v = eg in ([B66) and using the Cauchy-Schwarz inequality, we get

leall? < milleslly + 2llesllslleq — ells,

so that it remains to show that
lleq — eylls < 5 (1 +1)lleslo- (3.69)
Insert v = e in B63]) and v = eg in BELH). Add the two inequalities to obtain
a(eg, e, — eg) + b(ep, eq — €) > 0,
which can be written as
les — eoll” < a(es, e, — eg) — bey, &, — eq).
Eq. (B89) then follows from the Cauchy-Schwarz inequality and (B67]). U

Remark 3.7.2. For the estimates (B68) to be truly useful the constants vy and =, in
BED) need to be independent of the grid size for all test functions v € span{eg, ep}.
For the unconstrained case this independence has been shown in [55, Prop. 4.1]. For
problems with obstacles it is an open question.

Generalizing [55] we define the bilinear form

bv,w) = > vilp)w(pa(yy ),

pEVQ

0<i,j<d
where "nprz € VZ(G) denotes the vector-valued second-order nodal basis function at p
in the i-th coordinate direction and v;(p) denotes the value of the i-th component of v
at p. Note that the matrix corresponding to b(-,-) is block-diagonal. However, by the
constraint e, € Kg there is still coupling between degrees of freedom on I'y ¢ and I'y ¢.

o

Set niQC = [V<,|, i € {1,2}, and for a coefficient vector v € RV Jet v{ € R"¢ and

o
vg € R"2.¢ be the vectors of coefficients corresponding to Lagrange points on I'y ¢ and
I’y ¢, respectively. The set Ko of admissible second-order defect corrections takes the

algebraic form N o
ICaQIg = {v e RUV=I | Mrévlc — MBUQC < gQ}.
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3.7 Hierarchical A Posteriori Error Estimation

2 o o )
The mass matrices Mg, € R™.c X% c and MS € R™.c*3¢ have a 1 x d block structure
and the entries

(M), = /F B, 1) ds paeve,
1,C

M)y = [ 09w 0 B0 ds Ve ¢ Ve,
1,C
o
The coefficients of the discrete second-order weak obstacle gpQ € R"1.¢ are

g2 = [  v2(g— ([usls,v1))ds pEV.

Tie

A biorthogonality condition equivalent to [B33]) does not hold since we have chosen the
second-order nodal basis {12} for the discretization of the mortar space M, ,j o- Never-
theless, an interior-point solver like IPOpt [9(] can solve systems like (B:606]) with good
convergence and wall-time behavior. Exemplary iterations numbers are given below.

So far we have described global properties of the error estimator e. As shown in [53],
it is also suitable as a local refinement indicator. Assume that there is a hierarchical
splitting

Q=S W,

and decompose a given e € ’EQ by setting
e, = ef @ e};v.

The local contributions
= ('0), (e W) aley Y),  peVY,

can be used as local indicators. On a simplicial grid the set VY corresponds to the edge
midpoints. If 7, exceeds a certain limit for a given p € YW all elements containing p are
marked for refinement.

We demonstrate the applicability of the proposed error estimator with a numerical
example. Consider a 2d Hertzian contact problem with a coarse grid as depicted in
Fig. BIIl The boundary of the upper grid carries a parametrization function which lets
the domain approach a half-sphere with increasing refinement. The block is clamped
at the bottom while the half-sphere receives downward displacement conditions of 2.5
length units on the horizontal diameter. Both objects are modelled with a St. Venant—
Kirchhoff material with E = 17 - 10% pressure units and v = 0.3.

In order to validate the output of the error estimator we compute a reference solution
u* by numerically solving the problem on a grid G* which has been created with ten steps
of uniform refinement. For the actual measurements we restart from the coarse grid. On
each level we solve the contact problem, estimate the error, and refine the 30% of the
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Figure 3.12: Resulting grids after ten refinement steps. Left:

Right: deformed configuration.

affine grid —=—
isoparametric grid ----g---

effectivity

0 1 2 3 4 5 6 7 8
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Figure 3.11: Coarse grid with symbolized bound-

ary conditions. The upper body’s
boundary is parametrized to approxi-

mate a half sphere (dashed line).
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Figure 3.13: Left: the ratio of true error to estimated error. Right: true error per number
of grid nodes. The dotted line illustrates the slope of —1/2 which is optimal

for a 2d problem.
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elements with the highest local error. Let u; be the solution after ¢ refinement steps
and let e; = ||ep||p be its estimated error. The true error with respect to the reference
solution u* is given by ||[u* —u; o h; !||, where h; is the canonical homeomorphism from
the domain covered by G; to the domain covered by G*, and ||-|| is the energy norm of
the bilinear form a(-,-) on G*. Fig. BI3 left, shows the effectivity of the hierarchical
error estimator, i.e., ||ep||/|[u* —u; o h;t| for each refinement level. The effectivity rate
stays close to 1, and it does not exceed 1.5 anytime during the measurement.

Remark 3.7.3. When boundary parametrizations are used to approximate domains which
are not resolved by the grid G; it seems natural to improve the approximation quality
of the quadratic space @ by using an isoparametric grid for its definition. We have
found that in our examples the use of isoparametric grids did not lead to appreciable
improvements of the estimation quality.

Fig. B3 right, shows the behavior of the true error |[u* — u; o h; || with increasing
number of degrees of freedom for both types of approximating spaces. On the doubly
logarithmic plot both graphs show a linear behavior, with a slope of —1/2 as is optimal
for a 2d first-order element space.

In order to be practically usable the numerical solution of [B.66) must remain cheap
even for increasing mesh size. We used the interior-point solver IPOpt [9(], which was
set up to iterate until the optimality error (a certain scaled residual, see [90, Sec. 2.1])
dropped below 1078, Fig. B4 shows the number of iterations needed to reach this
precision. For this problem, the number appears to be independent of the mesh size.
The wall-time needed for one iteration was comparable to one multigrid iteration for the
contact problem. For three-dimensional problems solving (60 is much cheaper than
solving the contact problem.

Remark 3.7.4. We have implicitly assumed that the grid hierarchies for the two domains
Q and Qg consist of the same number of levels. The finite elements spaces V;(G1) and
V1,(G2) have been treated as a single product space V(G UG2) for which the nonlocal
basis ([BZ4)) is then chosen, and a multigrid hierarchy of coarse spaces for the product
V1, (G1UG2) has been used. If there is an unequal number of grid levels due to adaptive
refinement, the shorter hierarchy needs to be extended artificially using suitable zero or
identity restriction operators.
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1 I“‘b 1
D

Figure 3.15: Two-body contact problem.

3.8 Contact between the Human Femur and Tibia

We close the chapter by giving a numerical example showing that the good theoretical
properties of Truncated Nonsmooth Newton Multigrid (TNNMG) can be observed in
practice. We will compare TNNMG with a monotone multigrid solver (MMG), which
is currently the fastest globally convergent solver for two-body contact problems. We
also compare it with a linear multigrid method for an equivalent linear problem, where
the contact has been emulated by a Neumann boundary condition, constructed using a
priori knowledge of the solution. As expected the same asymptotic convergence rate can
be seen in all three cases.

As an example geometry we chose the left distal femur and proximal tibia from the
Visible Human data set [3]. The data was segmented and a high-resolution boundary
surface was extracted. The femur surface consisted of 7236 vertices and 14468 triangles,
and the tibia surface of 7453 vertices and 14902 triangles. They were simplified as
described in Sec. to yield coarse surfaces with 268 vertices and 532 triangles for the
femur and 224 vertices and 444 triangles for the tibia. The AMIRA @] grid generator
produced two tetrahedral grids with 378 and 306 vertices, and 1328 and 1044 elements,
respectively (Fig. B0, left). The worst aspect ratio present in a grid was 17.1.

We modeled bone with an isotropic, homogeneous, linear elastic material with £ =
17 GPa and v = 0.3. The bottom section of the proximal tibia was clamped and a
downward displacement of 6 mm was prescribed on the upper section of the femur (see
Fig. BI3 right). The part of the femur usually covered with articular cartilage was
marked as the nonmortar contact boundary, but note that the actual nonmortar bound-
ary was smaller, because the normal projection ® could only be constructed on a part
of that boundary (Sec. BH). The mortar contact boundary was detected automatically
as the image of ®.

As a benchmark we constructed the following linear problem. Let u;, € K be the
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Figure 3.16: Deformed grid and cut through the von-Mises stress field without boundary
parametrization.

solution of the contact problem
a(up, vy —uy) > (v, —up), for all v, € K},

Defining the residual r(-) = I(-) — a(up, -), the function uy, is also the solution of the
linear problem
a(up, vy) =1U(vy) —r(vp) for all vi, € Vi, 0. (3.70)

In this formulation the contact is emulated by the Neumann force term r(-), which can
be computed solving the original contact problem.

In a first series of measurements we tested the solvers on a grid hierarchy obtained
by adaptive refinement without a boundary parametrization. In an application of the
classic refinement loop we solved on the coarsest grid, estimated the error as described
in Sec. B, refined the grid, prolonged the solution and proceeded on the next level.
Fig. BT shows the iteration history on the fourth grid level. We started once at zero
and once at the solution of the previous level. As expected, all three solvers showed the
same asymptotic convergence rate. In fact, the Truncated Nonsmooth Newton Multigrid
method needed only very few iterations more than the linear multigrid on the linear
problem to solve the contact problem. This is impressive considering that one iteration
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Figure 3.17: Error per iteration. Computation without boundary parametrization, ob-
stacle directions are normal to the nonmortar boundary. Left: starting from
zero. Right: starting from the solution on the next-coarser grid.

Figure 3.18: Construction of the coarse grid obstacles for a monotone multigrid method
in two space dimensions. Left: three fine grid nodes pg, p1, ¢; the center one
q also exists on the next-coarser grid. At each node, the normal direction
is different and there is an obstacle in this normal direction. Center: When
expressed in the coordinate system of ¢, the admissible sets of pg and pq,
which were half-spaces before, now shrink to quarter-spaces. Right: coarse
grid obstacle for ¢. Due to the coordinate changes the coarse obstacle for ¢
now has a restrictive tangential component.
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Figure 3.19: Error per iteration. Computation without boundary parametrization, all
obstacles point in the direction of the negative z-axis. Left: starting from
zero. Right: starting from the solution on the next-coarser grid.

of TNNMG is hardly more costly than a linear multigrid iteration. The monotone
multigrid method, on the other hand needed remarkably many iterations to enter the
asymptotic phase. This can be explained as follows. In order to make sure that coarse
grid corrections do not lead to configurations which violate the obstacle, the coarse
grid corrections of MMG are subjected to certain coarse grid defect obstacles [58, 95].
For a given coarse grid vertex p and corresponding nodal basis functions 1, ;, 0 <
1 < d, the obstacle at p is constructed from all obstacles at the next-finer level which
belong to vertices in the support of the %, ;. In the basis {4} BZ), also used for
the monotone multigrid method, the obstacles are box constraints, but with respect to
the local coordinate systems Op,,p € V. These vary from node to node if the domain
normals v, vary. The process of constructing a single set of box constraints for the
coarse grid vertex p involves certain basis transformations [58, [95], which can severely
restrict the coarse grid corrections. This is illustrated in Fig.

To provide further evidence to our hypothesis that the varying obstacle directions
are responsible for the excessively long preasymptotic phase of the monotone multigrid
method, we repeated the same set of computations. However, we replaced the domain
normals v, which make up the matrix N appearing in the definition ([B38) of the ad-
missible set by the constant vector es. This is not a severe change, because in the test
problem the normals on I'y ¢ do all point roughly in the direction of e>. Since no coarse
grid correction is lost due to coordinate system transformations we expected the mono-
tone multigrid method to enter the asymptotic phase quicker. It can be seen in Fig.
that this is indeed the case. The preasymptotic phase is considerably shortened, and the
correct active set is now found after 13 iterations, instead of after 82 iterations.

Qualitatively, all these considerations also hold true when parametrized boundaries are
used (Figs. B:2T and B:222)). From the high-resolution surface we constructed a boundary
parametrization as described in Sec. After each refinement step we moved all new
vertices onto the high-resolution surface. This decreased the mesh quality markedly. In
fact, the tibia grid even contained one tetrahedron with negative volume. We tried to
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Figure 3.20: Deformed grid and cut through the von-Mises stress field with boundary
parametrization.
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Figure 3.21: Error per iteration. Computation with boundary parametrization, obstacle
directions are normal to the nonmortar boundary. Left: starting from zero.
Right: starting from the solution on the next-coarser grid.
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Figure 3.22: Error per iteration. Computation with boundary parametrization, all ob-
stacles point in the direction of the negative z-axis. Left: starting from
zero. Right: starting from the solution on the next-coarser grid.

improve the situation by applying the local mesh untangling and smoothing algorithms
of Freitag [3&], with no improvement of the convergence rate worth the extra effort. The
examples in this section have been computed on unsmoothed meshes. Fortunately, the
solvers were able to cope quite well with this problem. While the asymptotic convergence
rates deteriorated noticeably (from = 0.45 to &~ 0.55), they stayed within a range that
kept the solvers usable. Again, with the obstacles pointing in the directions of the
contact boundary normals the preasymptotic phase of the monotone multigrid solver
was very long. However, with the boundary parametrization turned on this effect was
not as marked as before. This may be due to the fact that the surface normals vary
‘more smoothly’ when the refined grid approaches a smooth surface. Again, the long
preasymptotic phase disappeared when the obstacles were forced to be parallel. As in
the case without parametrized boundary, the TNNMG algorithm performed extremely
well. There was no noticeable preasymptotic phase even with the obstacles pointing
in surface normal direction. In several cases it was even slightly faster than the linear
multigrid algorithm for the linear problem. This is probably caused by the line search
step, which leads to a slightly larger decrease of energy at each step when compared to
a standard linear multigrid method.

One has to mention that TNNMG is much simpler to implement than a monotone
multigrid method for contact problems. First of all, in a monotone multigrid method
there are obstacles on all grid levels, and a suitable obstacle restriction algorithm needs to
be implemented. Moreover, the problem needs to be treated in the transformed basis {1,5}
BZ4) on all grid levels in order to ensure GauB—Seidel convergence. This basis has to be
constructed for the coarser levels, which in particular requires the assembly of the mass
matrices D and M for all levels and a set of specially constructed multigrid prolongation
operators. None of this is necessary for TNNMG.

Not having to use the coupling matrices D and M on the coarser grid levels leads to
another subtle simplification. Remember that D is diagonal because the dual mortar ba-
sis functions are biorthogonal [B33)) with respect to the standard first-order Lagrangian
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Figure 3.23: View of the refinement of the femoral
condyles.

basis functions {¢'}. Since (B33 only holds for integration over entire boundary seg-
ments, when using the monotone multigrid method the nonmortar boundary I'i ¢ has
to be resolved by the grid on all levels. Depending on the resolution of the lower grid
levels this can be a severe restriction on the choice of I' ¢, and it further complicates
the code that constructs the contact mapping ®. However no such restrictions arise
with TNNMG. Last, but not least, for TNNMG a linear solver can be used to solve the
problems on the coarsest grid. For the monotone multigrid method an interior-point
method has to be used @]

In conclusion it can be said that the Truncated Nonsmooth Newton Multigrid method
performs extremely well on the biomechanical example problem. It allows the solution
of a two-body contact problem with roughly the same number of iterations as a linear
multigrid solver on a corresponding linear problem. At the same time one iteration of
TNNMG is not more costly than one linear multigrid iteration. The Truncated Nons-
mooth Newton Multigrid clearly outperforms the more complicated monotone multigrid
method, which seems unsuitable for contact problems on domains with varying boundary
normals.
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4 Cosserat Rods as Models for Ligaments

In this chapter we present our ligament model. After a brief review of some results
from differential geometry we introduce Cosserat rods in Sec. Cosserat rods are a
well-known concept used to model long slender structures. We introduce a new finite
element discretization for the nonlinear rod configuration space. Also we present a
globally convergent method to find local minima of the hyperelastic energy functional.
We close the section with some numerical results.

4.1 Riemannian Manifolds, Lie Groups, and SO(3)

A manifold M is a space that looks locally like a Euclidean space. More formally, it is a
topological space together with a collection {u} of one-to-one mappings of open subsets
of R™ onto subsets of M. These mappings are called charts, and n is the dimension of
the manifold. It is required that each x € M is represented in at least one chart. M
is called differentiable if for any two charts p1 and po with overlapping image in M the
coordinate change 15 Loy is a C*-function on its domain of definition.

As an example consider S?, the unit sphere in R?, which is a two-dimensional dif-
ferentiable manifold. Let Ty, and T}, be the tangent planes at the south pole xg, and
north pole z,p, respectively. Then the stereographic projections ugp : Ty, — S2\ {Znp}
and pinp : Tnp — 52\ {xsp} with respect to the opposite poles form a collection of charts
which covers all of S?. For a general introduction to Riemannian geometry see, e.g., the
book by do Carmo [33].

By the Whitney embedding theorem all differentiable n-dimensional manifolds can be
considered subsets of some R™ with m > 2n + 1. For a point x € M, we call the set of
all vectors which are tangent to M at x the tangent space at x and denote it by T, M.
The tangent space is a vector space of the same dimension as M. The disjoint union
of the tangent spaces of all x € M is called the tangent bundle TM = UpepToM. It
can be given the structure of a 2n-dimensional manifold [33]. In the case of S2, for a
point x € S? the tangent space is given by T,,S? = {v € R? | (x,v) = 0}, which is a
two-dimensional subspace of R3. The tangent bundle T'S? is four-dimensional. Indeed,
any p € T'S? can be specified by giving the base point x € S? such that p € 7,5 and
coordinates of p in T, 52.

A Riemannian metric g on a manifold M is a family {g.(-,-)|z € M} of scalar
products which varies smoothly in M. The pair (M, g) of the manifold together with
the metric is called a Riemannian manifold. Using the metric it is possible to define a
norm |||, : TM — R by setting ||v]|y; = \/gx(v,v) for v € T, M. Manifolds such as S?
which are subsets of some R™ can inherit a Riemannian metric from the surrounding
Euclidean space.
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Let c: [a,b] — M be a curve on M and for each ¢ € [a,b] denote by ¢'(t) € Trpy M its
velocity vector. The length of the curve is given by L(c) = f[a b]Hc' (t)||gds. A curve c

is called a geodesic if ¢ minimizes £ locally. This means that for all @ < b, a,b € [a, ]
and b — @ small enough the curve c restricted to [a, b] is the shortest curve from c(a) to
c(b) on M. A curve c: [a,b] — M is called a constant-speed geodesic motion on M if it
is a geodesic and there exists a x € R such that ¢, : [s7'a, s71b] — M, c.(t) = c(kt) is
parametrized by arc length.

Intuitively, geodesics generalize the notion of straight lines. Let ¢ € M and v € T, M.
Then there is a unique geodesic v parametrized by arc length such that v(0) = ¢ and

v/'(0) = v. The mapping
exp,: U CTyM — M, exp, v = (1) (4.1)

is called the exponential map. It maps a neighborhood of 0 € T;, M onto a neighborhood of
q in M. From the implicit function theorem it follows that the exponential map is C*° on
a neighborhood of 0 € T, M [33, Prop. 3.2.9]. In particular we have lim, .o exp,v — ¢.
Locally, the curves of the form ¢ : [—€,e] — M, c(t) = expgtv for ¢ € M, v € T,M
are geodesics, and all geodesics can be written in this form. A manifold M is called
(geodesically) complete if for each pair p,q € M there exists at least one geodesic that
joins p with ¢q. Geodesically complete manifolds are metric spaces where the distance
dist(z,y) between two points z,y € M is given by the length of the shortest geodesic
between x and y. We have the following important result [33, Lem. 3.3.7].

Lemma 4.1.1. For any p € M there exists an open neighborhood W of p such that
dist(p,-) : W — R depends differentiably on its second argument.

On the two-dimensional unit sphere S? together with the Riemannian metric induced
by the restriction of the Euclidean scalar product in R? the geodesics are arcs of great
circles. For two points z,y € S? not opposite each other there are precisely two geodesics,
but only one of them minimizes the distance between x and y.

Let M, N be two manifolds of dimension m and n, respectively. A mapping f : M — N
is called differentiable in z € M if the mapping ,uj\,lo fopnr : R™ — R™ is differentiable at
u;j(w) for suitable charts px and par. The mapping is called differentiable if this holds
for all x € M. Then at each point x € M there is a linear mapping D : T, M — Ty N
which maps, for each curve ¢ on M through z, the tangent vector of ¢ at x onto the
tangent vector of f(c) at f(x). This mapping D is called the derivative of f.

If M and N are two manifolds, their Cartesian product M x N consisting of tuples
(p,q) with p € M,q € N is again a manifold. The tangent spaces have the structure

T(p)(M x N) = T,M & T,N, (4.2)

where @ denotes the direct sum of vector spaces. If M and N are equipped with
Riemannian metrics g and h, respectively, the product manifold can be turned into a
Riemannian manifold by using the metric g, .y = gp+hq. If both M and N are complete
then sois M x N. If (p,q) € M x N and v € T,M, w € T,N, then

eXP(p,q) (v,w) = (exppv,equ w). (4.3)
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4.1 Riemannian Manifolds, Lie Groups, and SO(3)

Construction of manifolds through k-fold Cartesian products is done by induction.
A Lie group is a manifold G that has a group structure consistent with its manifold
structure in the sense that group multiplication

X:GxG—G; (9,h) — gh

is a C*° map. The tangent space T.G at the identity e of G is called its Lie algebra g.

An important Lie group is the group of rotations in R3. It is also called the special
orthogonal group and denoted by SO(3). It can be represented by the set of all 3 x 3
matrices @ with QTQ = Id and det Q = 1. As a manifold, SO(3) is three-dimensional
and embedded in the Euclidean space R3*3 of all 3 x 3 matrices. Furthermore, SO(3) is
compact in R3*3,

Using this compactness of SO(3) and the theorem of Hopf and Rinow [33, Thm. 7.2.8]
the following lemma can be shown.

Lemma 4.1.2. SO(3) is geodesically complete.
We have the following characterization of the tangent spaces of SO(3).

Lemma 4.1.3. Let A3 be the space of antisymmetric 3 x 3 matrices and let p € SO(3).
Then
T,50(3) = pA3 := {m € R*3 |m = po, 0 € A%}. (4.4)

Proof. Let Q : [a,b] — SO(3) be a curve on SO(3). Differentiating Id = QT (1)Q(t) we
get by the product rule

@Y (MQE) = -QT()Q'(t).
If Q(t) = p then this equality holds if Q'(t) = pA for some A € A3. Hence we have
shown that 7,50(3) C pA3. Since both pA% and T,50(3) are three-dimensional vector
spaces we even have equality. O

In view of this lemma we will frequently write pd to denote an element of pA®. From
Lemma LT3 follows in particular that the Lie algebra so(3) of SO(3) is the vector space
of antisymmetric 3 x 3 matrices A3. We may identify so(3) with R3 via the hat map
"1 R? — 50(3) setting

0 —U3 (%)
v=(v1,v2,v3) = 0= | v3 0 —v . (4.5)
—V2 V1 0

The canonical Euclidean metric g(A, B) = tr(AT B) of R®*3 induces on SO(3) the
metric
9q(qdy, qba) = tr(0 02) = (v1,v2), ¢ € SO(3),
see [4]. Using a general result about Lie group homomorphisms [84, Chap. 10, Prop. 9],
the corresponding exponential map can be written as

exp, q0 = qexp 7, (4.6)
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4 Cosserat Rods as Models for Ligaments

where exp (without the subscript) is used to denote the exponential map of SO(3) at
the identity.

For computations on SO(3) the unit quaternions Hj;| form a set of suitable coordi-
nates [31]. Quaternions are quadruples of real numbers ¢ = (q1, g2, g3, q4). Together with
the multiplication p = ¢q,

P1 = qaq1 — 9392 + G243 + G144,
P2 = G3q1 + 9492 — 143 + G244,
Ps = —q2q1 + Q192 + q4q3 + q3q4,
P4 = —q1q1 — 9292 — 343 + qaqa,

they form a noncommutative algebra H. In this algebra, the inverse element can be

expressed as -
-1_ 4
q - 29

where ¢ = (—q1,—¢2, —¢3,qa) is the element conjugate to ¢ and |q| = />, ¢? is the

o~

absolute value. The unit quaternions Hj;| are the subset of H for which lgl = 1. They
form a double covering of SO(3). In particular, the mapping

G-6-3+a 21— q3q4) 2(q193 + q2q4)
Alg)=| 22+ q3q4) -G+ —aG+q  2(—q1qs + q2q3)
2(q193 — q2q4) 2(q1q4 + q2q3) -G+ @E+ 4

is a two-to-one mapping from Hj;| onto SO(3) which maps the multiplication in H onto
the group multiplication in SO(3). In other words, for all p,q € Hj;| we have pg =
A(p)A(q), where the first product is a quaternion product and the second product the
standard matrix one.

In quaternion coordinates there is a closed-form expression for the exponential map
of SO(3). Let © € A3 = 50(3) and let v = (v, v9,v3) be the vector corresponding to o
by the hat map {LH). Then ¢ = exp 9 € Hj;| can be computed as

qj = % sin|12| for j =1,2,3, and G4 = COs |12| (4.7)
v
Setting exp0 = (0,0,0,1) the function exp is C* at 0 as expected from the general
theory [67, page 249].
Remark 4.1.1. Due to the factor \v\_l, the numerical evaluation of exp is unstable close
to zero. Grassia [44] recommends the following strategy. For v with |[v| < Ve, (e the
machine precision), use the first two terms of the series expansion

: 1ol
simy _ 1 Jof ol
] 2 48 160
In the context of finite machine precision this representation is exact, since the remainder
term is less than € when |v| < Ve.
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0| | K

Figure 4.1: Kinematics of Cosserat rods. Left: under deformation, rod cross-sections
remain planar, but not necessarily orthogonal to the centerline. Right: the
cross-section orientation is represented by three director vectors.

4.2 Cosserat Rods

In this section we briefly present Cosserat rods, which model the large deformation
behavior of long, slender objects [28]. The theory of Cosserat rods can be derived by
suitably constraining or approximating three-dimensional continuum mechanics models.
For the sake of brevity we omit these derivations and merely state the resulting model.
For an in-depth presentation see the book by Antman [7] and the references it contains.
Define
SE(3) = R® x SO(3),

the special Euclidean group in R3. A Cosserat rod is described by a map

[0,1] — SE(3) (4.8)
s — (r,q),

which we will assume to be as smooth as necessary. Here [ € R is the reference length of
the rod. The first component r of ¢ determines the position of the centerline of the rod.
The second component ¢ determines the orientation of an idealized cross-section A(s)
(Fig. £ left) which may have an arbitrary shape. This orientation is represented by
three pairwise orthonormal vectors dy,ds, ds € R3, which are called directors (Fig. BTl
right). When quaternions are used as coordinates on SO(3), the expressions for the three
directors are

G- —G+a
di(q) = 2(q192 + g3q4) | » (4.9a)

2(q193 — q2q4)

2(q192 — q394)
da(q) = |-dd+B-dd+d3 ], (4.9b)
2(q293 + q194)
2(q193 + q2q4)
ds(q) = 2(q2q3 — q1q4) | - (4.9¢)
-G -G +E+a
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4 Cosserat Rods as Models for Ligaments

When a rod deforms it undergoes strains. These are described by two strain functions
v,u: [0,1] — R? which are defined by the relations

v(s) =1r'(s), s € (0,1,

and
d}(s) = u(s) x dg(s), k=1,2,3, s €[0,1],

where the prime denotes derivation with respect to s. In order to make these strain
measures invariant under rigid-body motions they are expressed in the local coordinate
systems spanned by the directors di. We introduce the new vectors

v = (v1,vo,v3) = (<v,d1>, (v,da), (v, d3>) (4.10)

and

u= (Ul, ug, LI3) = ((u, d1>, <11, d2>, (u, d3>) (411)

In the context of rod mechanics we will always use sans serif characters to denote quan-
tities in coordinates of the director frame. The components v and v are interpreted as
the shear strains, while vz is the stretching strain. The components u; and ug are the
bending strains, and ug the strain related to torsion. Using quaternion coordinates the
components u; can be written as

ur = 2Bk (q)d, (4.12)

where the linear mappings By : H — H are defined as

qu - (q47Q3a_q27_Q1)
BQq - (_Q3aQ47Q17_QQ)
Biq = (q2,—q1,94,—q3)

These mappings can be interpreted such that for a small € € R, a change in ¢ by eB(q)
produces a rotation about the dj axis by an angle of 2¢ [31].

For a meaningful theory deformations have to preserve the orientation of the material.
In particular it should be impossible to compress any part of a rod with positive rest
length to zero length. The simplest condition is

vy = (v,d3) > 0. (4.13)

A more involved treatment which takes the finite cross-sectional area of the rod into
account is given by Antman [7]. As [I3)) only rules out very extreme configurations,
we will disregard it to simplify our treatment.

The forces and moments acting across a material cross-section A(s), s € [0,[] are
implicitly averaged to yield a resultant force n(s) € R? and a resultant moment m(s) €
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4.2 Cosserat Rods

R? about r(s) € R3. Then balance of moments and forces implies the equilibrium
equations

n+f = 0, on [0,1],
m +1r'xn+1 = 0, on [0,1],

where f : [0,1] — R? is an external force and 1 : [0,{] — R? an external moment [7]. The
components of the net forces n and moments m with respect to the local coordinate
systems spanned by the directors are denoted n; and m;, ¢ € {1,2,3}, respectively.
We refer to my, my as the bending moments and to ms as the twisting moment. The
components ny and ny are the shear forces and ng the tension.

Forces and moments are linked to the strain by constitutive relations which describe
the properties of specific materials. Analogously to the continuum mechanics case de-
scribed in Sec. Bl a material is called hyperelastic if there exists an energy function
W(w,z,s) with w = (wy,wa,ws), z= (21,22, 23) such that

oW

T ow

. ow N
m (u—1d,v—y,s), n—E(u—u,v—v,s).
Here, G and V are the components of strain in a reference configuration ¢ : [0,1] — SE(3).

We assume this reference configuration to be stress-free by requiring that

W 0.0,5) = W 0,0.5) =0
—— §) = — s) =0.
aw ) ) az ) )
Further we take the strain-energy function W to be convex, coercive, and as smooth as
needed by the analysis. The function W is called coercive if for all s € [0,]]
w
Wiw,z,5) —o0o as |w]r+ |z = x

[w|? + [2]”
(see |4, 51]). The rod is called uniform if neither the energy function W nor the reference
strains 0 and v explicitly depend on s.

The simplest choice for a rod material is the linear elastic material. In this case, the
energy is a quadratic function of the strains

Ww,z,s) = % (VZV>TW(S) <V2V> , (4.14)

where W (s) € R6%6 is symmetric and positive definite for all s € [0,1]. General linear
material models contain 21 free parameters. A further simplification takes the matrix
W to be diagonal. Then the energy density W takes the form

W(U —0,v— \7) = — ZKZ(UZ — ﬂl)Q + 1 ZAZ(VZ — \7i)2, (415)
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4 Cosserat Rods as Models for Ligaments

with scalar parameters K;, A;, i € {1,2,3}. For the stresses and moments we get
m; = Kz(uz - ﬂz) and n; = Kz(vz — \A/Z), (416)

again with i € {1,2,3}.

If the rod models a solid body whose diameter is small compared to its length, and
whose material is homogeneous and isotropic, these parameters can be interpreted as
follows [65]. For a cross-section A(s) let |A(s)| be its surface area, and for any point
p € A(s) let (¢,¢) € R? be its coordinates with respect to the coordinate system spanned
by d; and dy. Then

Ay = Ay = GJA|, As=E|A| (4.17)

with Young’s modulus E and shear modulus G = E/(2+2v), which contains the Poisson
ratio v € (0,1). Further,

Ki=FEJ,, Ky=EJ, Ks;=GlJs, (4.18)

where

le/Cde and J2:/§2dac
A A

are the second moments of area of the cross-section and J3 = J; + Jy is the polar
moment of inertia. These moments describe how the shape of the cross-section influences
the deformation behavior of the rod. For a circular cross-section of radius r we have
J1 = JQ = %7“4.

Remark 4.2.1. The linear approximation (fZI5]) may appear over-simplified for the mod-
eling of ligaments. Note, though, that ligaments do indeed show a linear elastic behavior
beyond a small toe region (see Sec. Z3)). Also bear in mind that additional parameters
as they appear, e.g., in ([EI4]) may be very difficult to measure (Sec. ZH). From the
mathematical point of view the kinematic rod model can be combined with any sort of
material law. See, e.g., [, Chap. 8] for a viscoelastic law which may be modified to yield
the quasilinear viscoelasticity of [Fung ([4(] and Sec. Z3]).

In analogy to the continuum mechanics case, the stable equilibrium configurations of
a Cosserat rod with a hyperelastic material law can be characterized as the minima of
an energy functional j defined by

i(p) = /M W (u(p) — 6, v(@) — ¥,5) ds, (4.19)

in a space of functions [0, !] — SE(3) of appropriate regularity [82]. From the coerciveness
of W follows the coerciveness of j as a function of u and v. Hence level sets of j are
bounded. The problem of finding equilibrium configurations can therefore be written as
an optimization problem. Let C7, be the space of all functions [0,!] — SE(3) that are
sufficiently regular and that fulfill given Dirichlet boundary conditions. We want to find
a ¢* € CF, such that

J(@") <jlp)  forall g € Cp. (4.20)
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4.3 Geodesic Finite Element Spaces

Figure 4.2: First-order geodesic finite element function on the unit circle S*.

Existence and regularity of solutions to this problem have been shown by Seidman and
Wolfe [82]. The main difficulty is the condition (T3] on the preservation of orientation,
since it is a strict inequality and hence the admissible set is open. [Seidman_and Wolfe
also showed that solutions of nonlinear rod problems are generally not unique.

4.3 Geodesic Finite Element Spaces

When rod problems are to be solved numerically, special care has to be taken to choose
a suitable discretization. The concept of linear finite elements has to be generalized
since it does not make sense in a nonlinear space. In this section we introduce geodesic
finite element spaces as a generalization of first-order finite element spaces to problems
involving functions whose range space is a nonlinear manifold. This concept provides a
geometric view on the interpolation formula of Sansour and Wagner [8(], and generalizes
their work to smooth Riemannian manifolds. To our knowledge geodesic finite elements
have not appeared in the literature before. With the application to rod problems in mind
we stick to one-dimensional domain spaces. However, an extension to higher dimensions
is conceivable and may be useful for nonlinear shell models or micropolar materials. We
first discuss geodesic finite element spaces for general Riemannian manifolds and then
concentrate on SE(3), the configuration manifold of a Cosserat rod cross-section.

Let M be a Riemannian manifold which is geodesically complete, and consider con-
tinuous functions from an interval [0,/] to M. Introduce a one-dimensional grid G on
[0,] by subdividing the interval in finitely many subintervals [l;,l;11] of not necessarily
the same size. Call n the number of grid vertices and h := max; |l;+1 — [;| the maximum
element size. Note that for any first-order finite element function ¢ defined on G with
the range space R™,m > 1, the graph of ¢; is a connected series of line segments in
R™+1 This, together with the observation that geodesics are the natural generalization
of straight lines on manifolds, motivates the definition of geodesic finite element spaces.

Definition 4.3.1 (Geodesic finite elements). Let G be a one-dimensional grid on [0, ]
and M a Riemannian manifold that is geodesically complete. We call ¢p, : [0,1] — M
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4 Cosserat Rods as Models for Ligaments

st St St

Figure 4.3: Left: a smooth function ¢ : [0,1] — S with ¢(0) = 0 and ¢(I) = 7. Center:
nodal interpolation on the grid G = [0,!] yields two minimizing geodesics.
Right: if the grid is fine enough the nodal interpolation is unique.

a first-order geodesic finite element function for M if it is continuous and, for each
element [l;,1;11] of G, ¢r(s) is a constant-speed geodesic motion on M on a minimizing
geodesic. The space of all such functions will be denoted by VhM.

Example 1. Let M = S' be the unit sphere in R? with a coordinate system given by the
angle a. Then VhS1 is the set of all continuous functions ¢y, : [0,1] — S! such that the
restriction of ¢, to an element [l;,[;11] is of the form

Ohli i1y (8) = i + m(%)
i1~ b
with |m| < 7 (see Fig. E2).
Ezample 2. If M = R™ for some m > 1 then VhM is precisely the standard m-valued
first-order finite element space.

We will now explore a few properties of geodesic finite element spaces. Note first that
VhM is a linear space if and only if M is. Therefore, unless M is a linear space, there is
no such thing as a basis of VhM . In particular, there is no nodal basis.

The finite element method makes much use of the natural isomorphism between finite
element functions and coefficient vectors. Let V}, be a space of first-order finite element
functions mapping into R and let vy be a function in V},. The coefficient vector corre-
sponding to vy, is obtained by pointwise evaluation at the grid vertices. Let C([0,]; R™)
be the space of continuous functions mapping [0,1] to R™. For a given grid G we denote
the pointwise evaluation operator by

E:C([0,];R™) — R™*™, (E(vn))i =vp(li) €eR™, i=0,...,n—1.

Its inverse, the prolongation £71 is set-valued and maps a coefficient vector v in R™*"
to the set of all continuous functions that have v as their pointwise evaluation at the grid
vertices. However, the prolongation £~1v C C([0,1];R™) contains only a single element
in V}, for each v € R™*",

This may not be true for general manifolds M, where one would hope for an isomor-
phism between VhM and M™, the n-fold product of M. While there is always a unique
straight line segment between two points in a Fuclidean space, there may be more than
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4.3 Geodesic Finite Element Spaces

one minimizing geodesic between two given points on M. As a simple example consider
again M = S! with a coordinate system given by the angle a, a grid G consisting of a
single element [lg, 1], and the coefficient vector ¢ € (S')? such that ¢y = 0 and ¢1 = 7.
Then there are two minimizing geodesics from ¢y to ¢, namely the one in clockwise
and the one in counterclockwise dlrectlon both with length 7 (Flg E3 Center) Hence
there are two functions qSh and ¢, in Vh such that 5(¢h) ¢ and E(p,) = .

On certain manifolds it can be shown that minimizing geodesics are always unique. An
example are the hyperbolic spaces H¢ [33, Prop. 8.3.1], and of course the linear spaces.
If minimizing geodesics are not unique, we can show a local property which is sufficient
for practical applications. We need the following classical result [33, Thm. 3.3.7 and
Rem. 3.3.8].

Lemma 4.3.1. For each p € M there is a nonempty neighborhood U of p in M such
that for all q,q' € U there is a unique minimizing geodesic from q to q'.

Example: For two points a, 3 € S the minimizing geodesic from « to 3 is unique if
dist(ey, B) < 7.

The radius of the largest geodesic ball B(p) at p with B(p) C U is called the injectivity
radius at p and denoted by inj(p). The infimum of the injectivity radii over all of M is
called the injectivity radius of M and denoted by inj(M).

Let ¢ : [0,1] — M. We say that ¢ is Lipschitz continuous with Lipschitz constant L if

dist(6(a), 6(b)) < Lla — b
holds for all a,b € [0,1].

Lemma 4.3.2. Letinj(M) > 0 and ¢ : [0,1] — M be Lipschitz continuous with Lipschitz
constant L. Let G be a grid with mazimum element size h < inj(M)/L. Then, setting
¢ = E(¢) € M™, the inverse of € at ¢ has only a single element in VM. If h < einj(M)/L
for some € € (0,1), the inverse of £ has only a single element in Vh for all ¢ in a
neighborhood of ¢.

Proof. We note first that by Lemma 3Tl a minimizing geodesic joining a and b is unique
if dist(a,b) < inj(M). If h is less than inj(M)/L and

¢=E(p) € M", oi = o(li), 0<i<n

we get
dist(¢s, diy1) < Llli — lix1| < Lh < inj(M)

for all 0 < i < n — 1. Hence there is a unique minimizing geodesic from ¢; to ¢;41 and
a unique prolongation of ¢ into VhM .

Let now G be such that h = einj(M)/L with e € (0,1). Then dist(¢;, ¢;+1) < einj(M)
forall 0 <i < mn—1. Define ¢* = (1—;) inj(M) and set Be(¢;) and B (¢i11) the geodesic
balls of radius €* around ¢; and ¢; 41 in M, respectively. Then for any b; € Be+(¢) and
hip1 € Ber(dir1) we have, by the triangle inequality,

dist (¢, ¢ir1) < dist(ey, ¢) + €inj(M) + dist(Piy1, pi+1) < inj(M).

73
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Hence if B~ (qg) is the geodesic ball in M™ of radius " around ¢ € M™ there is a unique
prolongation for all ¢ € Bex(¢) into V;M. O

This lemma implies that for a given continuous problem we can always find a grid fine
enough such that we can disregard the distinction between VhM and M™ in the vicinity
of the solution. In this vicinity VhM inherits the manifold structure of M", because short
geodesics depend differentiably on their endpoints (Lemma ETT). If M is a Lie group
VhM also locally inherits the Lie group properties of M™.

We will now focus on geodesic finite element functions mapping to SO(3). As a first
result we can compute the injectivity radius of SO(3) exactly.

Lemma 4.3.3. Let p,q € SO(3). Then dist(p,q) < w. If dist(p,q) < w then there is a
unique minimizing geodesic from p to q. If dist(p,q) = m then there are precisely two
minimizing geodesics from p to q.

Proof. Let q # p. Geodesics from p to g are images of straight lines under the exponential
map exp,. By Lemmas and there is at least one unit vector 0 € s0(3) such
that exp, tp0 = pexptd = ¢ for some ¢ € R*. We first show that © must be unique
in the sense that any other unit tangent vector v with pexptv = ¢ must be collinear
to 9. Indeed, let v € s0(3) be a second linearly independent unit vector such that
pexptv = q, with £ € RT. Consider Rodrigues’ formula, which is an explicit formula for
the exponential map on SO(3) using orthogonal matrices as coordinates [67]

0 —U37f Ugt
exptd =exp | wst 0 —v1t
—Ugt Ult 0
0 —U3 (%)
= v3s 0 —u|sint+ (Id —vvT)cost + vol. (4.21)
—7V2 U1 0

It is easy to check that v = (v1,v9,v3) is an eigenvector of exptv to the eigenvalue 1.
Indeed, unless ¢ = 0 (i.e., unless expt0 is the identity) it is the only one. Therefore,
from the assumptions above it follows that v and ¥ are both eigenvectors of p~lq inter-
preted as a matrix for the eigenvalue 1. This however contradicts their assumed linear
independence. Hence v = £0 and all geodesics from p to g are generated by exp t© with
teR.

Consider now 0 fixed and exp t0 as a function from R to SO(3). By ([EZI]) it is periodic
with the period 27r. Hence there exists a t* € (0, 27) such that pexp td = ¢ if and only if
t =t"+2im fori € Z. If t* < 7w then ¢y = {pexptd | 0 <t < t*} is the unique minimizing
geodesic from p to ¢ of length ¢*. If t* > 7 then ¢ = {pexptd | t* — 2w < ¢ < 0} is the
unique minimizing geodesic from p to ¢ of length 27 — t* < w. If t* = 7 then both ¢t
and c_ have the same length 7 and are minimizing geodesics. O

For actual computations the geodesic finite element functions obtained by prolongation
of coefficient vectors need to be evaluated at the quadrature points. Using quaternion
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coordinates and the formulas () for the exponential map on SO(3) explicit expressions
for the geodesic interpolation on SO(3) can be derived. More formally, we give a closed-
form expression for

q:[0,8] x SO(3) x SO(3) — SO(3),

where [0, d] is an interval and

q('7p7 Q) : [075] - SO(?’)

is a constant-speed parametrization of a minimizing geodesic with q(0,p,q) = p and
qa(d, p,q) = ¢
For any geodesic that connects p to ¢ there is a tangent vector pt € T,SO(3) such that
exp, p0 = q. Using that exp, is a local diffeomorphism we get the analytical expression
= exp H(p~lq). We can use [@7) to obtain that the geodesic distance between p and
q is |9 = |v| = 2arccos(p~'q)4 and that
(»"'a)v]

’Uj:.i'v', ]6{1,2,3}
Sln7

The interpolation between p and ¢ along the connecting geodesic induced by © is then
s E s 1 -
a(s, . q) = exp, <pb = pexp <0 = pexp <[exp "p'ql. (4.22)

Note that q(s,p,q) = q(d — s,q,p) can be shown by direct calculation.
Finite element computations also require the tangent vector of a geodesic from p to ¢
at quadrature points s € [0,d]. By [22) and the chain rule we get

2q(-,p,q)
0s

0 exp

o (4.23)

0
5
s v=59

The explicit formula for the partial derivatives dexp /0v of the exponential map can be
found in Appendix [Al
Functions describing configurations of Cosserat rods map intervals onto SE(3). Using
the results about products of spaces we know that this is a Riemannian manifold with
tangent spaces
T.)SE(3) = T,R® ® T,SO(3). (4.24)

The metric is given by
9o 1 TgSEB) x T, )SE(3) — R
g@"ﬂ])((wlaq@l% (wZaq@Q)) = (wl,w2> + <Ul77}2> (4.25)
and the exponential map is
€XP(rq) - T(nq)SE(?)) — SE(3)
exp( g (w,q0) = (r+w,qexpd).

The following result is straightforward.
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4 Cosserat Rods as Models for Ligaments

Lemma 4.3.4. The Riemannian manifold SE(3) is geodesically complete.

Using that minimizing geodesics in Euclidean spaces are always unique together with
Lem. we can determine the injectivity radius of SE(3).

Lemma 4.3.5. The injectivity radius of the special Euclidean group is inj(SE(3)) = .

We now write down the discrete version of the rod minimization problem EZ20). Let
G be a grid on [0,!] with n vertices and maximum element size h. Let g, p; € SE(3) be

given Dirichlet boundary data. We want to find a ¢; € Vhsg(g) such that

J(er) < jlen) for all ¢, € V}ﬁ%(g), (4.26)

where

VSEG) _

SE(3
nD {en eV, (

) | ©n(0) = @0, n(l) = @1}

is the geodesic finite element space for SE(3) fulfilling given Dirichlet conditions, and

Jj= W(u—a,v—1,s)ds
[0,1]

is the hyperelastic energy functional (I9I).

We can also write down an algebraic formulation of the same problem. Let h be
sufficiently small. We want to find a ¢* € SE(3)" with @} = o and @¢_; = ¢; such
that

J(@%) <j(p)  forall ¢ € SE(3)" with go = o and @1 = ¢y (4.27)

with
i@) = W(uE @) —u,v(E (p) - V,s)ds. (4.28)

Note that, by Lemma FE32, the minimization problem (27) is restricted to those @ for
which £ is single-valued.

Using Lemma EETT] and the fact that u, v, and W are all differentiable we can show
the following.

Lemma 4.3.6. The functional j : SE(3)" — R depends differentiably on its arguments.

Remark 4.3.1. Rod and beam models are well-known to exhibit locking, i.e., a bad
approximation property of the discrete problem for coarse grids [21]. This problem can
be solved by using a mixed discretization. For problems which do not couple translational
and rotational strains (i.e., the matrix W in (EEI4)) is block-diagonal), it is also possible
to use the much simpler selective integration method [73].
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4.4 Riemannian Trust-Region Solvers

4.4 Riemannian Trust-Region Solvers

In this section we present a trust-region solver for the algebraic minimization prob-
lem ([E2M). Trust-region solvers are a standard tool for nonconvex optimization in Eu-
clidean spaces [26]. |Absil et. all generalized them to optimization problems on Rieman-
nian manifolds and used them successfully for problems in numerical linear algebra [3].
To our knowledge no trust-region algorithm for Cosserat rods has been published. How-
ever, Simo and Vu-Quoc [83] used the related idea of a Newton method on the nonlinear
rod configuration space. Adler et al. [fl] used a similar method for the simulation of the
human spine.

There are several reasons why to choose a trust-region solver rather than other, seem-
ingly simpler algorithms such as the one presented in [46]. First of all, they are very
fast. From the underlying Newton idea trust-region solvers inherit local superlinear con-
vergence. This is of particular importance when solving static rod problems as part
of an outer iterative scheme, since then a good starting iterate is frequently available.
Secondly, they are globally convergent, see Theorem EEZTl Last but not least, they are
very flexible. It is, for example, quite easy to extend them to handle certain inequal-
ity constraints. That way contact problems involving rods such as ligaments wrapping
around bone can be treated.

We first present the basic trust-region algorithm on FEuclidean spaces. Let J : R® — R
be twice differentiable, bounded from below and such that J(xz) — oo when ||z| — oc.
We look for a * € R" such that

J(x¥) < J(x) for all z € R™. (4.29)

Starting from an initial iterate zg € R", a trust-region solver will, at the v-th iteration,
fit a quadratic model m,, : R™ — R to J at z, by setting

my(v) = J(2,) + (VI (2,), 0) + %UTVQJ(%)U. (4.30)

If v, is the minimum of m, then x,11 = x, + v, is expected to be a better iterate than
Z,. As m, can only be supposed to be a good approximation of J in a neighborhood of
x,, the search for a minimum of m,, is restricted to

Kr={veR"||v<p}  p>0, (4.31)

the name-giving trust-region. Its radius p, depends on how far we trust the quadratic
functional m, to be a good approximation of J around z,. The norm in [E3I) is
arbitrary and may even differ from iteration to iteration [26]. The restriction of the
minimization problem for @30) to K also ensures the existence of a minimum of the
subproblem when (30) is not convex.

Let v, be a minimum of m, on K¥. The quality of a correction step is estimated by
comparing the functional decrease and the model decrease. If the quotient

J(xy) = J(xy +vy)

Y my(0) —my(vy)

(4.32)
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4 Cosserat Rods as Models for Ligaments

Figure 4.4: The retraction mapping R, : T, M — M.

is smaller than a fixed value 71, then the step is rejected, and v, is recomputed for
a smaller p. If not, the step is accepted. If 7, is larger than a second value 7y, the
trust region radius is enlarged for the next step. Common values are 17y = 0.01 and
n2 = 0.9 [26].

The trust-region algorithm converges globally to a first-order critical point of J. Saddle
points of J are numerically unstable and therefore limit points are practically always
minima. When close enough to a solution, the trust-region constraint (E3I]) becomes
inactive and the local quadratic convergence of a Newton solver is recovered. The book
by Conn et al. [26] contains the detailed convergence theory.

If J is defined on a nonlinear manifold instead of a Euclidean space, the concept of a
local quadratic model ([@30) of the objective function has to be revised. Also, as there is
no canonical addition defined on a manifold, the update procedure z, 1 = , + v, needs
to be replaced by something more general. We will now briefly present the generalization
of the trust-region algorithm to Riemannian manifolds as introduced by Absil et al. [4]. In
the next section we will show how the general algorithm specializes when the underlying
space is the set SE(3)" of configurations of an algebraic Cosserat rod problem.

Let (M, g) be a smooth Riemannian manifold with metric g. The basic idea of the
Riemannian trust-region algorithm is that in a neighborhood of a point z € M the
objective function can be transported onto the tangent space T,,M at x. There, a vector
space trust-region subproblem can be solved and the result transported back onto M.
The notion of transporting onto 7, M is made formal by the introduction of retractions.

Definition 4.4.1 (Retraction). A retraction on a manifold M is a continuously differ-
entiable mapping

R:TM —- M

with the following properties.

1. R.(0;) = x, where 0, is the zero element of T,M, and R, is the restriction of R
to T, M.
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4.4 Riemannian Trust-Region Solvers

2. DR,(0) = Idp,pr, the identity mapping on T, M, with the canonical identification
To, T M ~ T, M.

The exponential map ([l is always a retraction. Alternatives have been consid-
ered [6], since exp, is not always easy to evaluate. When dealing with SO(3) this is
not a problem, since the explicit formula ([T) is available. We will hence always set
Ry =exp,.

A Riemannian trust-region step now proceeds as follows. Let x,, € M be the current
iterate. We use R, to locally lift the objective function J onto the tangent space T, M
to obtain

J, T, M —R
Ju(v) = J(Ry,(v).

The Riemannian structure g turns T, M into a Banach space with the norm ||-[|4, =
\/ 9z, (-,-). There, the trust-region subproblem reads

v, = arg venleiilM My, (V) (4.33)
vllgz, <ev
with .
my (v) = Jy(0,) + dJy (0, [v] + 5, (O, )[v, v). (4.34)

Here, dJ,(0,) : Ty, M — R is the differential of .J, at 0,, € T,, M and d2.J,(0,,) :
T, M x T, M — R the second-order differential operator of j,, at 0, € T, M. Note
that the problem is independent of a specific coordinate system on T, M. Alternatively,
the quadratic functional ([Z34]) can be written without differential forms to read

A A

my,(v) = jl/(ozvu) + 92, (VI (0z,,),v) + 59:&, (VQJV(O:BV)UaU)-

The gradient V.J,(0,,) € Ty, M is the unique vector with d.J, (0, )[v] = gz, (VJ,(04,),v),
Vv € T,, M, and the Hessian V2J,(0,,) : Ty, M — Ty, M is such that d2.J,(0,,)[v,-] =
e, (V2.J,(04,)v, ), again for all v € T,, M. The solution v, € T, M of [E33) generates
the new iterate through the retraction

ZTy41 = Ry, (vy).

Finally, acceptance of the new iterate and regulation of the trust-region radius p is
handled as in the Euclidean case by looking at the quotient (E32).

The main problem for the convergence analysis is the fact that at each iterate =, a new
lifted objective function .J,, is considered. Absil et al. 4] proved the following theorem.

Theorem 4.4.1 (Global convergence). Let {x,} be the sequence of iterates generated
by the Riemannian trust-region algorithm with n € [0, %), and starting from an arbi-
trary initial iterate xg € M. Suppose that the objective function J and the retraction
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4 Cosserat Rods as Models for Ligaments

R are smooth and the Riemannian manifold M is compact. Further assume that the
approzimate solutions v, to the local problems B33)) fulfill the Cauchy descent criterion

: VI ()]l
My, (0) —my, (V) 2> c||VJ(zy)|| min | py, = , 4.35

where |V2.J,(04,)| is the operator norm of the Hessian as a mapping Ty, M — Ty, M
and ¢ a positive constant. Then

lim VJ(z,) =0

holds.

Also, depending on the stopping criterion used for the inner solver we get superlinear
or even quadratic local convergence M|.

Theorem 4.4.2 (Local convergence). Suppose that the objective function J and the
retraction R are smooth and the Riemannian manifold M is compact. Let x* € M be
a nondegenerate local minimizer of J, i.e., VJ(z*) = 0 and g~(V2J(z*)-,-) is positive
definite. Then there exists a neighborhood V' of x* such that, for all xqg € V', the sequence
{z,} generated by the Riemannian trust-region algorithm with the Steihaug—Toint algo-
rithm [4] as the inner solver converges to x*. Furthermore, there exists a ¢ > 0 such
that, for all sequences {x,} generated by the algorithm converging to x*, there exists a
K > 0 such that for all v > K

dist(z,41,2%) < e(dist(z,, 2*))™mOF12)

where 8 > 0 depends on the stopping criterion of the solver for the quadratic subproblems.

4.5 A Trust-Region Solver for the Cosserat Rod with
Hyperelastic Material

We will now apply the general Riemannian trust-region algorithm of the previous section
to the discrete Cosserat rod problem (26). Call ¢* the continuous solution of a given
rod problem and assume the grid to be fine enough such that there is a neighborhood V'
of £(p*) € SE(3)" with a bijection between VhSE(?’) and SE(3)" in V. The existence of
such a neighborhood is guaranteed by Lemma32 We further suppose that if the initial
iterate g is in V then so are all subsequent iterates. In particular, by Theorem EZ2]
this is fulfilled if g is close enough to the solution. We can then replace the discrete
problem (EZ0]) by the algebraic problem ([27) and work on the manifold M = SE(3)".
We denote elements of SE(3)" by

n—1

(Ta Q) - H(Tia Qi)'

1=0
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4.5 A Trust-Region Solver for the Cosserat Rod with Hyperelastic Material

At any (r,q) € SE(3)", by @24 the tangent space is

n—1 n—1
T SER)" = D (T..R* © 7,,50(3)) = P (R* @ ¢;A%), (4.36)
i=0 i=0

where the spaces ¢;A® have been defined in (). The exponential map eXP(rq)
T{rq)SE(3)" — SE(3)" can be written as

n—1 n—1
eXP(y,q) (w,qv) = H (expri w;, XPy, qi@i) = H (ri + wj, q; exp f)l-), (4.37)
i=0 1=0

where we have used ([3)) together with ([E6]). Since the closed-form expressions (1) for
the exponential map are available and easy to evaluate, we use ([L37) as the retraction.
We consider the algebraic rod energy functional [2]])

j : SE@)"—=R

ie) = [OHW(U(f_l(@))—ﬂ,V(E_l(sﬁ))—\?,S)dS- (4.38)

For s € [l;,1;+1], the mapping £71 : SE(3)" — VhSE(?’) is given element-wise by

Lo
EHp)s) = ( Y Pk Pr(s), Q<li1 _l;(@q)i’(@q)Hl)),
j€{0,1,2) ! !
ke{i,i+1}

where q is the geodesic interpolation ([22]) with § = 1.
We now lift j onto the tangent bundle of SE(3)". Let (r,,q,) € SE(3)" be the current

iterate. Then, using the retraction 3), the lift of j onto T(,, 4,)SE(3)" is
jy . T(rqu)SE(Z%)n — R
J(w,q,0) = j(exp(mqy)(w, q,0)) = j(r, + w,q, exp d). (4.39)

In order to obtain the quadratic model m, ([E3), we need to compute the differential
dj, and the second derivative d2j, of the lifted functional j,. Using ([EZH) we get

djy(O)[(w, qu@)] - gu(vjm (w7 QVQA})) = <ijl/7 w> + <vvjm U>

for all (w,q,0) € T(y, 4,)SE(3)", where V,, € R* and V, € @), ¢;A* denote the gradients
with respect to w and v, respectively. Using ([38]) and [E39) we get

V) = o VoW (u(EH(@)) — G, v(EHP)) — ¥, 8) ds. (4.40)

and likewise for V,j. Let wzj be the coefficient of w pertaining to the i-th grid vertex and
the canonical coordinate direction j. Then the coefficients of V, W and V,WW are given
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4 Cosserat Rods as Models for Ligaments

by
oW 5 0
— = A (Vin (@) — Y (8)) ——= v (r + 7, qgexp 4.41
o mZ (vin(9) <>>w§ (r+7,gexpd) (4.41)
oW 5 9
— = K (um(q) — Gp(s)) —um(gexp
o0 mZ (um(q) = G (s)) o7 m(ae )
5 9
+ Z A (Vi (q) — Om(s))ﬁvm(r + 7, qexp ). (4.42)
m=1 Vi

The derivatives of the strain measures u and v using the geodesic interpolation formulas
of Sec. are somewhat technical, and can be found in Appendix [Al Deriving (EZT])
and ([EZZ) once more we get the coefficients of the Hessian matrix

9 3 r 2
L P T LA LT A cil
or] (9ch = I or]  Ory, or] 87“2_
2 3 [ 2 1
OW 5 4, | Doy, gy 2t
or? avfg = I orl vy or? (%fg_
PW 3 A O 82u,,
VN, [ B )
ov? ot mZ:l [(%Z]- vt ( )(%Z]- vij
3
ov ov 0%v
+ Am — .= + (Vi — Om — )
2 [avz ouf, avfj

and the remaining terms by symmetry of the Hessian. In principle these expressions can
also be computed analytically. However, in order to avoid the very unwieldy formulas
which result we opted for an approximation of the Hessian matrix by a finite difference
scheme. This is covered by the convergence theory which allows approximations to the
Hessian matrix.

In summary, we obtain the inner trust-region problem

(wy, gy 0y) = argminm, ((w, ¢,?)), [ (w, qvﬁ)”g(w’ql’) < puv, (4.43)

where the minimization is over all (w,q,9) € Ty, 4,)SE(3)" and

my((w; 4,0)) = 3u(0) + dju (0)[(w, g, 0)] + %dzﬁu(o)[(w q0), (w, ¢, 0)]. (4.44)

The functional m, is quadratic, but not necessarily convex. Being a minimization prob-
lem of a continuous function on a compact set, Problem (EZ3]) has at least one solution
(Wy, @u0y) € Ty, 4,)SE(3)". The next iterate is then given by

(rvs1s QV+1) = €XP(r,,q,) (wm qyﬁu) = (ry +wy, q exp f)u)
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4.5 A Trust-Region Solver for the Cosserat Rod with Hyperelastic Material

Various solvers have been proposed for problems like ([@Z3]). In their article on Rie-
mannian trust-region algorithms, [Absil et all used the Steihaug-Toint algorithm [4], and
their local convergence result relies on the use of this solver. With future generaliza-
tions to higher-dimensional problems in mind we instead apply a multigrid solver to the
inner quadratic problems. For this note that the trust-region convergence theory allows
norms other that |||y, ~for the definition of the trust-region. We therefore introduce a
generalization of the maximum norm on the tangent bundle of SE(3)" by defining

[loorse@n  : TSE(3)" — Ry
T )SEB)" 3 (w,q0) — max{||wleo, [|v]lso }- (4.45)

Using this norm, the trust-region subproblem [Z3]) reads

(wy, qu0,) = arg min(m, ((w, ¢, 0)) ||(w’quﬁ)”oo,TSE(3)" < pus (4.46)

with m, given as before. The new trust-region

K;é,u = {(qul/@) € T(Tu,qu)SE(?’)n | ”(w7qvﬁ)”oo,TSE(3)” < pl/} = [_pV7pV]6n

has the tensor product structure ([BZ2) needed to apply Lemma BZZTl Hence it seems
natural to apply a monotone multigrid method (MMG) to the inner problems ([A40]). The
monotone multigrid method is known as an efficient and globally convergent algorithm
for quadratic convex minimization problems on sets having the product structure ([42).
Even though the functions ([Z]) may be nonconvex we expect MMG to perform well
on the inner problems (0] for the following reasons. At a given outer iteration v if
m,, is convex then, by Thm. BZ1, the monotone multigrid method will converge to the
solution of (EZ). If m, is not convex we cannot prove that MMG produces sufficient
energy decrease. To make sure that the monotone multigrid method fulfills the Cauchy
descent criterion (fE3H]) we precede each multigrid iteration with a gradient descent step.
This gradient-prefized monotone multigrid method trivially fulfills the Cauchy descent
criterion.

Lemma 4.5.1. Let J : R™ — R be a quadratic, possibly nonconvex functional, and let
K={zeR"|x; €[a;,b;]} be compact. Then the gradient-prefivred monotone multigrid
method fulfills the Cauchy descent criterion.

Since MMG is a descent method which produces very good iterates on convex problems
we also expect it to produces large energy decrease on nonconvex problems.

The convergence analysis given in [4] for the case of a Riemannian-norm trust-region
and the Steihaug-Toint algorithm for the solution of the inner problems can be gener-
alized to the maximum norm trust-region, but the details are beyond the scope of this
work.

Remark 4.5.1. The Truncated Nonsmooth Newton Multigrid method of Sec. B4l cannot
be used to solve the problems ([43]) with the norm ([45]). Unlike the monotone multigrid
method it solves unconstrained coarse grid minimization problems which do not have a
solution if the functional m, is not convex.
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X

Figure 4.5: Solution of the example rod problem using a grid with 16 elements.

Remark 4.5.2. The contributions from TR3" and T'SO(3)" of the corrections (w,qd) €
TSE(3)" can differ vastly in their scaling. While the ¢o € T,SO(3)™ are infinitesimal
rotations which are invariant under scaling the w € T,R3" are corrections to the position
of the centerline. As such, they depend on the overall size of the rod. It may therefore
be advantageous to replace the norm ([Z3]) by a scaled norm which compensates for this
disparity.

4.6 Numerical Results

We close this chapter by giving a short example demonstrating the efficiency of the trust-
region solver for rod problems. We are particularly interested in pure Dirichlet problems
since that is what will need to be solved as part of a Dirichlet-Neumann algorithm in
Chapters B and

Consider a rod of unit length which is completely straight and aligned with the z-axis
in its unstressed state. The cross-section is circular with a radius of 0.05 length units.
We choose a linear material law with parameters E = 2.5-10° pressure units and v = 0.3.
Using the formulas @I1) and I, this leads to approximately A = (755, 755,1963)
and K = (1.23,1.23,0.94).

We clamp the first end of the rod at the origin. The second endpoint of the centerline
is placed at (1/2,0,0), with the cross-section such that d; = (1,0,0), d2 = (0,0, 1),
and d3g = (0,—1,0). The solution configuration for these boundary conditions contains
stretching, shear, bending, and torsion (see Fig. ELH).
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4.6 Numerical Results

10000
1
. 0.0001
e
o 1e08
1e-12
1e-16 Figure 4.6: Error |p,|, per iteration v for
0 8 16 24 32 a grid consisting of 4096 ele-
lteration ments.
levels |2 3 4 5 6 7 8 9 10 11 12
elements 4 8 16 32 64 128 256 512 1024 2048 4096
overall it. 16 14 25 19 24 26 19 29 34 30 30
unsuccessfulit. | 21 2 1 3 4 2 3 5 1 1

Table 4.1: Number of overall iterations and unsuccessful iterations of the trust-region
solver per grid size.

To measure the convergence speed we first computed a reference solution ¢* by let-
ting the solver iterate until the maximum norm of the correction Hexp;} Puv+1l00,TSE®E)"
dropped below 107!2. We then computed the Hessian matrix H* of the lifted energy
functional j, at the last iterate ¢*. Assuming ¢* to be close to a minimum of j we get
convexity of j, and hence H* is positive definite. It therefore creates an energy norm on
T,+SE(3)"™ which we denote by ||-|| z+. Revisiting now the iteration history ¢y, ..., ¢* we
transport each ¢, onto T,+SE(3)" using the inverse exponential map at ¢* and define
the error of ¢, as

oul, = llexpt eulle.

All experiments in this section used reduced integration to avoid locking problems [73].
The inner problems where solved to a precision of 1073 by tracking the H'-norm of the
relative corrections. The initial trust-region had a radius of 1 and the parameters 7; and
12 where set to 0.01 and 0.9, respectively.

We first have a look at the convergence behavior of the trust-region solver itself. In
view of Theorems EEZT] and we expect global convergence and local convergence
at least close to quadratic. Fig. shows the error per iteration on a grid of 4096
elements. The initial iterate is the unstressed reference configuration where the rod is
straight along the z-axis. One can see good global convergence in spite of this fairly
remote starting iterate. The sharp drop starting around the 24th iteration confirms the
predictions of Theorem concerning fast local convergence.

Next we investigate the behavior of the convergence with respect to grid size. In anal-
ogy to [91] one would hope for asymptotically grid-independent convergence. Starting
from a one-level grid with two elements of equal size we used uniform refinement to create
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2 levels ———
3 levels
4 levels
5 levels
6 levels
7 levels
8 levels
9 levels
10 levels
11 levels
12 levels

Convergence rate

0 8 16 24 32

Iteration

Figure 4.7: Convergence rates for the inner multigrid solver per outer iteration on grid
hierarchies of up to 12 levels.

a set of test grids. These grids have between two and twelve levels and correspondingly
the range of element numbers goes from four to 4096. We ran the same problem as in
the previous paragraph on each of these grids. Table Bl shows the number of trust-
region iterations. They appear to be bounded from above, marking another desirable
property of the algorithm. We must mention though that we noted a dependence of the
trust-region convergence on the rod thickness, with the iteration numbers deteriorating
for decreasing rod thickness.

Finally, the convergence rates of the inner multigrid solver are of interest. These are
plotted in Fig. X1 They were computed as follows. At a given trust-region iteration v

let w?, ..., w* be the sequence of multigrid iterates and let
” le _ wz”
= m (4.47)

be the approximate convergence rate at multigrid iteration i. The norm used here is the
energy norm of a Laplace problem on T;,,SE(3)", which is equivalent to the H Lnorm.
The average approximate convergence rate is then

k—1 1/k
=0

From Fig. EE7 it is unclear whether the multigrid convergence rates are bounded away
from 1. In particular they are not as good as one would expect. This will be investigated
further in the future. Again we noted a dependence on the rod thickness.

Remark 4.6.1. In view of Lemma BZTl one would expect the trust-region algorithm to
also work well with an inexact inner solver. Initial numerical experiments confirm this.
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5 Coupling Rods and Three-Dimensional
Objects

In the two previous chapters we have covered the modeling of bones and ligaments.
Bones were described using three-dimensional linear elasticity, while for the ligaments
we opted for one-dimensional Cosserat rods. This chapter treats the coupling of these two
models. The anatomical bone-ligament connections, or insertions, have been described
in Sec. 24 as rigid junctions. We propose a way to model such rigid junctions between
a three-dimensional and a one-dimensional object, and we prove existence of solutions
for the coupled problem under certain symmetry conditions. As it turns out, the main
difficulty for the analysis is not the difference in dimensions but the nonlinearity of the
rod problem. Further, we introduce a Dirichlet—Neumann algorithm for the solution
of the coupled problem and numerically investigate its properties with a series of test
problems. Simulation results for an actual human knee involving bones and ligaments
will be given in Sec.

Lagnese et al. [63] have studied the coupling of beams to plates extensively. In their
work, however, the main focus is on the linearized equations. Modeling of 3d-2d junctions
between linear elastic objects of different dimensions using a method of asymptotic
expansion has been carried out by Ciarlet et al. [24]. Monaghan et al. [69] describe a 3d-
1d coupling between linear elastic elements in the discrete setting, while Formaggia et al.
[31] couple 3d and 1d variants of the Navier-Stokes equations in a simulation of blood
circulation. We are not aware of previous work on the coupling of three-dimensional
linear elastic objects to Cosserat rods.

5.1 Homogeneous Coupling in Nonlinear Elasticity

In order to motivate our choice of coupling conditions we start by deriving the cor-
responding conditions for the coupling of two d-dimensional nonlinear elastic objects.
Let Q be a bounded, open, connected domain in R? with d € {2,3}. Its boundary 99
is supposed to be Lipschitz and to consist of two disjoint parts I'yy and I'p such that
00 =T'n UT'p and I'p has positive (d — 1)-dimensional measure. We use v to denote
the outward unit normal of Q. For any displacement function u € H!(Q) we set

1
E=_(Va+t vul + vulVu)
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5 Coupling Rods and Three-Dimensional Objects

Figure 5.1: Coupling between two domains of equal dimension.

the nonlinear strain tensor (cf. Sec Bl) and o : Q — S¢ the second Piola-Kirchhoff
stress tensor of a differentiable, but possibly nonlinear material law

G : Stx0-—s?

In an abuse of notation we will frequently write o (v) instead of &(E(v)(x),z) for v €
H!(2). The boundary value problem of elasticity in its strong form is (Sec. BI)

—dive(u) =f in €, (5.1a)
u=0 on I'p, (5.1b)
ocur =t on I'y. (5.1c)

The vector field f : Q — R? describes the volume forces, and t : Ty — R? the surface
forces. Condition (BIH) clamps the body at the Dirichlet boundary. We write H}(€)
to denote the space of d-valued first-order Sobolev functions on 2 which are zero in the
sense of traces on I'p. Multiplying (EIal) by test functions v € H}(Q) and applying
Green’s formula we obtain the weak formulation

finduc HY(Q) : a(u,v)=1(v), for all v € H (), (5.2)

with
a(v,w) = / o(v): Vwdz,
Q

and [(-) given by [BI3). Note that a(-,-) is nonlinear in its first argument. However,
when o is given by the linear material law (B8] and the linear strain tensor e is used
instead of E then a(-,-) reduces to the bilinear form a(-,-) defined in [BI2).

Now suppose that ) consists of two nonoverlapping, connected subdomains 21, €9
(Fig. Bl). We denote by I'; = Q1 N Qy the interface, assuming that it is a sufficiently
smooth (d — 1)-dimensional manifold, and that T; NTp = (. With these conditions the
space of traces of functions in H}(Q2) on I’y is HY2(I';). As in Sec. we use u;, f;,
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5.1 Homogeneous Coupling in Nonlinear Elasticity

t; to denote the restrictions of u, f, t to §; for ¢ € {1,2}, and v; for the outward unit
normal of ;. Further, for i € {1,2} we define

a(v,w) = / o(v): Vwdx and li(v) = / fv dx +/ tvds.
Q; Q; INNIali o)

The weak problem (.2) is equivalent to solving separate problems on €, i € {1,2},
together with certain coupling conditions. This is made formal by the following lemma.
Denote by H}(€2;) the space of d-valued first-order Sobolev functions on €; which are
zero in the sense of traces on I'pNA€Y; and by HL(€;) the subspace of H(€2;) of functions
which are zero on I';.

Lemma 5.1.1. The weak nonlinear elasticity problem (B2) is equivalent to finding u; €
H}(), i = 1,2, such that

ai(ul-,vl-) = ll(Vl) fOT’ all v; € Hi(QZ), 1=1,2 (53&)
u; = U9 on F[ (5.3b)
2
a(wi, Rip) = > L(Rip)  for all p € H*(Ty), (5.3¢)
=1 i=1

where R; denotes any possible continuous extension operator from HI/Q(FI) to Hé(Ql)

Proof. We generalize the proof of Lemma 1.2.1 in [77]. Let first u be a solution of (&2,
and set w; = ulg,, i = 1,2. Then u; € H}(;) and (E30) is satisfied by the trace
theorem. We also get (53al) since any test function v; € HL(€;) can be extended by
zero to a test function in HE(Q) [14, Lem. 3.2.3]. Next, for u € HY/2(I'7) define Ry as

RIH in Ql
Rp = .
Rop in Qo.
Then the function Ry belongs to H(Q2) [14, Lem. 3.2.3], and hence by (E2) we have
a(u, Rps) = I(Rp),

which is equivalent to (E3d). To see the other direction, let the pair u; € HS(Q;),
i = 1,2, be a solution of (B3]), and set

u; in Ql
u = X
uy in Q.

From (B30 it follows that u € Hj(Q2) |14, Lem. 3.2.3]. Take a test function v € H} ()
and set u = vip, € H/2(T'7). Then (v]o, — Rip) € HL(€;) and from (E3al) and (E3d)
follows that

a(u,v) =

M

[az'(uu vig, — Rip) + a;(u;, Riu)}

=1

Il
'M“

[li(V’Qi —Rip) + li(RiN)]

),

I
~
o
I
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5 Coupling Rods and Three-Dimensional Objects

which is ([£2). O

A similar result holds when there are additional inequality constraints arising, for
example, from the modeling of contact. The proof, however, is more complicated (cf. |14,
Prop. 3.2.4]).

When solutions of (3]) are smooth enough they also solve a corresponding strong
boundary value problem.

Lemma 5.1.2. Let u;, i = 1,2, be a solution of (B3) and sufficiently regular. Then u;
also solves the boundary value problem

—div O'(ui) = fz‘ m QZ‘, (5.4&)
w;, =0 on I'p N 0OLY;,
O'(ui)lli =1t; on I'y N OQY;,
for i =1,2 together with
u; = a2 on F[, (5.4b)
o(u)vy = —o(ug)vy on I'y. (5.4c)

Proof. We show only that the weak continuity of normal stresses (£3d) follows from the
strong form (EZd). Multiply (54d) by a test function p € H'/?(I';) and integrate over
I'; to obtain

/ o'(ul)uluds:—/ o(uz)vopds.
Ty

Ty

Let R; be some continuous extension operator from H'/2(T';) to H§(€;). Multiply (5:4a])
by R;u, integrate over §2;, and use Green’s formula to get

0=a(u,Rip) — Li(Rip) — / o(w)vpds,
T'r

for i = 1,2. Combining these two equalities gives (B.3d). O
In conclusion, given sufficient regularity, the boundary value problem (BJ]) is equiva-
lent to the strong coupled formulation ([&.4).

5.2 Heterogeneous Coupling Conditions

According to the general theory of Quarteroni and Valli [77], coupling conditions for
elliptic problems can be written formally as

<I>(u1) = (I)(UQ), \I/(ul) = \I/(UQ), (5.5)

for two functionals ®, V. The first equality will generally involve the primal variables,
which in our case are the displacements. The second equality relates the dual variables,
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5.2 Heterogeneous Coupling Conditions

Figure 5.2: Coupling between a two-dimensional domain and a rod.

i.e., the stresses, to each other. The case of nonlinear elasticity described in the previous
section is covered by this theory with

o(v) =vr, and U(v) =o(v)v.
With this choice (&H) corresponds to the strong conditions (B.4D) and (BAd).

We will now derive conditions for the coupling of a linear elastic three-dimensional
object and a Cosserat rod. These heterogeneous conditions will be special instances of
the general equations (B.0). We use the results of the previous section as a motivation.
From now on we consider the case d = 3 exclusively. However, all results also hold for
d = 2. Let Q C R3 be an open, bounded, connected domain with a sufficiently smooth
boundary. We denote the outward unit normal by v. The boundary 952 is supposed
to consist of three disjoint parts I'p, I'y, and I' such that 0Q = Tp UT Ny UT. We
assume that I'p and I' have positive two-dimensional measure. The three-dimensional
object represented by €2 will couple with the rod across I', which we call the coupling
boundary. Consider also a Cosserat rod defined on the interval [0,!]. The boundary of
the one-dimensional parameter domain [0,!] consists of the two points 0 and I, and the
respective domain normals are vy = —1 and v; = 1. To be specific, we pick 0 as the
coupling boundary. Let ¢ : [0,I] — SE(3) be a rod configuration. For any s € [0,]
we denote by ¢,.(s) € R? the position of the centerline at s and by p,(s) € SO(3)
the orientation of the cross-section at s. We further call n(s) € R? the total force
transmitted across the rod cross-section at s and m(s) € R? the total moment about
©r(s) transmitted across the cross-section at s. We assume a stress-free configuration
¢ : [0,1] — SE(3) such that ¢,(0) = |T|~* Jrxds, ie., the coupling interface of the rod
in its stress-free state is placed at the center of gravity of the coupling interface of €2
(Fig. B2).

We begin by looking for coupling conditions for the dual variables. For the linear
elastic 3d object these are the normal stresses ov on I'; that appear in (4d). The
corresponding quantities in the rod are the total force n(0)vy and the total moment
m(0)vy about ¢, (0) transmitted in normal direction across the cross-section at s = 0. To
relate these quantities note that in the full-dimensional case it follows from the pointwise
condition (EZd) that the total force and moment transmitted across the interface are
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5 Coupling Rods and Three-Dimensional Objects

preserved. In formulas,

/FI o(uy)vds = —/ o(ug)ve ds (5.6)

Iy

and

/FI(:U —1x0) X o(uy)vy ds = —/ (x — xz0) X o(ug)re ds (5.7)

Ty

for any fixed 9 € R3. These are six equations in six unknowns, namely the three
components of the total force and the three components of the total moment transmitted
across I'7. Choosing z9 = ¢,(0), these quantities are exactly the dual variables of the
rod problem. We therefore replace one side of the equations (8] and (7)) with the
corresponding quantities of the rod and get

/Fa(u)u ds = —n(0)vy
/F(a: —¢r(0)) X (o(u)v)ds = —m(0)vyp.

These are our heterogeneous coupling conditions for the dual variables. Note that we do
not assume that I' has the same shape or area as the rod cross-section at s = 0.
We now turn our attention to coupling conditions for the primal variables. From

(E4D) we easily get that

1 1
] . (ui(z) +2)ds = ] FI(ug(gv) + ) ds, (5.8)

which is the equality of the center of gravity of I'; transformed under u; and us. The
direct equivalent to this in a rod problem is the position of the centerline, and we obtain
a first primal condition for the heterogeneous problem

%Lém@g+xms:¢4m. (5.9)

To obtain a complete set of primal conditions we also need to relate the orientations at
the interface. This requires some technical preparations. Using the deformation gradient
V(u+1d) B2) we first define the average deformation of the interface boundary I

ﬂ@:%ﬁvm@+@@ (5.10)

As long as u is sufficiently well-behaved the matrix F(u) has a positive determinant.
Using the following lemma it can then be split up into a rotation and a stretching.

Lemma 5.2.1 (Polar decomposition, [25]). Let A be a quadratic, nonsingular matriz.
Then there is a unique decomposition

A=OH, (5.11)

with O orthogonal and H symmetric and positive definite.
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5.2 Heterogeneous Coupling Conditions

Figure 5.3: In the stress-free configuration the rod
may meet the body at an arbitrary spa-
tial angle (¢4(0).

The rotational part of the deformation gradient is known as the continuum rota-
tion [71]. We define the average orientation of I' induced by a deformation u as the
rotational part of F(u).

Definition 5.2.1 (Average orientation). Let u € HY() be such that the polar decom-
position

F(u) = Or(u)H(u)
exists. Then we call Or(u) the average orientation of I' under u.

Note that the average orientation Or(u) reproduces rigid body motions of the interface
in the sense that Or(u) = Q if u(z) + = = Qz +a for a Q € SO(3) and a vector a € R?
in a neighborhood of I'. In particular, if u = 0 then Or = Id.

The average orientation Or(u) can now be set in relation to ¢,4(0), the orientation
of the cross-section at s = 0. We require the coupling condition to be fulfilled by the
stress-free configuration u = 0, ¢ = . This leads to the condition

Or(1)@q(0) = ¢q(0). (5.12)

This is an equation in the three-dimensional space SO(3). Together with () we get
six independent conditions for the six primal variables.

The factor ¢4(0) € SO(3) in (BIA) can be seen as a free parameter in the coupling
conditions which specifies the spatial angle at which the rod meets the three-dimensional
object (Fig. BE3). It is part of the problem description.

For later reference we will write the primal coupling conditions in an alternative form.
Introduce the averaging operator Av : H!(2) — SE(3) by setting

Av(u) = <|?1| /F (u() + 2)ds, Or(w)3,(0))), (5.13)

where we have used (-,-) to denote elements of the product space SE(3) = R3 x SO(3).
Then (E3) and (EI2) can be written concisely as

We now state the entire heterogeneous coupling problem in its strong form. For the
3d object let f3q4 : © — R3 and t : [y — R? be volume and surface force fields,
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5 Coupling Rods and Three-Dimensional Objects

respectively. For the rod, let there be body force and torque fields f.oq : [0,1] — R3
and 1 : [0,1] — R3, respectively, a Dirichlet value pp € SE(3), and a stress-free rod
configuration ¢ : [0,1] — SE(3). We look for functions u : @ — R3 and ¢ : [0,1] — SE(3)
such that

—divo(u) = fiq in (5.14a)
m' +r'xn+1=0 on [0,] (5.14b)
—n' =fq on [0,] (5.14c)

Eq. (BIZal) is the equilibrium equation of linear elasticity on Q ([BX) and Eqs. (E140)
and (BI4d) are the rod equations presented on page The solutions are subject to
the boundary conditions

u=20 onI'p (5.14d)
o(ur = on I'y (5.14e)
¢(l) = ¢p, (5.14f)
and the coupling conditions
/Fo'(u)u ds = —n(0)vy (5.14g)
/F(x —¢r(0)) X (o(u)v)ds = —m(0)vy (5.14h)
Av(u) = ¢(0). (5.14i)

This is the problem that will be investigated in the rest of this chapter. Note that since
the coupling conditions relate only finite-dimensional quantities, a discrete formulation
of this problem can be obtained by replacing the continuous problems (B1Zal)—(ET4d)
by their corresponding discrete ones.

5.3 A Dirichlet—Neumann Algorithm

In this section we present a Dirichlet—-Neumann algorithm for the coupled problem (&.14).
This algorithm is of double interest. First of all, it is used to solve actual numerical
problems; see Sections and Additionally, its formulation as an abstract operator
24 : SE(3) — SE(3) is used in Sec. B4l to show the existence of solutions of (B.I4]) for
the special case of certain symmetric problems.

Dirichlet-Neumann algorithms belong to the family of nonoverlapping Schwarz meth-
ods. Given a partition of the domain into two nonoverlapping subdomains, they alter-
nately solve a Dirichlet problem on one domain and a Neumann problem on the other.
For linear problems it is well known that convergence can be expected only if the algo-
rithm is suitably damped. The book by Quarteroni and Valli [77] contains an in-depth
treatment.
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5.3 A Dirichlet-Neumann Algorithm

A Dirichlet—~Neumann method for the full-dimensional problem (&4]) can be inter-
preted as an iterative method for the Steklov—Poincaré equation in the trace space
H!/? (T';). This is the space of configurations of the coupling boundary I'; of the homo-
geneous problem. For the heterogeneous problem we adopt a similar view. In this case,
the interface is the single point s = 0, and the configuration space there is SE(3), the
set of configurations of a single rod cross-section.

Consider the setting of the previous section. Each iteration of the Dirichlet—-Neumann
algorithm consists of three steps: solving a Dirichlet problem for the rod, solving a
Neumann problem for the body, and a damped update. Since the interface space SE(3)
is a nonlinear Riemannian manifold the damping will be along geodesics. Let A € SE(3)
be the initial interface value and k > 0 the iteration number. In more detail, the steps
are as follows.

1. Dirichlet problem for the Cosserat rod
Let A\¥ € SE(3) be the current interface value. Find a solution ¢**+1 of the Dirichlet
rod problem

(mF Y 4 (P o nf 1= 0 on [0,]
@Y +f00 =0 on [0,1]
PP 0) = AP
(1) = op.
If there is more than one solution the subdomain solver is free to pick any one of

them.

2. Neumann problem for the 3d object
The new rod iterate ¢**+! exerts a resultant force n*+!(0)r and a resultant mo-
ment m*+1(0)vy across its cross-section at s = 0. We construct a Neumann data
field 751 : T' — R? such that

/ () ds = —n* 1 (0)1 (5.15)
r
and
/(x — P 0) x TFH(2) ds = —m* T (0) . (5.16)
r
An algorithm for this is given at the end of the section. We then solve the three-
dimensional linear elasticity problem with Neumann data 75+ on T
—dive(uftl) = fyy in (5.17a)
oy = 7F1 onT (5.17b)
utl =0 onI'p (5.17¢c)
oy =t on I'y. (5.17d)
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3. Damped geodesic update
From the solution u**! we compute the average interface displacement and ori-
entation Av(u**1) as defined in (EI3). The new interface value A**! is then
computed as a geodesic combination in SE(3) of the old value A¥ and Av(uf+*1).
Let 6 € (0,00) be a damping parametelﬂ and \F = ()\’,?,)\’q“). We set A*1 as the
affine combination

ML — g Ay, (uF ) 4 (1 — 9)AF, (5.18a)

where we have used Av,.(u**1) to denote the projection of Av(u**1) onto R3. The
term )\’;“ is computed by interpolating along a minimizing geodesic on SO(3)
through A¥ and Avg(u*!) = Or(u*1)¢,(0). By Lem. the minimizing
geodesic is unique if

dist (A, Op(u"1)g,(0)) < 7.

We can use the interpolation formula 22) to get

)\’;+1 = expy G[exp;l,; O[‘(uk+1)¢q(0)]. (5.18b)

This concludes the description of the Dirichlet—Neumann method for the multidimen-
sional coupling problem (BIdl). However, several algorithmic questions remain. The
first is how the average orientation Or : H*(Q2) — SO(3) can be computed. We use
the following result, which follows directly from the properties of the singular value
decomposition [8€].

Lemma 5.3.1. Let A be a quadratic, nonsingular matrix with the polar decomposition
A=0H
and the singular value decomposition
A=PxqQT,

with P and QT orthogonal matrices and ¥ a diagonal matriz. Then O = PQT and
H=0QxQ".

Let F(u*) be the average interface deformation (BI0) and F(u*) = P.X,QF its
singular value decomposition. Then

Or(u*) = P,QF.

Efficient algorithms for the computation of the singular value decomposition are available
in the literature; see, e.g., [74].

The second question is how to construct suitable fields of Neumann data 7% that
satisfy the conditions (BI0) and (BI6). Let us drop the index k for simplicity. In
principle, any function 7 : I' — R? of sufficient regularity fulfilling (515) and (5I6) can

'Note that we also allow overrelaxation.
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be used as Neumann data in (BIT7DHl). We first show that functions fulfilling (EIH) and
(ET6) exist in L2(T). For n,m € R3 we define the sets

Cn:{feLz(F)‘ /Ffds:n}

and

Om = {f e L2(I) ‘ /(m — 0 (0)) x fds = m}.
r
We restrict ourselves to the case that I' is flat and that ¢,(0) is contained in T

Lemma 5.3.2. Let ' be contained in an affine subspace of R3 and suppose that o, (0) €
I'. Then Cy N Cry is nonempty for all n,m € R3.

Proof. Without loss of generality we assume that I' is contained in R? x {0} and that
©r(0) = 0. Define the four sets

If = {zel|a0>0}, Tg={xel |z <0},
If = {wel|a >0, T;={zel|x <0}

Since 0 € T none of them is empty. Define the scalar functions ¢, ¢ € L*(I)

rH™ ifzeT) rH™ ifzel)
—|T¢ | else, —|T¢ | else,

and use them to define the vector-valued functions W, ¥y, ¥y € L3(T)
o= (0,0,9)", Ty =(0,0,00)",  Wy=(0,1,0)7.
All three functions transmit zero total force
/F\Ifi ds =0, i€{0,1,2}. (5.19)
For the angular moments around 0 we get

xo 0 ey

/wx\IIO(x)ds = / x| x| 0 ds:/ —tpexg | ds
r r 0 T;Z)E r 0
-1 -1
$1|Fgr| —$1|F§ |
= / —xo\l“ﬂ_l ds—l—/ xo‘r_’_l ds
F+ 6 - 6
¢ 0 ¢ 0
-1 -1
$1|Fzr| —$1|F£ |
-1 ——1
— [ ol s [ | —paolirg | s
rf r
¢ 0 ¢ 0
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Similarly we get

-1 _ -1
|z1]|TF | |21 [|T |
/CEX\I’l(CC)dS = / x0|1‘2|71 ds+/ ;,30|[‘E|71 ds
r ry 0 re 0

and

0 0

/xx\Ifg(x)ds = / 0 ds+/ 0 ds.
r 8\ JeolITf | T \JzollTz |~

The three vectors

o

@ 0% 0
06| = / x x Wods, S| = / x x Wy ds, 0] := / x x Wads  (5.20)
0 r 0 T ﬁ T

are nonzero because 3 # 0 and v # 0. They form a basis of R? if

ad # 3.

This is the case, for example, if I" is symmetric with respect to reflections about the xz
or yz planes, since then « or § is zero.
Let f be a function in Cy,. Then

/wxfds:mf
r

for some m¢ € R? which will in general not be equal to m. However, since the vectors
EZ0) form a basis of R3, there are coefficients x; € R3, i € {0,1,2} such that

2
/Fx X (f + ; ni\Ifi> ds = m. (5.21)

Define the term in parentheses as the new function

2
=0

By &ZI) we have f € Cyp,. On the other hand, using (EI9) we have

/Ffds:/r<f+§;ni\ﬂi)ds:n,

and hence f € C, N Cpy. O
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The theory of Cosserat rods assumes that forces and moments are transmitted evenly
across cross-sections. We therefore construct 7 to be ‘as constant as possible’. More
formally, we introduce the constancy functional

T 2(I) x R® = R,

/||f —c||2 ds,

and construct 7 as the solution of the minimization problem

(1,¢r) =arg min T(f,c) (5.22)
feL2(T)
c€R3

under the constraints that
/ f(z)ds = —n(0)vg and /(x —r(0)) x f(z)ds = —m(0)vyp. (5.23)
r r

To show that this problem is well posed we first prove a few properties of 7.

Lemma 5.3.3. The functional T is continuous, coercive, and strictly convex on Cp x R3
for alln € R3.

Proof. We only show coercivity and convexity. Assume a sequence (fy,c) € Cp x R3
such that limy_o(||fk|| + ||ck||) = co. Then

T(fr,cr) = |ficllfay + lexll® = 2/F<flcack> ds = ||ficllF2(ry + llexl® — 2(n, cx)

el 2y + lewl® = 2linlllex ) = Ml 2y + lex Glexl — 2lal)

Y

Hence limy_ o T'(fy, cx) = oo and T is coercive in Cy x R3.
We now show that 7 is strictly convex on Cy, x R3. Pick 7°, 7! € Cy, and °, ¢! € R?
such that either 70 # 7! on a set of positive measure or ¢” # ¢! or both. Then, for

€ (0,1),
T(t(TO cO) +(1-— t)(Tl, cl))

1
= tT(TO,CO) +(1- t)T(Tl,cl) — 51&(1 —t) /HTO - - (’7'1 — cl)||2 ds.
I

The functional 7" is convex because the integral is nonnegative. To show that we have
even strict convexity note that

/||7'0 - - (’7'1 — cl)||2 ds = /HTO — 7'1H2d5 + /HCO — clH2d5 >0
I T I

where we have used that 70, 71 € C,,. O

Lemma 5.3.4. For alln,m € R3 the minimization problem ([E22) has a unique solution
on the set (Cp N Cpy) x R3.

99



5 Coupling Rods and Three-Dimensional Objects

Proof. We show that (Cp N Cp) x R3 is closed in L?(I') x R3. For this let f, € Cy,
k=0,1,..., be a sequence with lim f;, = f. This means that lim [ [f; — f]2 = 0 and also
lim [;. [, — f| = 0. However, since

/|fk—f|d52‘/fkds—/fds‘:‘n—/fds
T T T T

we get [fds = n and hence Cy is closed. Showing that Cp, is also closed in L(T)
proceeds similarly, noting that

>0

0< (m— /F(:c — 0 (0)) X fds‘
= ‘/F(x—cpr(O)) x fi, ds — /F(x—apr(O)) X fds‘
§/|(x—g0r(0)) X(fk—f)|d5§max|x—gpr(0)|/|fk—f|ds.
r r

Hence (Cp N Cyy) x R? is closed in L?(T") x R3. By Lem. B33, T is continuous, coercive,
and strictly convex on Cp x R?, and thus in particular on (CnNCpm) X R3. Therefore T
has a unique minimum there [35]. O

For later reference we introduce the operator
T:R? x R® — L) (5.24)
with
T(n(0)ry, m0)vy) =71
where 7 is the solution of (E2Z2) subject to ([23)).

We now look how 7 can be computed in a discrete setting. Let ) be discretized by
a grid which resolves I'. Let further V,(I") be the space of 3-valued first-order finite
element functions on the grid restricted to I' and np be the number of grid vertices in
I'. We are looking for a function 7, € V(I') such that

(Th,cp) = arg , i T(fy, c) (5.25)
CERS

subject to
/ fr(x) ds = —n(0)vy and /(x — ¢, (0)) X fp(x)ds = —m(0)v. (5.26)
r r

We denote by v; the i-th scalar hat function in the scalar finite element space V},(I") and
by i ; = ie; € Vi (I') the i-th vector-valued hat function in the direction of the j-th
canonical basis vector e;. Express 73, in the nodal basis as

nr—1 2

Th — Z ZT;’(/JZ'J. (527)

i=0 j=0
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Then the functional T restricted to V(') has the algebraic form

T : R xR SR

, 2
T(r,c) = /FHZTijwi’j_cH ds.
1,J

Inserting the ansatz (B27) into (B20]) we obtain two linear systems of constraints
N7 = —n(0)vy and Mr = —m(0)vy.
Both N and M are 1 x nr block matrices. Each entry of N is a 3 x 3 block
(N)oi = Idsxs / Vi ds, 0<i<nr,
r
whereas each entry of M is a block
Hoo HMio Mo
(M)oi = | #o1 Hi1 M1 | 0<1i<nr,
:“6,2 :“11,2 NZz,2

with
:U‘;",l = (/(:C - QD?(O)) X 'lnbz,j ds)l, 0<1< nr, .]’l € {Oa 1’2}
r

Lemma 5.3.5. The minimization problem (B2ZH) subject to (28] has a unique solution.

Proof. By Lem. the functional T' is continuous, coercive, and strictly convex on
Cn x R3. Hence it is so, in particular, on (Cp N Cyy N Vi(T)) x R3, which we assume
to be nonempty. Also, (Cy N Cy N Vi (T)) x R3 is closed because (C, N Cpy) x R3 is
closed (Lem. B34l and V(') x R? is finite-dimensional. Therefore, the minimization
problem (E20) subject to (226]) has a unique solution [35]. O

A minimization problem of this type can be solved, e.g., with an interior-point method
like TPOpt [90)].

5.4 Existence of Solutions of the Heterogeneous Problem

In this section we prove that the heterogeneous coupling problem (BI4]) does have at least
one solution if the reference configuration and the boundary conditions exhibit certain
symmetries. Since the rod problem by itself may admit more than a single solution [82],
we cannot hope to show uniqueness of solutions for the coupled problem.

The proof is based on a fixed point argument. The damped Dirichlet—Neumann algo-
rithm of the preceding section is written as an operator

a4 : SE(3)— SE(3)
%)\k _ )\k-i-l
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5 Coupling Rods and Three-Dimensional Objects

Figure 5.4: Geometric setting of the existence result.

on the configuration space SE(3) of the rod cross-section at s = 0. We interpret 24 as
an operator chain

& HY(Q) 2% SE3) -2 SE(3),

PR R3 x R3 L L(T)

94y : SE(3)
where DtN : SE(3) — R3 x R3 is the set-valued Dirichlet-to-Neumann operator of
the rod problem, which maps the Dirichlet value at s = 0 of a rod problem to the
set of corresponding Neumann values of the solutions. The Neumann field operator
T : R? x R® — L2(T') has been defined in (524), ¢ : L(I') — H!(Q) is the solution
operator for the linear elasticity problem (BI7)) with Neumann data on I', Av is the
averaging operator defined in (I3]), and € symbolizes the geodesic damping ([EIS).
We show that under certain symmetry assumptions %4y is a single-valued, continuous
contraction on the restricted cross-section space

SE(3) = {(Ar, Ag) € R? x SO(3) | (\)o = 0,(Ar)1 = 0, A = 1d}.

This is the space of parallel translations of the rod cross-section at s = 0 in the z-
direction (Fig. B4l and can be identified with R. By Banach’s fixed point theorem Z2/4j
then has a fixed point, which is unique in SE(3), and which is shown to generate a

solution of (BI4)).

We begin by formally stating the symmetry conditions.

Definition 5.4.1 (Symmetry). Define

-10 0 1 0 0
s =10 1 0 and S =[0 -1 0],
0 0 1 0 0 1

the reflection matrices about the yz and xz planes. A set ¥ C R3 is called symmetric
with respect to reflections about the zz and yz planes, or symmetric for short, if

reX e S rey and reXY e S re .
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5.4 Existence of Solutions of the Heterogeneous Problem

A function v : ¥ — R3 is called symmetric if
v(z) = SY*v(SY*z) a.e. on ¥ and v(z) = S%v(S"z) a.e. on X. (5.28)

To motivate this definition of symmetry note that if O C R? is a symmetric domain
and u : Q — R3 is a symmetric deformation of €, then the deformed domain u(f) =
{u(z) + x| x € Q} is also symmetric.

The proof proceeds in three steps. Consider the setting of Sec. We first show that,
under symmetry assumptions, SE(3) is an invariant subspace of Z4j. Then we show
that 24y is Lipschitz continuous on §E(3) This allows to conclude that there must be
a fixed point A\* of Z4p in éJVE(?)) which is then shown to induce solutions of the coupled

problem (B14]).

Lemma 5.4.1. Consider a rod of rest length | which is straight in its unstressed config-
uration, i.e., U(s) = (0,0,0) and v(s) = (0,0,1) for all 0 < s <. Suppose that neither
volume forces nor volume moments act on this rod and let lg,ly € R, Iy < ly. Then the
problem

on [0,1], (5.29a)
on [0,1], (5.29b)

m+r'xn = 0
n = 0

subject to the Dirichlet boundary conditions

90(0) = ¥D,0 = ((Oa O’ZO)’ Id)’ SD(Z) = ¥D1 = ((Oa O,ZI)’ Id)a (529C)

has at least one solution ©* that is azially symmetric. We call ©* the trivial solution.
Furthermore, there is a function n : R — R such that (0,0,n(lp)) % (0,0,0) € DtN¢pg
for all lg < 1.

Proof. Direct computations show that the axially symmetric function

S

s *
ei(s) = Zhea + (1= 2)loes,  @3(s) = 1d,

solves problem (229]). Consider this as a function in Iy only. Using the definition of the
strain (EI0) and (EID) and the diagonal rod material law (Il we get

DtN¢po 3 (n*(0)vy, m*(0)ry) = ((0,0,n),(0,0,0)),
for some n € R which depends on . O

Note that the trivial solution ¢* may be unstable, i.e., it may be a stationary point
but not a minimum of the rod energy j. .
We now introduce a selection of DtN restricted to SE(3) by setting

B = (0,0,n) x (0,0,0) if (0,0,n) x (0,0,0) € DtN A for some n € R,
| DtN A else.

In other words, for Dirichlet values that admit a trivial solution we consider only this
trivial solution. For the rest of this section, we will write DtN instead of DtN in a
conscious abuse of notation.
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5 Coupling Rods and Three-Dimensional Objects

Lemma 5.4.2. Let Q C R? be a symmetric domain and T'y C 0Q a symmetric part
of its boundary such that Tp = 0Q \ 'y has a positive two-dimensional measure. Set
o(u) = C:e(u), and let £ : Q@ — R3, t : 'y — R3 be symmetric. Then the solution of
the boundary value problem

—dive(u)=f in 2, (5.30a)
oujy =t on 'y, (5.30b)
u=0 on 00\ 'y, (5.30c)

s also symmetric.

Proof. Tt was shown in Sec. Bl that Problem (B30) has a unique solution u. We show
that the reflection u¥*(x) := S¥*u(S¥?x) also solves (30). By the uniqueness of u then
follows u = u¥? and hence u is symmetric with respect to reflection about the yz plane.

We first show that u¥? solves the equilibrium equation (E30al). Indeed, for any x € 2
we have

—dive(u’*(z)) = -—dive(S¥*u(SY*x))
- —av]c: %(V(syzu(syzx)) V(¥ u(sv )T

—  _S¥% div [C . %(Vu(Syzm) + (Vu(Syzw))T)],

where we have used that S is diagonal. Now we use that u is a solution of (B30al) to
obtain

—dive(u¥(z)) = SU(SV*z) = f(z),

because f is symmetric. Similar reasoning shows that u¥? fulfills the boundary con-
ditions (B300) and (E30d). Therefore the unique solution u of (B30) is symmetric
with respect to the yz plane. Showing the same for u?*(z) := S¥#u(S**z) proves the
assertion. U

We show next that both the averaging operator Av and the Neumann value operator
T preserve symmetry.

Lemma 5.4.3. In addition to the assumptions of Lemma [5.4.9 let I be a symmetric
subset of 052. We have
Av(u) = ((0,0,dy), Id) (5.31)

for some dy € R.

Proof. By Lemma B 42 ug is antisymmetric with respect to xp and w; is antisymmetric
with respect to x1. The integrals of antisymmetric functions over symmetric domains
vanish and we get

Av,(u) = %/Fu(x) +ads = (0,0,dy).
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5.4 Existence of Solutions of the Heterogeneous Problem

To prove that Av,(u) = Id we first show that F(u) = [ V(u+ z)ds is a diagonal
matrix. For this we prove that all off-diagonal elements of Vu are antisymmetric either
with respect to zp or x1. We begin by considering (Vu)g; = dup/0z1 and get

in( vo,21,5) = lim uo(—o, x1 + 6, 2) — (=9, ¥1,22)
ox 1 Y 6—0
— lim —ug(xo, 1 + 6, x2) + ug(zo, 1, x2)
6—0 1)
0
= —%uo(ﬂcowhxz)

Similarly one can show that Ou;/Ox; is antisymmetric for i € {0,1}, j € {0,1,2},
i # j. The partial derivatives Qus/0xo and Ous/Ox; are antisymmetric by the following
reasoning

iu (—z0,1,29) = lim ug(—wo + 0,21, x2) — uz(—xo, 1, 2)
Bg 2 (770, 71, T2 lim 5
~ lim ug(xo — 6,71, 12) — u2(x0, 1, T2)
6—0 1)
— im uz(xo + 0,71, 2) — ua(wo, 71, T2)
6—0 —0
0
- _8—0u2(x07x17x2)

Hence F(u) is diagonal and its polar decomposition is

+1 (&%)
F(u) =Or(u)H(u) = +1 o )

with a; > 0, 0 < ¢ < 3. Since det F(u) > 0 by assumption (see (EI0)), either Or(u)
is the identity or two of its three diagonal entries are —1. To see that it can only be
the identity note that the reasoning above holds for all symmetric subsets T of Q. Let
Ft be a continuous family of subsets of 2 such that Fo = I'p and Fl = I'. We have
Og,(u) = Id, because u is clamped at I'p. For fixed u the entries of Of (u) depend
continuously on ¢ and take only integer values. Hence O (u) = Or(u) = Id O

Lemma 5.4.4. Let n € R and let ¢, (0) = (0,0,lp) with iy € R. Then
T((Oa 0’ TL), (0’ Oa 0)) = (Oa 0’ _n/|r|)T
In particular,Y is Lipschitz continuous on {0}% x R x {0}3.

Proof. The constant function f := (0,0, —n/|T'|)? fulfills the conditions (EZ3)) because

0 0 0
/fds: 0 and /(m— 0 >><fds: 0
r —n r lo 0
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5 Coupling Rods and Three-Dimensional Objects

by the symmetry of I'. To see that f is a minimum of 7" note that 71" takes only nonneg-
ative values. However T'(f, (0,0, —n/|T|)T) = 0, and hence f must be a minimum. [

The preceding results allow to conclude that @(3) is an invariant subspace of Z/43.

Lemma 5.4.5. Let the sets Q, Ty, T' as well as the volume force field £ : Q — R? and
the surface traction t : Ty — R3 by symmetric in the sense of Def. [B-Z.1. Let the rod
reference configuration ¢ be straight and the rod Dirichlet value ¢p be in SE(3). Then
S’E(?)) is an invariant subspace of the damped Dirichlet—Neumann operator 2/4y.

In the remainder of this section we take the assumptions of Lemma to hold.
Proceeding in several steps we now show that 24" := 241 is Lipschitz continuous on
SE(3).

Lemma 5.4.6. The Dirichlet-to-Neumann map DtN s Lipschitz continuous on S’E(?))

Proof. By Lemma BEZT] the rod problem (E2Z9) has the solution
s s
er(s) = Slies + (1 - 7)zOeQ, ol(s)=1d,  se[0,l].

For the stresses and moments we get (cf. ([EI0]))

A4 L—1lo
n(s)=|Ax| p.(s) —ey = Ag( T 1>e2, m(s) = 0.
As
Hence in particular n(0)vg = —As[(l1 — lp)/l — 1]ea, m(0)ry = 0, and these are affine
functions of ly. This proves the assertion. O

Lemma 5.4.7. The operator & : L3(T') — HY(Q) mapping Neumann data on T to
solutions of the linear elasticity problem on §2 is Lipschitz continuous.

Proof. Let 11,7 € L?(') be two fields of Neumann boundary data and let uj,uy €
H(l](Q) be the corresponding solutions of the linear elasticity problem in weak form, i.e.,

a(ug,v) = /T1Vd8+/ fvdac—|—/ tvds for all v € H(Q), (5.32a)
r Q INY;

a(ug,v) = /72vd5+/ fvdac—|—/ tvds for all v € H(Q), (5.32b)
r Q INY;

where a(-,-) is the bilinear form defined in BIZ). Subtracting (32a]) from (B320)
yields

a(ug —uy,v) = /(7'2 —1)vds.
r

106



5.4 Existence of Solutions of the Heterogeneous Problem

From that follows, using the ellipticity I3 of a(-,-), the Cauchy-Schwarz inequality,
and the trace theorem,

’)/HUQ — 111”%_11(9) < a(u2 —ui,ug — 111)
= /(7'2—7'1)(112—111)d8
r
< lme = 7wz - [lue — w2
< e = mullezey - w2 — willgyz
< Ol = 7illezm - w2 — willg )

and hence

C
Juz — g0 < ;HTZ — 71|z ).

O

Lemma 5.4.8. The averaging operator Av : HY(Q) — SE(3) is Lipschitz continuous on
the set of symmetric functions.

Proof. Consider the two component functions Av, : HY(Q) — R? and Av, : HY(Q) —
SO(3) separately. By Lemma B3 Avg(u) = Id if u is symmetric and hence it is
trivially Lipschitz continuous. It remains to show that Av, is Lipschitz continuous to
obtain the same property for Av. Let uy,us € H!/2 (T"). Then

AV, (u2) — Avp(w)l| < (D] ug — w ey
< T Yug — willgeqry - 11wz
= 0172z — willee)
< 072 ug = wiflge
< O™ luz — wler o),
where we have used Holder’s inequality and the trace theorem. U

Combining Lemmas and Lemma B4 we get the following result.
Lemma 5.4.9. 24 is Lipschitz continuous on §E(3)

Before we show that the damped Dirichlet—Neumann operator Z4j has a fixed point
on @(3) we need a technical lemma. It shows that the Dirichlet-Neumann method
exhibits a certain alternating behavior. Note that the identification of §E(3) with R
allows us to treat elements of @(3) as elements of R.

Lemma 5.4.10. For all A\, € R(= SE(3)), we have AN X\ < 2N 1 if and only if A > .
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Proof. Let A > u. By Lemma
I — A

DtN X = (n)(0)vp, my(0)vg) = (— Ag[ - 1} e, (07070))7

and similarly for DtN p. Hence (ny(0)rp)2 > (n,(0)rp)2. Denote by
0
0
—(0x(0)r0)2

(and similarly for 7,) the corresponding constant Neumann data functions (Lemma B.Z4),
and let uy, u, be the corresponding solutions of the linear elasticity problem, i.e.,

1
=T(DtNJA) = —
™= TN =

a(uy,v) = /FT)\Vds—l—/Qdex—i—/F tvds for all v € H}(Q),
N

a(u,,v) = /TMV ds +/ fvdr + / tvds for all v € HH(Q).
r Q I'n
Subtracting the second from the first equality we get
a(uy —uy,v) = /(T)\ —T,)vds for all v € H}(Q),
r
and, in particular, setting v = uy — u, and using the ellipticity of a(-,-) we obtain

0 < /F(T)\ —7,)(uy —uy)ds

(0,,(0)r0)2 — (A (O)r0)
1 (V)10 2m A0)ro)2 /F(u)\ —uy)ads.

Hence from p < X follows [(uy)2ds < [(u,)2ds. However from symmetry we know
that (Av,(u))o = (Av,(u)); =0, Avy(u) =1d, and hence

NN = Av(uy) = <]F[1/F(u>\+x)2 ds, Id)

< <\F\_1 /F(uu + )2 ds, Id) = Av(u,) = 24 p.

We are now ready to show our main result.

Theorem 5.4.1. For 0 € R sufficiently small the operator 24y has a unique fized point
X on SE(3). The pair of functions u : Q — R3 with

—dive(u) =fyy in Q
u=20 onI'p
oc(ujy =t on 'y
Av(u) = X"

108



5.4 Existence of Solutions of the Heterogeneous Problem

and ¢ : [0,1] — SE(3) with

m+rxn=0

on [0,1]

n =0 on [0,1]
p(0) = A"
o(l) = ¢p

is a solution of [&I4). In fact, it is the unique symmetric solution.

Proof. We show that Z4j is a contraction on @(3) if 6 is small enough. Existence
of a fixed point A\* then follows from Banach’s fixed point theorem. Use again the
identification of SE(3) with R. Then, for any A\, u € R we have

\DNGA — DNgul? =

0(ZN N = 2N )+ (1= 0)(A— )
| 2N A= 2 pf” + (1= 0)*|A = p?
+20(1 = 0)( 2NN = 2N ) (A — 1)
| 2NN = 2N uf” + (1= 0)*|A = p?
= 20(1 = O) |2V X = 2N pl|A — pl,

where the last equality follows from Lem. B ZT0l By Lem. BEZ0Ol 24 is Lipschitz con-
tinuous with a positive constant L. Hence we get the bound

| 2N\ — DApul®

< [p*L*

Simple algebra shows that the term in brackets is less than one if

We now show that fixed points of Z2/4p induce solutions of (BI4)).
Let A* be a fixed point of Z4).

for fixed points \* ¢ SE(3).
(n*, m*) € R? x R? such that

and

A*

m+r'xn=0

(n(O)V07

2

0<l < ——.

L+1

(n*,m") € DtN \*

= Av(&(YT(n*,m"))).
Eq. (B33) implies that there is a function ¢ : [0,1] — SE(3) such that

on [0,]
n =0 on [0, ]
©(0) = A"
e(l) =¢p
1) = (n*, m").

m(0

+(1-60)2—20(1 —0)L]|A — u*.

This holds even
Then there is a pair

(5.33)

(5.34)

(5.35a)

(5.35b)
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Y

z

Figure 5.5: Geometric setting of the first numerical example.

Eq. (E34) in turn means that there is a function u : Q — R? with

—dive(u) =f in Q
u=20 onI'p
ouy =t on 'y
Av(u) = X" (5.36a)
o(u)r = T(n*,m") onT. (5.36b)

Eqs. (35al) and (B36al) together show that the functions ¢ and u fulfill condition (BI41).
From Egs. (B350) and (B.360]) follows that ¢ and u fulfill conditions and (B.I40]).
Conversely, let u, ¢ be a solution of the coupled problem (I4]). Then A\* := ¢(0) is a
fixed point of 24p. Uniqueness of the solution pair (u, ¢) among the symmetric functions

follows from the uniqueness of the fixed point A\* in SE(3). O
We immediately get the following corollary.

Lemma 5.4.11. Let Q, I'p, I'ny, I' be symmetric sets; and the volume force field f,
and the surface traction t be symmetric functions. Let the rod reference configuration
 be straight and the rod Dirichlet value ¢p be of the form (0,0,11) x Id. Let the
starting iterate \° be in @(3) If the rod subdomain solver implements ]ﬁ, i.e., if it
always yields the trivial solution if there is one, and if 0 is sufficiently small, the damped
Dirichlet-Neumann iteration 24y converges to the unique symmetric solution of (BI4l).

5.5 Numerical Results

We close this chapter with a few simple numerical examples showing the properties of
the Dirichlet-Neumann solver. Consider the unit cube = [0, 13 with a rod attached to
the face [0,1)2 x {1} (Fig. EH). The rod has a quadratic cross-section of edge length 1/4,
a rest length of 1, and is completely straight in its unstressed state. The cross-section
at s = 0 attaches to the cube at (5/8,5/8,1) and the directors at s = 0 are set to d; =
(1,0,0), d2 = (0,1,0), d3 = (0,0,1). This corresponds to ¢,(0) = Id in the coupling
condition (BIZ). The interface I' on the cube Q is chosen to be I' = [1/2,3/4]? x {1},
which is the part of Q2 covered by the rod cross-section in the unstressed state. Note

110



5.5 Numerical Results

Figure 5.6: Left: resulting deformation after three uniform refinement steps. Right: with
cut through the von Mises stress field.

1 level
2 levels
3 levels
4 levels
5 levels

0.8

0.6

0.4

convergence rate

0.2

Figure 5.7: Convergence rates as a func-
0 tion of the damping parameter
damping ' @ for the problem in Fig. B0

that we have deliberately chosen a slightly asymmetric configuration to demonstrate
that the symmetry assumptions in Sec. B4l are not relevant for actual computations.

We model the cube as a linear elastic material with parameters E = 10? PU (pressure
units) and v = 0.3. It is discretized with a uniform coarse grid of 4 x 4 x 4 hexahedral
elements which is to be uniformly refined up to four times for a final grid with 274625
vertices. Note that I' aligns with a coarse grid element boundary. We prescribe ho-
mogeneous Dirichlet boundary conditions on [0,1]> x {0} and homogeneous Neumann
conditions everywhere else except for I'. The rod is modeled with the linear law given
in (ETH) and the parameters E = 10° PU and v = 0.3. With the square cross-section
of edge-length 1/4 we obtain J; = Jo = 15(3)* = 30727! and J; = $(3)* = 153671 (see
p.[[). The rod is discretized using a uniform coarse grid of 4 elements. At the far end
(s = 1) we prescribe a movement of 1/4 LU (length units) in the positive y-direction and
a torsion of 90° counterclockwise when viewed in the negative z-direction. This induces
all forms of bending, torsion, and shear that can be represented by the rod model.

We solved the combined problem using the Dirichlet—Neumann algorithm described in
Sec. At each iteration, a Dirichlet problem had to be solved for the rod and a mixed
Dirichlet—-Neumann problem had to be solved for the cube. For the rod we used the
Riemannian trust-region solver of Chap. Hl whereas the linear elasticity problem on the
cube was solved using a linear multigrid method. For the rod, the trust-region algorithm
iterated until the absolute size of the correction |lexp_ it1lloo,rsE(3)m dropped below
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10~'2. In this region rounding errors prevented further improvement. At each trust-
region step, the inner monotone multigrid algorithm stopped when a relative correction
of 10713 in the H'-norm was reached. The linear multigrid solver for the cube was set to
iterate until the energy norm of the relative correction ||u;4+1 — u;||/||u;|| dropped below
10713, We used IPOpt [9(] to solve the minimization problems (E25) needed to evaluate
T. Fig. shows the resulting deformation and a cut through the von Mises stress field
of the cube.

We started the Dirichlet—Neumann iteration at the stress-free configuration u = 0,
@ = @. The convergence rate of the Dirichlet—-Neumann solver was measured by first it-
erating until the maximum norm of the correction |[[u, 41—, ||oo+lexp,} ©u41llo0 r58(3)"
dropped below 1072, Even though this is several orders of magnitudes away from the
nominal machine precision of about 10716, it is about as far as the solver would go before
failing to converge further due to rounding errors. The result (Uef, Pref) Was then used
as a reference solution. Using the list of all iterates we defined the overall error at step
v as

612, = |Ju, — urefH?A + HeXp;rlef SDVH%{M

where ||-||4 is the energy norm corresponding to the linear elasticity stiffness matrix,
and |||+ is the energy norm with respect to the Hessian matrix H* of the rod energy

functional at the reference solution ;.

We have measured the convergence rate as a function of the damping parameter 6
for up to five levels of uniform refinement. Fig. B gives the results. For all practical
purposes the convergence rate is independent of the grid size. It is well known that mesh
independence of the convergence rates holds asymptotically for linear Dirichlet—Neumann
algorithms with full-dimensional subdomains [77]. Absolute mesh independence as ob-
served here appears plausible when considering that the interface space SE(3) has a
fixed dimension which does not grow with mesh refinement. For practical applications
this mesh independence is important, since the optimal damping parameter 0* can be
determined cheaply using a coarse grid. Then all computations involving large and
highly-refined grids can be performed using this optimal 6*. Unfortunately, Sec. will
show that this mesh-independent behavior is not always obtained. The reason for this
is unclear.

To show that our modeling approach does also cover situations where the rod does not
meet the 3d object at a right angle we give a second example. Consider the setting as
above, with the only difference that now the rod meets the cube at a 45° angle (Fig. B.F).
In terms of the coupling conditions set forth in Sec. this means that the factor
©q(0) appearing in Cond. (EI2) has a value different from the identity. More precisely,
24(0) is such that di(34(0)) = (1,0,0), da(,(0)) = (0,1/v/2,1/v/2), and ds(,(0)) =
(0,—1/+/2,1/+/2). For the boundary conditions we set ¢,(1) = (0.625,0.875,2) and the
orientation ¢, (1) such that d; = (0,1,0), d2 = (—1,0,0), d3 = (0,0,1). This is the
same value as in the previous example. We get the result given in Fig. The plot in
Fig. shows that an identical convergence behavior as before can be observed with
this modified coupling.

In the first two examples we have seen a very good numerical behavior. We now give
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Figure 5.8: Geometric setting of the second numer-
ical example.

Figure 5.9: Left: resulting deformation after three steps of refinement. Right: cut
through the von Mises stress field.

! 1 level
2 levels
3:eve:s
evels
0.8 5 levels
2
g
3 0.6
3
=
: o4
g
02 Figure 5.10: Convergence rates as a func-
tion of the damping param-
0 eter 6 for the problem in
0 0.5 1 1.5 2

damping Flg EX

113



5 Coupling Rods and Three-Dimensional Objects

]

—

Figure 5.11: A coupling problem showing poor numerical behavior.
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Figure 5.12: The position A\ = (¢, )4(0) of the interface cross-section for the example of
Fig. BT for three damping parameters 6. Left: 8 = 1.05, center: 6 = 0.2,
right: 6 = 0.02. In the left and right plots, the graphs for « and y are
identical.

a third example which shows that the convergence rates display a certain dependence
on the geometry. Consider the setting in Fig. BI1] where the cube has been replaced
by a ‘beam’ with the same length and cross-section as the Cosserat rod and discretized
by four hexahedral elements. Both objects get the same material parameters E = 106
PU and v = 0.3. The beam is clamped at its far end and a pure displacement of
(0,0,0.5) LU is applied to the far end of the rod. From an application point of view
this is certainly not a pathological setting, yet for this case the Dirichlet—Neumann
algorithm converges poorly. The reason seems to be related to the lateral instability
of the structure. Consider Fig. B2 where we have plotted the position A2 € R? of
the cross-section at s = 0 as a function of the iteration number v for three different
damping parameters §. Not surprisingly, the method diverges for large 6. For smaller
6, the z-component of A\ converges nicely, yet there is still divergence for the other two
components. Once @ is small enough for all three components to converge it is far to
small for the z-component to converge with a reasonable rate. In this case the method
converges, but with a rate of only 0.96.

Dependence of Dirichlet—Neumann convergence rates on the problem geometry is a
well-known fact. An elucidating example for this in 1d is given in ﬂﬂ, p. 12]. Attempts
to increase the robustness of the algorithm are beyond the scope of this work and are left
to further research. Sec. shows good convergence rates can nevertheless be obtained
for real-world problems.
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6 Software Issues and Numerical Results

6.1 The Distributed and Unified Numerics Environment
(DuNE)

The numerical applications in this thesis are demanding on the software framework. Nec-
essary features include free-form simplicial grids in three space dimensions with local grid
refinement, arbitrary boundary parametrizations, second-order isoparametric elements,
one-dimensional grids, and the possibility to use several of them at once together with
several three-dimensional grids in a single application.

Previous work [60, 95] on two-body contact problems used the UG system [1(] for its
implementation. UG is well known to be very flexible and offers most features listed
above, with the notable exception of one-dimensional grids and isoparametric elements.
On the other hand, UG is also known to have a very slow linear algebra and to be very
difficult to use, mainly due to an arcane scripting language, little documentation, and
bad debugger support.

The last years have seen the development of the DUNE system [1, [L1, [12]. The aim
of the DUNE project has been to offer more flexibility, efficiency, and productivity to
the developers of grid-based PDE applications by addressing a fundamental dilemma.
Virtually all PDE software available comes with a grid implementation hardwired into
the code. It is, however, impossible for any single implementation to fully satisfy all
application writers’ demands. For example, one application may need a lean, fast im-
plementation of a structured grid for, say, a flow problem. This implementation is then
evidently unable to support local mesh refinement. More general grid managers, on
the other hand, may support local refinement, but can never yield the space and time
performance of a dedicated structured grid implementation.

DUNE solves this problem by fully separating the grid data structure from the appli-
cations that use it. Based on a mathematical definition of a grid, an abstract interface

| structured grid

/r| unstructured simplicial grid |

i| unstructured multi-element grid |
etc., ...

Figure 6.1: Separating the application from the grid implementation by an abstract in-
terface.

abstract
interface

algorithm,
e.g., FE discretization
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6 Software Issues and Numerical Results

realized as a set of C++ classes separates the two (see Fig. [61]). This allows to change
the grid implementation used by an application at any time during code development.
It is hence possible to choose the optimal grid implementation for a given application at
very little additional cost. It is also possible to freely mix different grid implementations
in a single application, a possibility that we have made use of in this thesis. Existing grid
managers can be made available through the grid interface with a reasonable amount
of work. Also, separating the grid from the data frees the users to choose any linear
algebra implementation he or she desires. Compared to, for example, the built-in UG
linear algebra this can lead to considerable speedups.

The grid interface is realized using the generic programming techniques of C+4. As
a result, compilers can optimize away most of the interface. Hence the added flexibility
comes at very little run-time cost. A comparison between a DUNE implementation and
its equivalent implementation using a hardwired grid manager can be found in |11,
Sec. 4.2].

We will now briefly sketch the DUNE definition of a grid. Readers interested in the
details can find them in [12]. We will then comment on a few technical aspects of the
integration of the UG grid manager UGGrid, a step that makes the full power of UG
grids available while at the same time easing its use considerably. The section closes
describing a few miscellaneous other features of DUNE that have proven valuable for this
work.

The DUNE Grid Interface

The DUNE grid interface was designed to support geometric multigrid and locally adap-
tive algorithms, and hence its notion of a ‘grid’ directly contains a hierarchical structure.
A DUNE grid consists of a finite set of level grids, which are connected by a father rela-
tion. Each level grid in turn consists of an entity complex E together with a geometric
realization M.

The entity complex embodies the topological properties of the level grid. Calling V
a finite set of vertices, a d-dimensional entity complex consists of the set E% =V, a set
E4=1 of subsets of E? called edges, a set E4~2 of subsets of E%! called faces, and so
on. This recursion stops at E° whose elements (in the set-theoretic sense) are called
elements (in the finite element sense).

A mapping R associates to each e € E° its reference element, which is a (d — ¢)-
dimensional convex polytope in R%¢. The geometric realization M is a family of maps
m(e) which for each e € E contains a map from its reference element R(e) to a w-
dimensional Euclidean space which is called the world space. Fig. illustrates the
relationship between the entity complex, the reference elements, and the geometric re-
alization.

Two level grids G; = (E;, M;) and Gijt1 = (Ej+1, M, 1) are connected by a father
relation. This relation associates a father element in E? to each element in E?Jrl. Fur-
thermore it associates father entities to some entities of lower dimension. For example,
some edges have father edges. The definition includes the case of nonconforming level
grids.
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m(v2)

/—\

Figure 6.2: A two-dimensional entity complex (left), the reference elements (center), and
a geometric realization in R? (right).

Together with the father relation, the grid entities form a forest structure. Under
certain conditions on the geometric realizations, the leafs of this forest form the leaf
grid. This is the natural grid for nonhierarchical methods on a locally adaptive grid.

A consequence of the strict separation of grids and algorithms is that numerical data
cannot be stored directly in the grid data structure. To connect grids and data the grid
interface provides index maps. These associate indices with each entity in the entity
complexes. The level and leaf index sets provide consecutive indices which can be used
to address arrays, but which change if the grid is modified. The indices provided by the
persistent index maps do not change during the lifetime of an entity. A fortiori they are
not consecutive and can only be used to address associative arrays with logarithmic time
complexity.

There are several additional features which we only mention in passing. Intersections
provide more information about the intersections between neighboring elements. This is
particularly useful for finite volume methods. Also, the necessary methods for dynamic
distributed computing are provided. The interested reader is again referred to |11, [12]
for details.

The abstract definition carries over fairly directly into C++4 classes. The implemen-
tation uses wrapper classes which delegate method calls to engine classes provided as
template parameters which do the actual work [88]. Access to the entities is provided
by STL-style iterators. See [1] for an up-to-date class documentation.
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The UGGrid Grid Manager

The UG kernel consists of about 300.000 lines of C code, of which about 150.000 con-
stitute the actual grid manager. The rest consists of linear algebra and solvers, the
scripting language interpreter, and graphics output. The code is highly portable; the
list of supported platforms contains more than 25 entries. UG uses a hand-written build
system. Despite the lack of language support, the internal structure very much reflects
an object-oriented design. At various places the code uses preprocessor techniques ex-
tensively to force the compiler to create efficient code. In particular, the grid dimension
(2 or 3) is a preprocessor constant and hence the entire kernel has to be recompiled in
order to change it.

In order to make UG available through the DUNE grid interface, the first step was to
replace the old hand-written build system by a new one based on the GNU AutoToolsH
Some minor adjustments allowed to compile the entire UG kernel as C++. In order
to avoid name clashes the kernel was included in the C++ namespace UG, and the
dimension-dependent parts were additionally included into a nested namespace called
D2 or D3, depending on the current dimension setting. Together with a suitable library
naming scheme, the 2d and 3d UG libraries could thus be linked together without name
clashes. To make the necessary declarations available in DUNE for both dimension
settings at the same time, the UG headers are included twice into the DUNE wrapping
header uggrid.hh, once with the preprocessor dimension flag set to 2 and once to 3. As
a result it is possible to use two-dimensional and three-dimensional UG grids together
in a single DUNE application, which is impossible using UG alone.

UG has the ability to use boundary parametrizations for grid refinement. The data
structures for the automatically created parametrizations (Sec. Bfl) had previously been
added to the UG code in an ad-hoc way [61]. Within the DUNE framework this function-
ality is now cleanly separated between the grid manager, which does the actual refine-
ment, and an external library which is queried for world positions when new boundary
nodes are created.

Despite these changes backward compatibility has been preserved, and at the time of
writing it is still possible to run normal UG applications using the modified kernel. The
modifications are available as a set of patches on the DUNE project homepage [1].

Further Relevant Features

There are a few additional features of the DUNE system which have proven useful for this
thesis. The OneDGrid grid manager provides unstructured grids with local refinement
and coarsening in one space dimension. It has been written from scratch and is used for
the ligament models. As it fully complies with the DUNE interface no specific application-
side code had to be written for its use.

As a separate part of DUNE, the Iterative Solver Template Library (ISTL, [16]) offers
efficient linear algebra data structures for finite element applications. Those frequently
have a certain amount of structure, which the ISTL data structures can exploit. For

!This work was done by Thimo Neubauer.
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6.2 Two-Body Contact and Ligaments

Figure 6.3: Left: problem setting. Tibia and fibula are rotated 15° in valgus direction to
put additional stress on the MCL. This can happen, e.g., in a sports accident.
Right: the corresponding coarse grids.

example, stiffness matrices for elasticity problems are sparse matrices with each entry
a dense 3 x 3 block. The discretization of Cosserat rod problems with geodesic finite
elements (Sec. E3)) leads to block-band matrices with each block a dense 6 x 6 matrix.
ISTL handles these types comfortably and efficiently by allowing arbitrary nestings of
dense, sparse, band, and other matrices.

In Sec. B grids with isoparametric elements have been used. However, currently
no DUNE grid manager provides this feature directly. Instead, we have implemented
isoparametric elements as a DUNE meta grid. Meta grids provide views on other grids.
In this case, the DUNE meta grid PolynomialGrid passes on all queries not related
to geometry to the underlying host grid. Calls to the geometry are intercepted and
isoparametric elements are simulated using information about the domain boundary
available from the grid managers. Since meta grids implement the entire DUNE grid
interface they can be used in precisely the same way as regular grids at all times.

6.2 Two-Body Contact and Ligaments

In this closing section we provide simulation results for a knee model which combines
three bones of the knee with the four main ligaments. The model includes the distal
femur and proximal tibia and fibula bones modeled as three-dimensional linear elastic
objects, and the anterior and posterior cruciate ligaments (ACL and PCL, respectively),
and the medial and lateral collateral ligaments (MCL and LCL, respectively), which are
modeled as Cosserat rods. The model combines the contact problems of Chap. Bl and
the heterogeneous coupling of Chap.H To obtain a test case where the contact stresses
do not entirely predominate the stresses created in the bone by pulling ligaments, we
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fine surfaces coarse surfaces
bone | vertices triangles | vertices triangles
femur 7236 14468 268 532
tibia 7453 14902 224 444
fibula 1822 3640 126 248

Table 6.1: Sizes of boundary surfaces.

coarse grids fine grids
bone | vertices elements aspect ratio | vertices elements aspect ratio inv.
femur 268 1328 14.2 31980 170493 104480 2
tibia 224 1044 17.1 14956 77117 3.15 - 107 )
fibula 126 368 12.1 2185 9996 113304 14

Table 6.2: Sizes and quality of the coarse and refined grids. Aspect ratio is the largest
ratio of the radii of circumsphere and insphere occurring in a grid. Inv. denotes
the number of elements with incorrect orientation.

applied a valgus rotation of 15° to tibia and fibula (Fig. [E3]). This leads to a high strain
in the MCL and can be interpreted as an imminent MCL rupture.

From the Visible Human data set [3], high-resolution boundary surfaces of the re-
gions of interest were extracted. Using the algorithm described in Sec. Bl these were
simplified to yield coarse approximations of the geometries, and corresponding bound-
ary parametrizations. From these coarse surfaces tetrahedral grids were built using
the AMIRA grid generator [85]. Finally we applied the aforementioned valgus rotation.
Fig. B3l right, shows the coarse bone grids, while Table and Table report on the
sizes of the surfaces and grids.

We modeled bone with an isotropic, homogeneous, linear elastic material with £ =
17 GPa and v = 0.3. The distal horizontal sections of tibia and fibula were clamped,
and a prescribed downward displacement of 2 mm was applied to the upper section of
the femur. The part of the femur usually covered with articular cartilage was marked as
the nonmortar contact boundary, but note that by construction of the contact mapping
®, the actual nonmortar boundary was smaller (Sec. B1).

The four ligaments ACL, PCL, MCL, and LCL were each modeled by a single Cosserat
rod with a circular cross-section of radius 5 mm. The first three ligaments connect the
femur to the tibia, while the LCL connects the femur to the fibula. We chose the linear
material law (I with parameters E = 330 MPa (as suggested by [93, Table 1]) and
v = 0.3. For each rod ¢y : [0,li5] — SE(3) we chose s = 0 to be the proximal and
s = ljig the distal end, where lig € {ACL, PCL, MCL, LCL}. On the bones, the insertion
sites I'yone,lig € OSbone; bone € {femur, tibia, fibula}, were set manually based on [77].
For simplicity we chose the sets I'hope1ig to be resolved by the coarsest grids. Fig.
shows the insertion sites in the knee model.
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6.2 Two-Body Contact and Ligaments

Figure 6.4: Insertion sites of the four ligaments included in the model (marked in black).

ligament ‘ ACL PCL MCL LCL
length ‘ 54.5 mm 35.0 mm 40.1 mm 62.7 mm

Table 6.3: Approximate lengths of the ligaments in their stress-free configurations.

The end positions (¢iig)r(0), (¢lig)r(lig) of the rod centerlines were set to the centers
of gravity of the insertion sites on the bones, e.g.,

1

= xds
|Ffemur7MCL| 1—‘femur,MCL

(¢emcL)r(0)

and

1
(emcL)r(lver) = zds.

| Ttibia, MCL| JT i ner

We modeled all ligaments to be straight in their stress-free configurations and to have
a length 8% shorter than the distances between their insertions sites when the knee is
straight as in Sec. Such a value is cited in the literature as a reasonable value for
the in situ strain @] Table gives the stress-free lengths for all four ligaments. In
particular, this also determines the factors (@iig)q(0) and (Piig)q(hig) in (BIZ).

We solved the combined problem using the Dirichlet—Neumann algorithm described
in Chap. B At each iteration, a pure Dirichlet problem had to be solved for each of the
four rods and a mixed Dirichlet—-Neumann problem with contact between the femur and
the tibia had to be solved for the bones. The 3d contact problem for the three bones
was solved using the Truncated Nonsmooth Newton Multigrid algorithm of Sec. B4l
For the ligaments we used the Riemannian trust-region solver of Chap.Hl The TNNMG
solver was set to iterate until the energy norm of the relative correction ||u;+1 —u;||/||u;]|
dropped below 10712, For each rod, the trust-region algorithm iterated until the absolute
size of the correction Hexp;} Pi+1lloo,rsE(3)" dropped below 1078, where [lloo,TsE(3)™ 8
the normed defined in ([ZZH)). There, rounding errors prevented further improvement. At
each trust-region step, the inner multigrid algorithm stopped when a relative correction
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Figure 6.5: Deformed grid after two adaptive refinement steps. Note how the error esti-
mator reacts to the pull of the MCL at its femoral insertion.
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Figure 6.6: Two sagittal cuts through the von Mises stress field. The left cut goes
through the area of contact between femur and tibia.
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ACL insertion

femoral contact

PCL insertion

Figure 6.7: View onto the tibial plateau. One can see the pressure created by the cruciate
ligaments and the contact with the femur.

of 107'2 in the H'-norm was reached. We used IPOpt @] to solve the minimization
problems (2H). Fig. shows the deformed configuration on a grid obtained by two
steps of adaptive refinement. Fig. B0 additionally shows cuts through the von Mises
stress field. Finally, in Fig. a caudal view onto the tibial plateau can be seen, which
is colored according to the von Mises stress. The peaks due to contact and the pull of
the cruciate ligaments can be clearly observed.

The convergence rate of the Dirichlet—Neumann solver was measured by first iterating
until the maximum norm of the correction
i+1

= ‘ —1 i+l
G = bonesr,lllig;(ments {Hubone B ui)one”ooa ”expvﬁg (Pfig ”oo,TSE(S)"}

of one Dirichlet-Neumann step dropped below 10~°. There, rounding errors prevented
further improvement. The result u™f, ™ was then used as a reference solution. In a
subsequent step the computation was started again, and the iterates were compared to

the reference solution. At each step i we defined the overall error as

e? =3 ubhone —ulimeli + Y Nk — il

bones ligaments

where [|-]|4 is the energy norm of the linear elasticity problem. The norm for the rod
corrections is the energy norm of the Hessian matrix H* of the rod energy functional j
at the reference solution.

We measured the Dirichlet—-Neumann convergence rates with grids containing up to
four levels. Bone grids were refined adaptively using the error estimator presented in
Sec. Bl Rod grids in turn were refined uniformly, as the low number of degrees of
freedom in the rod problems did not justify the extra effort for local adaptivity.
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Figure 6.9: Wall-time needed for four substeps of a Dirichlet—Neumann iteration. Num-
bers are in percent of the total wall-time.

On each new level we started the computation from the reference configuration, i.e.,
Upone = 0, @lig = Quig rather then from the solution on the previous level. That way
identical initial iterates for all grid refinement levels were obtained. Fig. shows the
Dirichlet—Neumann convergence rates plotted as a function of the damping parameter
f for up to four levels of refinement. When compared to Figs. 57 and B0, the perfect
grid independence of the rates is lost. For each further level of refinement, the optimal
convergence rate is slightly worse than the previous and obtained for a slightly lower
damping parameter. This behavior seems typical for Dirichlet—Neumann methods (see,
e.g., [14]). Nevertheless the optimal convergence rates stay around 0.4. This makes the
algorithm well usable in practice.

We have also measured the wall-time behavior of the Dirichlet—Neumann solver.
Within one iteration four substeps can be distinguished that need a relevant amount
of time. These are the solution of the Dirichlet and Neumann problems, the construc-
tion of the Neumann value fields 7%, and the evaluation of the averaging operator Av.
Fig. B9 left, gives the percentage of wall-time for each of the four steps for grids of
different sizes. Note that these timings are approximate as the implementation is not
optimized for speed. The cost for the solution of the Neumann contact problem domi-
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nates by far. The main reason for this is the bad grid quality due to adaptive refinement
and the parametrized boundary, which leads to bad multigrid convergence rates. For
comparison we also give the same timings for a grid without boundary parametrization
(Fig. B9 right). The run-time cost is much more equilibrated, and of course the over-
all time for one iteration is lower. Ensuring good multigrid convergence rates on grids
with parametrized boundaries remains one of the most important open problems in this
context.
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A The Derivatives of the Strains of a
Cosserat Rod

In this appendix we derive closed-form expressions for the gradients of the strains u and
v of a discrete Cosserat rod model with respect to its geodesic finite element coeflicients.
These gradients appear in the expression of the quadratic models of the lifted energy
functional j (E39).

Remember that for a given rod configuration ¢ : [0,1] — SE(3), ¢(s) = (r(s), ¢(s)),
we have

v = (v1,Va,V3), v = (r',dy), ke {1,2,3},
the stretching and shear strain and

u= (Ula uz, U3)7 ug = 2Bk(q)qla k S {17273}7

the strain due to bending and torsion. Let G be a one-dimensional grid on the interval
[0,1] with n vertices. If ¢}, is a geodesic finite element approximation of ¢ on G, and
s € R is contained in the element [l;,1;11] for some i € {0,...,n — 2}, then the strains
v(s) and u(s) of ¢y only depend on s and the coefficients (r;,¢;) and (r;41,gi+1) of @p.
We need to compute the derivatives of v(s) and u(s) with respect to these coefficients to
be able to compute the gradients V,,j and V,,7 defined in (EZ0).

We begin by computing the first and second derivatives of the exponential map of
SO(3) at the identity

exp : $0(3) — SO(3).

We are using unit quaternions as coordinates on SO(3) and we identify so0(3) with R3
using the hat map (). We therefore interpret the exponential map as

exp : R® — Hq)-

In [#) we gave the closed-form expressions

(expw); = <sin M>&, ie€{1,2,3} and (expv)y = cos M
2/ vl 2
First note that
olv| v
Y E AS 1, 25 3 )
oo, oy €iL23)
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and let d;,, be the Kronecker symbol. For i,m € {1,2,3} we have

ol Jof?

d(expv)y, 1 [v|  vivm . vl (5im vivm>
— = —C0S — - +sin — -
ov; 2 2 |u)? 2

and
expv)s 1 . o]
— = ——gin— - —.
({91)2‘ 2 2 ‘U‘
In particular we are interested in the derivatives at v = 0. We know that exp is contin-
uous there [33, Prop. 3.2.9]. This is confirmed by the following lemma.

Lemma A.0.1. For alli€ {1,2,3}, m € {1,2,3,4}

i 0(exp V), _ Gim
im ——— = —.
|v]—0 81)@' 2
v=0

Proof. Let first m # 4. Then

0 1 ; i

exp v)m = lim (— cos Il si]nM : |v|71> WZL + lim sin [o" dim

ov; lu|—0 \2 2 2 v [v|—0 2 |y
v=0
= 5

since the term in parentheses converges to zero and vivm|v|72 is bounded from above
by 1. For m = 4 we have

) .
(exp v)q = —— lim smu Yi_
dv; 2 |v|—0 2 |y
v=0
O
The second derivatives of exp are
62(exp V)m _ _lvivj’gm gin M (A1)
ov; 8?}]‘ 4 ‘U‘ 2
—|—<6 U L v; L on 3vivjvm> 1 |v] sin%
. m Y N Z cos —
Tl T e ot J\2 2 0]

for i,j,m € {1,2,3}, and

0?(expv)y 1 o] wvv; 1 vl (b vy
—Q o = ——C0S — - — sin — - 3 )
ov; 8?}]‘ 4 2 ‘U‘ 2 2 ’

] —

Expression ([A]) can be continuously extended to v = 0. First let a; € Ng, 1 < i < k
and n = Zle a; and pick a w € R¥. Then for each component w; of w

k
[ =wi <D wf = |wl?
i=1
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and hence "
I wi

jw["

jw[™ T !w!  Jul”

Lemma A.0.2. For alli,j € {1,2,3}, m € {1,2,3,4}

9% (expv) 9ij0ma
I m _ _ 9ij0m
\UI\I—I}O Ov; 81)]' 4

holds.

Proof. Let first m # 4 and consider the expression for Egzxgs) given in (AJ)). By

[A2), we have

lim [ sin
=0l 4 |yf? 2

1 00U, . |v|] _0

For the second line of ([AJ]) note that while the term in the second parenthesis converges
to zero for |v| — 0, it is easy to choose sequences {v* € R? | k =0,1,...} such that the
first term diverges. We expand the term in the second parenthesis as a series

1 Jo| sint 1 ||2

v
§COSE—W - 37 (H)

_Ivl2

_ I 4
=~ o),

Ivl

O(lo[*)

and note that the term denoted by O(|v|*) has the form

m . m .
> bifol = (o[> biyalo[ Y,
=4 =0

for scalar coefficients b;. As a scalar polynomial in the variable |v|, the absolute value
of >, bisa|v|™™ is bounded on any closed interval [—p,p], 0 < p € R by a constant

C = C(p). Hence,

in ol
1 |v]  sin‘g
—Cos — — —=
2 2 |v]

_ P

_24 +C||

holds for all v with |v| < p, and

v v; VUV 1 |v| sin bl
PRGN § P N L0 L N (R e
( i ’1}’2 + jm’ ’ + zm‘ ‘ ’1}’4 B COS B ’1}’

< | (B + gy B 32" WL o
ol Rl Tl T P

Using again (AZ2)) the term in the first parenthesis is bounded and hence the limit is
zZero.

lim
[v|—0
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The coefficients for m = 4 can be evaluated at v = 0 directly without using limits

1o (. v v 1 9(expv);
=———/|sin— — =—c—F
2 v 2 |y 2 Ovj

0?(expv)y
({91)2‘ 31)j

%

4

v=0 v=0

O

For later reference we also compute here the derivatives of the inverse exponential
map
exp L Hyy — R3.
Note first that the derivative D exp evaluated at v € s0(3) is a linear mapping from
T,50(3) to TexpwSO(3). In coordinates D exp maps R3 to Toxp vH1|, which is a three-
dimensional linear subspace of R*. Hence Dexp is represented as the 4 x 3 matrix
0 exp /Ov. Differentiating now the identity

exp L (expv) = v
and using the chain rule we get

1 dexpv

ov

Oexp~
dq

Id3x3 =

q=exp v

Consequently, we obtain dexp~! /dq as the Moore-Penrose pseudo inverse of exp /Ov

dexp™t <aexp)+ _ {<0exp)T(aexp>]*1<8exp)T.

dq ov ov ov ov

It is well-defined because by the local bijectivity of exp the columns of dexp /Ov span
the three-dimensional tangent space Texp UHM and hence the matrix

() () e

is invertible.
As the next step we consider the derivatives of the geodesic finite element interpolation

formula ([E22)

q(s,qo,ql) =¢"exp [g expfl((qo)flql)]. (A.3)

Let ¢°,¢* € SO(3) be such that dist(¢,¢') < 7. Then, by Lemma there exist
neighborhoods Vp, V3 € SO(3) of ¢° and ¢!, respectively, such that q is well-defined on
[0,6] x Vo x V1. Keep s € [0, 0] fixed and regard ([A3)) as a function g5 : SO(3) x SO(3) —
SO(3). In order to compute the derivatives with respect to ¢° and ¢* we introduce normal
coordinates around ¢" and ¢! using the exponential map and the canonical isomorphisms
between individual tangent spaces of SO(3) and R3. With these coordinates g5 has the
form

qs('7') : RB XR3—>H‘1|

s _ _
qs(wo,wl) = ¢"expuw’exp [gexp 1((qoexpwo) 1qlexpwl)],

130



and the derivatives at 0 = expyjo1 p° € R3 and 0 = exp}jl1 p! € R3 correspond to the
derivatives at p° and p!, respectively.

We first compute the derivatives of q, with respect to w!. To shorten the notation
we set w® = 0, because we are only interested in the derivatives at w® = 0, w! = 0.
For abbreviation introduce &(w®, w!') = exp~!((¢° expw®)~!¢' expw!). The derivatives

of qs with respect to w]l, j€41,2,3} are

095 o O s 1\ o00exp 0 s 1
Ow' 1 Ow' P [55(0’11} )] - ow' [55(0,10 )]
J lw0=0 J v:%g(le) J
 oOexp sOexp! (qo)_l 1Oexpw!
T o 5 9q Cow!
Yolmseown M o=@ 1g exp i

The multiplications occurring in this expression are quaternion multiplications whenever
two elements of Hj;| are involved, and regular matrix—vector or matrix-matrix multipli-
cations otherwise.

Rather than computing the derivatives of q; with respect to w® directly we note that
a(s,q°,¢') = q(d — 5,4, ¢") and hence, for j € {1,2,3},

dq
e = 5540 =s.¢"¢" expul)
J lwl=0 J
_ 1 anp
Qv (=5) g1
v=""5" exp~1((q})"1¢" exp w?)
(6 —s)Dexp? (ql)_lqoaexp w?
) dq ow?
q=(q')~1q° exp w® J
Evaluating the two previous expressions at 0 we obtain
dqs _ 1 dexp
- =
8wi w0,wl=0 v v="%2) exp=1((q})~1¢%)
(6 —s)dexp? (¢! 00 expuw®
0 0 0 ’
1 a=(q")""'q" ouj w9=0
0qs  pOexp
. =
awj w9 wl=0 v v=2 exp=1((q%)~'q")
sOexp ! o1 1 0expw!
S aq (q ) q Ow?
q=(¢°)""q" 7 lwl=0

For the evaluation of the rotational strain measure u ([fLI2) we also need to compute
the derivatives of the interpolated velocity vector dq(s, q°, ¢')/ds with respect to ¢ and
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q'. Remember the interpolation formula ([EZ3)

0q(s.q%.q") _ oOexp exp_'((¢")"'q)
Ds o0 5 '
v=5exp~1((¢°)71q")

We keep s fixed and interpret this as a mapping

dqs
0s

:SO(3) x SO(3) — Ty

a(s,q%,q")

SO(3).

Again we use normal coordinates around ¢° and ¢' and obtain the representation

9q 3 3 4
388 R® x R® — Tq(s,qo,ql)H\H CR
9qs(w’, w') — exp woanp E(w’,w')
ds v
U:%g(wovwl)

First we compute the variation of dq,/ds with respect to w', again setting w® = 0,

0%qs 0 0% exp 0 [s 1.1 €00, wh)
_ . AR A4
dsowl T o0 ar L6055 (A4)
J vz%&(ovwl) J
p0exp 1dexp? o1 1 0expw!
v=5£(0w!) 9=(¢°)"'q" expw! J

Note that 92 exp/dv? is a 3 x 3 matrix for each of the four components of exp as a map

1
onto Hj;. The two subsequent factors Biw]l [%5 (0, wl)} and g(o%sw) are both three-vectors
and the overall product is to be understood as a vector-matrix—vector multiplication for
each of the four component matrices of 92 exp/9v?.

For the derivative with respect to ¢ we use the symmetry relation

oq dq
g(s,qo,ql) = 5,0~ s,q",q°)

and get, noting that —&(w®, w') = exp™((¢* expw!)~1q° exp w?),

0%qs 10%exp 0 (0—15s)_, o —&(w?,0)
= — — — 7 A.
Ds Oul T g2 G o DUl ;S ’O)] 5 (A-5)
U:—Tf(w ,0)
1 0exp 10exp! (") 00 expuw®
- 5 0
o v:——<5;s)§(w070>5 g=(q")~1q" expw® o

132



Evaluating the expressions (A4) and [AX) at w' = 0 and w® = 0, respectively, we
get

0%q 1 0% exp 0 1(s—=9)., £(0,0)
= a0 g(w ’O) ,
0 0
0s 6wj w0 =0 ov? (5—5)5(070) ; [ 1) ] 1)
1 0exp l@exp_1 ()~ 00 expw’
0
ov (=9 ¢(0,0) % g=(a")""'¢° O wO=0
0%qs 00% exp 0 [s 1.1€(0,0)
sout| T a2 gt 56055
wO,w!=0 v=5£(0,0) 7
0 exp 10exp! 1 10expuw!
+d'— 5 o (¢") 1q176w1
v=5£(0,0) q=(¢q")" ¢! 7 lwl=0

Using these results we can now evaluate the strains v(s) and u(s) of a Cosserat rod
discretized by first-order geodesic finite element functions. Let G be a one-dimensional
grid on the interval [0, ] with n vertices 0 = lop <} < ... <l,—1 =1, and let ¢}, : [0,]] —
SE(3) be a geodesic finite element function on G, with the coefficient vector ¢ € SE(3)".
Let [l;,li+1], 0 <i < mn —2, be an element in G. For s € [l;,1;11] we have

@h(S)Z( > (@ r(s), Q< s (@q)i,(¢q)i+1>>,

)
je{1,2,3} liv1 =i
ke{i,i+1}

and for s € (l;,1;4+1) we have

Oy Oaf s—li
@%(8)2( > @y ), 38<l, ! l,(soq)@-,(soq)m».
je{1,2,3} il Tl
ke{i,i+1}

Both quantities depend only on (¢,); € SE(3) and (4p,)i+1 € SE(3). Consequently, v(s)
and u(s) depend only on (¢p); and (@)1 as well.

Consider s € (l;,1;41) fixed. For j,m € {1,2,3} and k € {i,i + 1}, the derivative of v
with respect to the finite element coefficients of ¢ is

9 o Oor - .
pen (5] @007) = (P55 dnfents o)

J

and
vy _ 0 9 i ity _ /9r 9dpm 0 i il
awf _<85’ &dem(qs(w,w ))>_<83’ 9q 8w§Qs(w,w )>.

The brackets denote the scalar product in R3. The derivatives dd,,/dq of the director
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vectors follow directly from their definition ([E3),

od, g1 —q2 —q3 Q44
B0 212 @1 @1 g3
q

g3 —q4 q1 —q2

dds 92 q1 —q4 —g3
B0 21 -1 @2 —q3 @
q
q4 43 Q2 q1
ads q3 q4  q1 QG2
B0 21 -1 g3 G2 —q
q

—q1 —q2 q3 g4

As u is independent of the centerline the derivatives du/ 87“? are zero. The derivatives
with respect to the rotation are, again for j,m € {1,2,3} and k € {i,i + 1},

0 o, 0 i vy O i il
awfum@ - 23w§<Bm(qs<w,w ), 5-as(wh, w1
B 8qs(wi, wi+1) 8qs(wi, wi+1)
- afa (i) it
L aQq (wi wz‘—i—l)
7 i+1 S ’
+ 2<Bm(qs(w W), 0s 8w§? >

Unlike above, the brackets in this expression denote the scalar product in R*.
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