Aus dem Institut für Veterinär-Physiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Transportphysiologische Untersuchungen am isolierten Pansenepithel des Schafes unter Berücksichtigung verschiedener osmotischer Gradienten

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der
Freien Universität Berlin

vorgelegt von

Sabine Leclercq

Tierärztin aus Berlin

Berlin 1999

Journal-Nr. 2313

Gefördert durch die H.W.Schaumann Stiftung

Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. K.Hartung

Erster Gutachter: Univ.-Prof. Dr. H.Martens

Zweiter Gutachter: Univ.-Prof. Dr. D.Schneider

Tag der Promotion: 26.11.1999

INHALTSVERZEICHNIS

1 EINLEITUNG	1
2 LITERATUR	3
2.1 Natrium	3
2.2 Funktionen des Epithels	3
2.2.1 "Barrierefunktion" des Epithels	
2.2.2 Transepithelialer Transport	6
2.2.2.1 Transzellulärer Transport von Natrium	6
2.2.2.1.1 Natriumtransport über die apikale Zellmembran	7
2.2.2.1.2 Natriumtransport über die basolaterale Zellmembran	7
2.2.2.2 Parazellulärer Transport von Natrium	8
2.3 Natriumtransport durch das Pansenepithel	8
2.3.1 Einfluß der Fettsäuren auf den Natriumtransport	
2.4 Einfluß des osmotischen Druckes auf die elektrophysiologischen	
Eigenschaften verschiedener Epithelien	12
2.5 Osmotisch induzierte morphologische Veränderungen des Epithels	13
2.6 Osmotisch induzierte Abnahme des Gewebewiderstandes durch eine	
Erhöhung der parazellulären Leitfähigkeit	15
2.7 Einfluß des osmotischen Druckes auf die Resorptionsleistung des	
Pansens	18
2.7.1 Transport von Natrium und Wasser über das Pansenepithel	
2.7.2 Flüchtige Fettsäuren und osmotischer Druck	19
2.8 Zusammenfassung der Literatur für die eigene Fragestellung	21
3 MATERIAL UND METHODEN	24
3.1 Herkunft der Gewebeproben	24
3.2 Präparation der Schleimhäute	24
3.3 Inkubationstechnik	
3.4 Elektrophysiologisches Meßprinzip	
3.4.1 open-circuit	
3.4.2 short-circuit (Kurzschluß)	
3.4.3 voltage-clamp (Spannungsklemme)	29
3.5 Pufferlösungen	
3.6 Elektrodeneigenpotential/Flüssigkeitswiderstand	
3.7 Versuchsablauf	

Inhaltsverzeichnis

	3.8 Ionenfluxe	31
	3.9 Berechnungen	33
	3.9.1 Berechnung der Transportraten	
	3.9.2 Berechnung der potentialabhängigen und der potentialunabhängigen	
	Komponente der unidirektionalen Fluxe	34
	3.10 Statistik	
4	ERGEBNISSE	38
	4.1 Versuche mit isolierten Pansenepithelien von heugefütterten Schafen	38
	4.1.1 Einfluß des osmotischen Gradienten auf die elektrophysiologischen	
	Eigenschaften des Pansenepithels	38
	4.1.1.1 Veränderung der Gewebeleitfähigkeit (G _t) in Abhängigkeit vom	
	osmotischen Druck der mukosalen Pufferlösung	39
	4.1.1.1 Mathematische Beschreibung der Gewebeleitfähigkeit als Funktion	
	der Zeit	40
	4.1.1.1.2 Veränderung der Gewebeleitfähigkeit eines Epithels in	
	Abhängigkeit von seiner Ausgangsleitfähigkeit und vom	
	osmotischen Druck	46
	4.1.1.2 Veränderung des Kurzschlußstromes (I _{sc}) in Abhängigkeit vom	
	osmotischen Druck der mukosalen Pufferlösung	49
	4.1.2 Einfluß des osmotischen Druckes bzw. der Gewebeleitfähigkeit auf die	
	Ionentransportraten über das isolierte Pansenepithel	51
	4.1.2.1 Bestimmung der Transportraten von Chrom-EDTA	51
	4.1.2.1.1 Chrom-EDTA-Fluxe und Gewebeleitfähigkeit in Abhängigkeit	
	vom osmotischen Druck der luminalen Lösung	52
	4.1.2.2 Bestimmung der Natriumtransportraten	56
	4.1.2.2.1 Natriumtransportraten und Gewebeleitfähigkeit in Abhängigkeit	
	vom osmotischen Druck der luminalen Lösung	56
	4.1.2.2.2 Einfluß von Amilorid auf die Natriumtransportraten unter	
	Berücksichtigung des osmotischen Druckes	62
	4.1.2.2.3 Einfluß von Ouabain auf die Natriumtransportraten unter	
	Berücksichtigung des osmotischen Druckes	64
	4.1.2.2.4 Natriumtransportraten in Abhängigkeit vom osmotischen Druck	
	und von der transepithelialen Potentialdifferenz (PDt)	65
	4.1.2.3 Bestimmung der Chloridtransportraten	70
	4.1.2.3.1 Chloridtransportraten und Gewebeleitfähigkeit in Abhängigkeit	
	vom osmotischen Druck der luminalen Lösung	70
	4.1.2.3.2 Chloridtransportraten in Abhängigkeit vom osmotischen Druck	
	und von der transenithelialen Potentialdifferenz	71

Inhaltsverzeichnis

4.2 Ergebnisse aus Versuchen mit isolierten Pansenepithelien von	
kraftfuttergefütterten Schafen	75
4.2.1 Einfluß des osmotischen Gradienten auf die elektrophysiologischen	
Eigenschaften des Pansenepithels	75
4.2.1.1 Veränderung der Gewebeleitfähigkeit (Gt) in Abhängigkeit vom	
osmotischen Druck der mukosalen Pufferlösung	76
4.2.1.1.1 Mathematische Beschreibung der Gewebeleitfähigkeit als Funktion	
der Zeit	78
4.2.1.1.2 Veränderung der Gewebeleitfähigkeit eines Epithels in	
Abhängigkeit von seiner Ausgangsleitfähigkeit und vom	
osmotischen Druck	83
4.2.1.2 Veränderung des Kurzschlußstromes (I _{sc}) in Abhängigkeit vom	
osmotischen Druck der mukosalen Pufferlösung	85
4.2.2 Einfluß des osmotischen Druckes bzw. der Gewebeleitfähigkeit auf die	
Ionentransportraten über das isolierte Pansenepithel	
4.2.2.1 Bestimmung der Transportraten von Chrom-EDTA	87
4.2.2.1.1 Chrom-EDTA-Fluxe und Gewebeleitfähigkeit in Abhängigkeit	
vom osmotischen Druck der luminalen Lösung	
4.2.2.2 Bestimmung der Natriumtransportraten	91
4.2.2.2.1 Natriumtransportraten und Gewebeleitfähigkeit in Abhängigkeit	
vom osmotischen Druck der luminalen Lösung	
4.3 Zusammenfassung der Ergebnisse	94
5 DISKUSSION	
5.1 Methodenkritik	
5.1.1 Ussing-Kammer-Technik	
5.1.2 Versuchsbedingungen	
5.1.2.1 Tiermaterial	
5.1.2.2 Inkubationslösungen	
5.1.2.3 Osmotischer Druck	
5.1.2.4 Begasung	
5.1.2.5 Kurzschlußstrombedingungen	
5.2 Natriumtransport am Pansenepithel	97
5.3 Einfluß des osmotischen Druckes auf die elektrophysiologischen	
Parameter	
5.3.1 Einfluß des osmotischen Druckes auf den Kurzschlußstrom	
5.3.2 Einfluß des osmotischen Druckes auf die Gewebeleitfähigkeit	99
5.4 Einfluß des osmotischen Druckes auf die Natriumtransportraten am	
isolierten Pansenepithel	101

Inhaltsverzeichnis

5.5 Praktische Bedeutung der Ergebnisse	104
5.5.1 Allgemeines zur Labmagenverlagerung (LMV)	106
5.5.2 Ätiologie der Labmagenverlagerung	109
5.5.3 Zusammenfassende Bewertung der Ergebnisse in Bezug auf die Pathogenese	
der Labmagenverlagerung	113
6 ZUSAMMENFASSUNG	116
7 SUMMARY	118
8 LITERATURVERZEICHNIS	120
9 ANHANG	131
9.1 Zusammensetzung der Inkubationslösungen	131
9.1.1 Transportpuffer	131
9.1.2 Standardinkubationslösungen für die Versuche zum Einfluß des osmotischen	
Druckes auf die elektrophysiologischen Parameter und auf die	
Ionentransportraten	132
9.1.3 Inkubationslösungen für die Versuche zum Einfluß von Amilorid auf den	
Natriumtransport	133

ABKÜRZUNGEN UND DEFINITIONEN

DMSO: Dimethylsulfoxid

EDTA: Äthylendiamintetraessigsäure

Epithel: transportphysiologisch übliche Bezeichnung des untersuchten Gewebes an Stelle von

Schleimhaut bzw. Mukosa

G_c: zelluläre Leitfähigkeit [mS · cm⁻²]

 G_s : parazelluläre Leitfähigkeit = Leitfähigkeit des shunts [mS · cm⁻²]

 G_t : Gewebeleitfähigkeit = transepitheliale Leitfähigkeit = $G_c + G_s$ [mS · cm⁻²]

 I_{sc} : Kurzschlußstrom [$\mu eq \cdot cm^{-2} \cdot h^{-1}$]

IZR: Interzellularraum

 J^{Cl} : Transportrate von Chlorid ($^{36}Cl^{-}$) [µeq · cm $^{-2}$ · h $^{-1}$]

 J^{Cr} : Transportrate von Chrom-EDTA (51 Cr) [nmol · cm $^{-2}$ · h $^{-1}$]*

 J_{ms} : Transportrate von mukosal nach serosal [$\mu eq \cdot cm^{-2} \cdot h^{-1}$]

 J^{Na} : Transportrate von Natrium (22 Na $^{+}$) [μ eq · cm $^{-2}$ · h $^{-1}$]

 $J_{net} \text{:} \qquad \qquad \text{Nettotransportrate} = J_{ms} \text{-} J_{sm} \left[\mu eq \cdot cm^{\text{-}2} \cdot h^{\text{-}1} \right]$

 J_{sm} : Transportrate von serosal nach mukosal [$\mu eq \cdot cm^{-2} \cdot h^{-1}$]

LDA: left displaced abomasum = linksseitige Labmagenverlagerung

LIS: lateraler Interzellularraum

LMV: Labmagenverlagerung

m: mukosal = in vivo dem Lumen zugewandt = apikal

ms: mukoserosal

^{*} Aufgrund der Dreiwertigkeit von ⁵¹Cr wird für die Transportraten von Chrom-EDTA die Einheit "eq" durch "mol" ersetzt.

Abkürzungen und Definitionen

N: Anzahl der Schafe

n: Anzahl der Beobachtungen bzw. Epithelien

NHE: Na^+/H^+ exchange(r) = Na^+/H^+ -Austausch(er)

PD_t: transepitheliale Potentialdifferenz [mV]

 R_a : Widerstand der apikalen Zellmembran $[\Omega \cdot cm^2]$

 R_b : Widerstand der basolateralen Zellmembran $[\Omega \cdot cm^2]$

 R_c : zellulärer Widerstand $[\Omega \cdot cm^2]$

 R_s : parazellulärer Widerstand = Widerstand des shunts $[\Omega \cdot cm^2]$

 R_t : Gewebewiderstand = transmuraler Widerstand $[\Omega \cdot cm^2]$

r²: Bestimmtheitsmaß = Quadrat des Pearson Korrelationskoeffizienten

RDA: right displaced abomasum = rechtsseitige Labmagenverlagerung

s: serosal = in vivo der Blutseite zugewandt = basolateral

SCFA: short chain fatty acids = kurzkettige Fettsäuren

SEE: standard error of the estimate

SEM: standard error of the mean = Standardfehler des arithmetischen Mittelwertes

sm: seromukosal

VFA: volatile fatty acids = flüchtige Fettsäuren

x: arithmetischer Mittelwert

LEBENSLAUF

Name: Sabine Leclercq, geb. Kurkowski

Geburtsdatum/-ort: 2.03.1966 in Berlin

Familienstand: verheiratet, 1 Kind

Schulbildung:

1972 - 1978 Grundschule: Evangelische Schule Spandau (Berlin)

1978 - 1984 Kant-Gymnasium Berlin-Spandau

Dez. 1984 Abitur

Berufsausbildung:

1985 - 1988 zur Industriekauffrau bei W.Haldenwanger, Technische Keramik

GmbH & Co.KG

Berufliche Tätigkeit:

Jan. 1988 - März 1989 W.Haldenwanger, Technische Keramik GmbH & Co.KG

April 1989 - Okt. 1989 Graf von Thun und Hohenstein Veit, Liegenschaft- und

Zentralverwaltungs KG

Studium:

Okt. 1989 - Okt. 1995 Studium der Veterinärmedizin an der Freien Universität Berlin

Dez. 1995 Approbation als Tierärztin

Tierärztliche Tätigkeit:

1996 Vertretungen in verschiedenen Kleintierpraxen

Promotion:

Sept. 1996 Beginn der Promotion am Institut für Veterinär-Physiologie der

Freien Universität Berlin

Mai 1997 - April 1998 Promotionsstipendiatin der H.W.Schaumann Stiftung

Herzlich bedanken möchte ich mich bei Prof. Dr. H.Martens, Katharina Wolf,

bei der

H.W.Schaumann Stiftung und bei allen anderen,

die mich bei der Erstellung dieser Arbeit unterstützt haben.

Eidesstattliche Erklärung

Hiermit versichere ich, daß ich die vorliegende Dissertation selbständig und nur mit den aufgeführten Hilfsmitteln erstellt habe.