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1
I N T R O D U C T I O N

I have gone so far as to say if you (or someone else)
aren’t writing software for your methods,

they don’t really exist.

— Leek, (2013)

1.1 motivation

The demand for reliable small area statistics from sample surveys has
grown substantially over the past decades due to their growing use
in public and private sectors. The importance of the field of Small
Area Estimation (SAE) can be explained by the increasing need for re-
liable estimates by policy makers and in official statistics. Results may
be used for fund allocation, health programs, agriculture, or poverty
mapping to name only a few of the fields of application. Traditionally
such estimates have relied on survey data; but as the target domains
become more diverse, reliable estimates call for an increasing demand
for sampled units within the domains. The conflict between the de-
mand for more diverse domains and the cost and feasibility of larger
samples is the factor that stimulates the progress within the field; it
supplies the mechanism for optimising the ratio between sampled
units and the reliability of estimates.

It is the main endeavour of Small Area Estimation to produce reli-
able predictions of a target statistic for small domains. A target statistic
can be a statistic such as a mean, a count, or quantiles; but it can
take other forms: e.g. an inequality measure like the Gini coefficient
for poverty mapping. Such statistics are produced for small domains
where domain refers to specific groups, e.g. an industry sector, or
groups defined by socio-economic characteristics. Because of its fre-
quent application to administrative data, domains are often defined
by areas as a geographical unit. They are small in the sense that they
comprise few or no sampled units within these domains. This has
the effect that a direct estimation, i.e. an estimation which only relies
on the information available within domains, tends to be unreliable.
Reliability is here measured either by the variance or mean squared
error of the predictions (MSPE).

Small Area Estimation tries to improve such domain predictions
– often in terms of mean squared error – by borrowing strength from
other domains. This can happen in taking additional information
from other data sources into account, like census and register inform-
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2 introduction

ation. Also structures in the data, like spatial or temporal correlation,
can be exploited to improve predictions.

Since applications in the SAE field are often related to official stat-
istics, the incorporation of spatial and temporal correlation structures
is highly relevant. Such applications have often a geographical di-
mension since predictions by official statistics are often produced on
a regional basis. The Nomenclature of units for territorial statistics
(NUTS) (Eurostat, 2015) is a hierarchical system to define regions in
the European Union in different granularity. Since such classifica-
tions are based on a geographical dimension we may take advantage
of the fact that neighbouring districts may have similarities – hence
the incorporation of spatial information.

Official statistics is often interested in producing up-to-date results
and this can mean that information over a time frame is available
since these predictions may be produced, for example, on an annual
basis. Such information can be exploited and may have a significant
and overall positive impact on the precision of predictions.

Pratesi and Salvati, (2008) exemplify this with predictions based
on the Survey on Life Conditions in Tuscany, Italy. They aim at
predicting the mean per capita income within municipalities. They
found that incorporating the unobserved spatial correlation between
domains into their predictions improved the precision of these quant-
ities. A combination of incorporating spatial as well as temporal cor-
relation can be found in Marhuenda et al., (2013). They make predic-
tions for two poverty indicators based on the Survey on Income and
Living Conditions for Spain. Their results suggest that the incorpora-
tion especially of the correlation over time presents a beneficial effect
in terms of precision.

Methods using spatial and temporal correlation structures are be-
ing used more and more routinely in applications. This is also indic-
ated by the availability of their software implementations which can,
for example, be found as packages in the R-language (R Core Team,
2015). Molina and Marhuenda, (2015) provide implementations for
commonly used methods in the SAE field including models incorpor-
ating spatial and temporal correlation.

These methods often rely on strong distributional assumptions
which provide the additional advantage of a gain in precision; how-
ever such methods can easily be influenced by single observations.
Such observations may be framed as outlying. Hence it can be ad-
vantageous to use methods which can be assumed to be more robust
against the influence of such outlying observations. In this context
this Thesis aims at combining robust estimation methodology with
the use of various spatial and temporal correlation structures. The
remaining part of this Introduction provides an overview of how this
Thesis is framed within the SAE field – Section 1.2 – and presents
more precisely its mechanics – Section 1.3.
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1.2 locating the content within the field of small area

estimation

In the following I give a general overview of the field of Small Area
Estimation to the extent necessary to accommodate this Thesis within
the SAE field. For a general overview of the field, Rao, (2003) as well
as Rao and Molina, (2015) give comprehensive overviews of the estab-
lished methods and the published research. Ghosh and Rao, (1994),
Rao, (1999), Pfeffermann, (2002), and Pfeffermann, (2013) focus on
the status quo and main lines of discussion within the field at their
respective point in time.

In general small area methods may be divided into two categories:
design based and model based methods. This classification may not
be distinct but provides a frame for discussion. Design based meth-
ods can be considered the traditional methodology for analysing sur-
vey data; a comprehensive overview of these methods for SAE can
be found in Lehtonen and Veijanen, (2009). Design based methods
comprise different direct and indirect techniques. For example the
Horvitz-Thompson (HT) estimator of Horvitz and Thompson, (1952)
uses only sampled units within domains; synthetic regression estim-
ates and model assisted methods like generalized regression (GREG)
estimators are other examples of such estimators – see Särndal et al.,
(1992) for a discussion of these methods. These methods have in com-
mon that they incorporate information of the sampling design into
the estimation.

Conceptually design based and model based methods differ in that
design based methods are used to optimally estimate a target para-
meter of a fixed and finite population. Model based methods rely
instead on the idea that an observed sample is drawn from a popula-
tion which is but one possible realisation of a superpopulation model,
and it is the parameters of that superpopulation which are targeted.
This difference leads to a trade-off when choosing between methods:
model based methods can improve domain predictions in terms of
variance even with small samples; however they cannot be considered
design unbiased. Design based methods on the other hand are design
unbiased but have larger and possibly unacceptably high variances
for small samples – see Lehtonen and Veijanen, (2009).

Model based methods can be further divided into area and unit
level models. Observations which can be associated with a specific
domain are referred to as units. These can be companies within an in-
dustry sector or individuals within a municipality. The area level de-
scribes models which use information on area level, i.e. direct estim-
ates for domains. A situation in which these models are considered
is when data can only be provided as aggregates due to factors such
as confidentiality. Also such methods may be useful in situations in
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which the computational effort is high – e.g. when complex variance
structures are combined with large data sets.

One class of models in particular is favoured in different variations:
the mixed models. The Fay-Herriot (FH) model introduced by Fay
and Herriot, (1979) and the Battese-Harter-Fuller (BHF) model which
was introduced by Battese et al., (1988) are the two basic models
which are used respectively for area and unit level estimations. Un-
derlying this is the idea to use auxiliary information in a regression
to estimate a global conditional mean and add an extra component
to capture the domain specific difference from that global mean. This
general idea can be found in combination with different estimation
methodologies, i.e. general linear mixed models which are typically
associated with best linear unbiased predictors (BLUPs), empirical
Bayes, and hierarchical Bayes. Although these different frameworks
for estimation differ in respect of optimality criteria, the equivalence
of the derived estimators can be shown for special cases. A more gen-
eral discussion of mixed models in SAE can be found in Jiang and
Lahiri, (2006). Rao, (2003) and Rao and Molina, (2015) provide a com-
prehensive overview and comparison of the different frameworks.

A general property of model based methods is that a lot of their
benefits in terms of efficiency rely on strong distributional assump-
tions. Hence it is not only in the field of SAE that robust methods
have been exploited to reduce the negative effect of a potential viol-
ation of these assumptions. The general problem here is that single
observations can have unwanted and overly large impact on results.
Such observations are typically called outliers. Chambers, (1986) uses
the term representative outliers to describe observations which are cor-
rectly recorded and can not be assumed to be unique in the popu-
lation. Non-representative outliers, on the other hand, may be best
described as not correctly recorded and should be imputed or generally
dealt with during the editing process of survey data.

To summarise robust methods in SAE, it is necessary to distin-
guish between three different lines of discussion. Firstly, if the dis-
tributional assumption – often a Gaussian distribution – appears to
be implausible then intuition demands that it be replaced. This of-
ten leads to the use of non-symmetric or heavy-tailed distributions
for the model error or the random effect. Due to their flexibility
Bayesian modelling strategies are often used in this context; see for ex-
ample Datta and Lahiri, (1995) and Bell and Huang, (2006). Secondly,
methods are applied which are naturally more robust against outly-
ing observations. Chambers and Tzavidis, (2006) and Tzavidis, Mar-
chetti et al., (2010) model a global conditional median, or more gen-
erally a quantile, instead of a mean. The third approach is to remain
with the original model or method and robustify the estimation equa-
tions. In this context Sinha and Rao, (2009) develop a robust EBLUP;
Beaumont and Rivest, (2009) refer to a winzorisation of the Horvitz-
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Thompson estimator; and Beaumont, (2004) introduces a robust ex-
tension to generalised regression estimation.

Given this background, in this Thesis I introduce extensions to the
Fay-Herriot area level model. More precisely an EBLUP based ap-
proach is taken to derive predictions in a way that makes it possible
to model spatial and temporal covariance structures in the random
effects. These are the methods introduced by Rao and Yu, (1994) for
incorporating temporal correlation; and by Pratesi and Salvati, (2008)
for incorporating spatial correlation; and by Marhuenda et al., (2013)
who introduce the combination of these two. In contrast to these
methods, in this Thesis the estimation procedure is based on robust
methodology for deriving area level robust predictions. The approach
is based on the methodology of Sinha and Rao, (2009) who have ex-
tended the approach of Richardson and Welsh, (1995) to the SAE field.
This will lead (i) to an area level robust EBLUP (REBLUP) which is
simply a special case of using the results of Sinha and Rao, (2009);
(ii) to an area level spatial REBLUP (SREBLUP) which – to contrast
it from Schmid, (2011) – is based on an area level model instead of a
unit level model; (iii) to a temporal REBLUP (TREBLUP); and (iv) to
a spatio-temporal REBLUP (STREBLUP).

Some extensions introduced in the literature around REBLUPs have
focused on unit level models; thus results especially for MSPE estim-
ation and bias correction are extended to area level models. In this
regard the parametric bootstrap by Sinha and Rao, (2009) is here ad-
apted to obtain estimates for the domain specific MSPE. Furthermore
an analytical solution is presented which is based on a pseudolinear
form of the area level REBLUPs. This approach extends the results
of Chambers, Chandra and Tzavidis, (2011) to area level models and
combines them with the results of Chambers, Chandra, Salvati et al.,
(2014) for robust predictions. In addition I present a simple correc-
tion for the bias associated with robust predictions. This correction
is based on the limited translation estimator of Efron and Morris, (1972)
and has already been used by Fay and Herriot, (1979) with a some-
what similar goal.

1.3 outline

The overall structure of Thesis is divided into three parts. Part i com-
prises the methodological foundation underpinning the proposed RE-
BLUPs. In Part ii I will introduce two software packages which have
been developed alongside this Thesis. Then in Part iii the statistical
properties of the predictions based on the proposed REBLUPs are
investigated in several model and design based simulation studies.

Part i includes a literature review in Chapter 2 which gives the
methodological background underpinning the results and extensions
around the robust extensions to area level models in Chapter 3. The
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review includes the basic foundation in the form of direct domain
estimation in Section 2.1 and predictions using linear mixed models
in Section 2.2. Framed as linear mixed models the FH model and the
spatial and temporal extensions are reviewed in Section 2.3. Then the
robust methodology around robust predictions under linear mixed
models in the SAE field is reviewed in Section 2.5. These results are
often based on unit level models; hence the BHF model and unit level
notation is introduced in 2.4.

Based on these results I establish a coherent framework for robust
predictions using spatial and temporal area level models in Chapter 3.
These predictions are framed as area level robust best linear unbiased
predictions. The models under consideration are merely special cases
in this framework and results are given in general notation for linear
mixed models where possible. This includes the framework presen-
ted in Section 3.2, the bias correction in Section 3.4, and the MSPE es-
timators in Section 3.5. The main motivation to consider robust area
level models are outlying areas; however different kinds of outlying
observations can be defined. A discussion of what outliers are with
respect to area level models is given in Seciton 3.1 as it presents the
main motivation for the sebsequent presented framework.

In Part ii I continue the presentation of robust area liner mixed
models; however the presentation now changes to the implementa-
tion side of these methods. The introduced methods of Chapter 3

are implemented in the R-package saeRobust (Warnholz, 2016) which
is provided as supplementary material to this Thesis. In Chapter 4

the numerical properties of the proposed estimators are investigated.
Furthermore code examples are given to illustrate the possibility to
use these methods in a data analysis. The results in Part iii are based
on simulation studies and to that extent a simulation framework and
its implementation are presented in Chapter 5. Here a simulation
study is framed as a sequence of data manipulation steps and this
idea is implemented in the R-package saeSim (Warnholz and Schmid,
2016). The aim of the package is to provide tools and most import-
antly a convention how to conduct simulations in the SAE field. In
that I hope to promote the publication of source code and simplify
the process of understanding it – at least with respect to simulation
studies in this field.

In the final Part iii model and design based simulation studies are
conducted. The model based studies aim at explaining how the ro-
bust predictions differ from their non-robust counterparts – Chapter
6. Here different settings are investigated: Section 6.1 investigates
the performace of the robust predictions in area level scenarios, and
in Section 6.2 the performance of the MSPE estimators is the subject
matter. Both of which rely on the generation of area level data, thus
in this setting only area level outliers are considered. This perspective
is then changed in Section 6.3 where the data is simulated beginning
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with a unit level population model. This opens up the possibility to
incorporate also unit level outliers into the discussion. The discus-
sion is then continued in Chapter 7 by providing results for a design
based simulation. Here the target is the tax-turnover in 20 industry
domains in the Netherlands. This analysis is based on a synthetic
unit level population which now presents the interesting combina-
tion of an informative sampling design, unit level outliers, and area
level outliers. A summary of the main findings and contributions of
this Thesis as well as avenues for further research are then presented
in Chapter 8.

1.4 reproducing the results

Some effort went into the possibility to reproduce the results presen-
ted in this Thesis. All outcome of the simulation studies are pro-
duced using the R-language (R Core Team, 2015) which is freely avail-
able. Two R-packages are provided as supplementary material to this
Thesis: saeRobust and saeSim which are subject to discussion later in
this Thesis. The package saeRobust implements the statistical meth-
ods here developed and saeSim provides a simulation framework
which is utilised for implementing the studies below.

To provide the option to reconcile the results with their source
code, the files implementing the simulation studies are also part of
the supplementary material. Running these files is possible however
the computations should expected to take a considerable amount of
time. This can be speeded up by lowering the number of iterations in
simulations in order to make the computation more transparent. To
set up the computational environment inside the R-language the file
00Dependencies.R can be used; in that file all installation instructions
necessary are listed since various additional packages have been used
– e.g. for data manipulation and graphics.

It should be possible to reproduce all results related to model based
simulations. For reproducing the design based simulation study in
Chapter 7 it would be necessary to deliver the synthetic population
here used; however the copyright does not grand me permission in or-
der to do so. The source file implementing the simulation is included
nonetheless.
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2
S M A L L A R E A E S T I M AT I O N

In 2002, small area estimation (SAE) was flourishing
both in research and applications, but my own feeling then was

that the topic has been more or less exhausted in terms of research and
that it will just turn into a routine application in sample survey practice.

As the past 9 years show, I was completely wrong.

— Pfeffermann, (2013)

2.1 direct estimators

In this Chapter a general overview of the SAE field is provided. Here
I begin with a simple direct estimator and notation which is then used
throughout the Thesis. The area models later introduced are all based
on some direct estimator. This direct estimator can be any statistic;
however I implicitly often refer to it as an estimator for the population
mean. This may be plausible when we keep in mind that the context
of this Thesis is to study outlier robust methods; and in this context
it may be most intuitive when we consider the population mean and
a simple estimator as a starting point. Lehtonen and Veijanen, (2009)
give a more comprehesive overview of direct estimators and design
based methods.

Let a population be denoted by U, consisting of N units, which
can be devided into D distinct domains or areas U1 ∪ · · · ∪UD. Each
area is of size Ni, with i = 1, . . . ,D denoting area i, such that N =∑D
i=1Ni. S denotes a sample from U which in turn can be devided

into S1 ∪ · · · ∪ SD, where n is the sample size of S and ni of Si such
that n =

∑D
i=1 ni.

Let y define the characteristic of interest and yij the response value
for unit j with j = 1, . . . ,Ni in area i. Furthermore let the target
quantity be the population mean in area Ui defined by θi = Ȳi =
1
Ni

∑Ni
j=1 yij . Note that the target quantity is not necessarily a mean

but can be any statistic in the population.
Given that the sample is drawn with simple random sampling

without replacement (SRSWOR), a design unbiased estimator is given
by

ȳi =
1

ni

ni∑
j=1

yij (2.1)

with its design variance V(ȳi|ni) = (S2i /ni) (1−ni/Ni) where S2i =

1/(Ni − 1)
∑Ni
j=1

(
yij − Ȳi

)2. To estimate the sampling variance, S2i

11
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can be replaced by s2i being an estimator using the sampled data,
i.e. s2i = 1/(ni − 1)

∑ni
j=1

(
yij − ȳi

)2. Note that ni is random un-
der SRSWOR such that specific areas can have very few or even no
sampled units.

2.2 small area prediction using linear mixed models

This Section gives a general overview of linear mixed models and the
best linear unbiased prediction (BLUP) and empirical BLUP (EBLUP).
The unit and area level models introduced later in this Chapter are
based on this class of models and the robust methodology is based
on a robustified EBLUP. The original model dates back to Henderson,
(1950) and an early comprehensive overview can be found in Searle,
(1971). Jiang and Lahiri, (2006) review liner mixed models in the
context of SAE and the main results can also be found in Rao, (2003)
and Rao and Molina, (2015).

2.2.1 Linear Mixed Models

Following Rao and Molina, (2015, 98 ff) a linear mixed model can be
expressed by:

y = Xβ+ Zu + e (2.2)

where y is the (n× 1) vector of response values; X is a (n× P) matrix
containing deterministic auxiliary information; β is the (P× 1) vector
of regression coefficients; Z is a known matrix and u is a vector of
random effects, such that Zu is of dimension (n× 1); e is the (n× 1)
vector of model errors. Note that u and e are both random variables
where the basic assumption is that both have mean zero and finite
variances. Furthermore they are assumed to be independent.

If, in addition, u and e are assumed to follow a normal distribution,
the model is called a Gaussian Linear Mixed Model (Jiang and Lahiri,
2006). The distribution of y can then be derived as a multivariate
normal of the form:

y ∼ N (Xβ, V)

y|u ∼ N (Xβ+ Zu, Ve)

where V = ZVuZ>+Ve with Vu and Ve being the variance matrices
of u and e, respectively. Such variance structures typically depend
on some unknown dispersion parameters. To be more precise: Vu =

Vu(δu) and Ve = Ve(δe) such that V = V(δ) with δ = (δu,δe).
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2.2.2 Best Linear Unbiased Prediction

Here I also follow the results given by Rao and Molina, (2015, 98

ff). Given the model (2.2) above in SAE problems we are generally
interested in estimating the expected value of y given u:

µ = l>β+ m>u

for specified values of l and m. An estimator for µ can be obtained
by replacing β and u with suitable estimators. For known variance
components, δ, the best linear unbiased estimator (BLUE) is given
by:

β̃ = β̃(δ) =
(

X>V−1X
)−1

X>V−1y (2.3)

and the BLUP for u by:

ũ = ũ(δ) = VuZ>V−1
(
y − Xβ̃

)
(2.4)

such that the BLUP estimator for µ can be stated as:

µ̃ = µ̃(δ) = l>β̃+ m>ũ. (2.5)

The BLUP (2.5) of µ depends on known variance components δ. These
values are typically unknown in applications and are themselves sub-
ject to estimation. If we replace δ with a suitable estimator, δ̂, the
empirical BLUP (EBLUP) obtained is:

µ̂ = µ̂(δ̂) = l>β̂+ m>û (2.6)

where β̂ = β̃(δ̂) and û = ũ(δ̂). To estimate δ a variety of estimators
have been proposed. Commonly used estimators are based on max-
imum likelihood (ML) and restricted maximum likelihood (REML).
For a detailed discussion of the estimation of the variance parameters
see also Jiang and Lahiri, (2006) and the literature quoted there.

2.2.3 Mean Squared Prediction Error

One of the main reasons for relying on small area methods is to re-
duce the mean squared error of domain predictions. Since domain
predictions under a linear mixed model are derived as the EBLUP, we
are generally interested in the mean squared prediction error (MSPE)
of the EBLUP. Note that here I present results directly for the EB-
LUP instead of the BLUP since the latter has little practical relevance
and the results are mainly needed to give a comprehensive context in
which the existing literature can be extended. In general the estima-
tion of the MSPE can be identified as one of the challenging problems
in model based SAE (Pfeffermann, 2013). Two approaches are taken
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in the literature: The analytical identification of the MSPE and differ-
ent resampling strategies. More detailed reviews of these strategies
can be found in Rao, (2003, p. 95 ff), Jiang and Lahiri, (2006), and in
Datta, (2009).

Early results can be found in Kacker and Harville, (1984) who pro-
pose an approximation to the MSPE of the EBLUP of a Gaussian
linear mixed model. In particular they show that:

MSPE(µ̂) =MSPE(µ) + E (µ̂− µ)2 . (2.7)

The MSPE of µ can be decomposed such that

MSPE(µ) = g1(δ) + g2(δ)

where

g1(δ) = m>
(

Vu − VuZ>V−1ZVu
)

m

g2(δ) = d>
(

X>V−1X
)

d

with d> = l> − b>X and b> = m>VuZ>V−1 (Rao, 2003, 98 ff). The
second term in equation (2.7) was approximated by Kacker and Har-
ville, (1984) using a Taylor series approximation. Prasad and Rao,
(1990) have used instead the approximation by

E (µ̂− µ)2 ≈ g3(δ)

where

g3(δ) = tr
(
∂b>

∂δ
V
(
∂b>

∂δ

)
Vδ̂

)
with Vδ̂ being the asymptotic covariance matrix of δ̂. The derived
MSPE depends on the unknown parameter vector δ. Prasad and Rao,
(1990) used a moment estimator for δ and replaced the above formu-
lae such that an estimator of the MSPE can be defined as M̂SPE(µ̂) =
g1(δ̂) + g2(δ̂) + g3(δ̂). Datta and Lahiri, (2000) extended this ap-
proach for a wider range of models in SAE including ML and REML
estimators. An overview and comparison of these methods can be
found in Datta, Rao et al., (2005); their presentation focuses on MSPE
estimators using area level models.

A different approach has been taken by Chambers, Chandra and
Tzavidis, (2011) which is to define the EBLUP as a weighted sum of
the sampled values and to derive an MSPE estimator under the as-
sumption of independence between weights and sampled values. An
advantage of this method is its wide applicability as the approach
is not restricted to predictions under linear mixed models but ex-
tends to any predictor which can be represented as a weighted sum
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of the sampled values. The approach has been extended in Cham-
bers, Chandra, Salvati et al., (2014) to robust methods in SAE and
is of special interest in deriving an MSPE estimator for the methods
proposed in this Thesis. Hence these results are reviewed in more
detail in Section 2.5.3.2.

As an alternative approach a wide range of different resampling
strategies have been proposed. Jiang, Lahiri and Wan, (2002) intro-
duce a jackknife method to estimate the MSPE in the context of lon-
gitudinal linear mixed models; this was modified by Lohr and Rao,
(2009) into a simpler form. Also important is the proposed double
bootstrap method of Hall and Maiti, (2006) and the block bootstrap
of Chambers and Chandra, (2013) for mixed linear models. However
of special interest are the methods in the context of robust predictions
under linear mixed models which is why the bootstrap methods of
Sinha and Rao, (2009), Jiongo and Nguimkeu, (2014), and Mokhtarian
and Chambers, (2013) are reviewed in more detail in Section 2.5.3.1.

2.3 area level models

In SAE mixed models are generally divided into area and unit level
models. In this Section a review of some of the results is given with
respect to area level models. Section 2.4 then presents the basic unit
level model.

2.3.1 Fay-Herriot Model

The basic area level model was introduced by Fay and Herriot, (1979)
and has been used to predict the mean income of small areas using
census data. The general backdrop is that only information on the
area level is available, i.e. the direct estimates for the domains. The
model is then built around two stages. The first stage is the sampling
model:

ỹi = θi + ei

where ỹi is a direct estimator for a statistic of interest, θi, for an
area i with i = 1, . . . ,D. The sampling error ei is assumed to be in-
dependent and normally distributed with known variances σ2ei, i.e.
ei ∼ N(0,σ2ei). The model is modified with a second stage, the link-
ing model, by assuming a linear relationship between the true area
statistic, θi, and some deterministic auxiliary variables xi:

θi = x>i β+ ui

where xi is a (P × 1) vector containing area level information for P
variables and β is a (P × 1) vector of regression coefficients. The
model errors ui are assumed to be independent and identically dis-
tributed following a normal distribution: ui ∼ N(0,σ2u). Furthermore
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ei and ui are assumed to be independent. Combining the sampling
and the linking model thus leads to:

ỹi = x>i β+ ui + ei. (2.8)

2.3.1.1 Best Linear Unbiased Prediction

Obtaining small area predictions under the model in (2.8) can be
defined as a linear mixed model from which a BLUP and EBLUP
can be derived. Basically the model in (2.8) can be viewed directly
as a linear mixed model as it was introduced in equation (2.2) where
Z = ID, Vu = σ2uID and Ve = diag({σ2ei}

D
i=1) with ID being a (D×D)

identity matrix. The vector of unknown variance parameters in this
case is a scalar, such that δ = σ2u since σ2ei is assumed to be known.
The BLUP under the Fay-Herriot model, defined in equation (2.5), can
then be obtained by setting µ̃i = θ̃FHi , l>i = x>i , m>i = 1 and yi = ỹi:

θ̃FHi = θ̃FHi (σ2u) = x>i β̃+ ũi

= x>i β̃+
σ2u

σ2u + σ2ei

(
ỹi − x>i β̃

)
= γiỹi + (1− γi)x>i β̃

with γi = σ2u/(σ
2
u + σ2ei). The BLUP depends on the variance para-

meter of the random effects, σ2u, which is unknown. To obtain the
EBLUP under the Fay-Herriot model we can replace the unknown
parameter with an estimate, leading to:

θ̂FHi = γ̂iỹi + (1− γ̂i) x>i β̂ (2.9)

where γ̂i = σ̂2u/(σ̂
2
u + σ2ei). Note that the regression parameters are

still estimated using the weighted least squares estimator of equation
(2.3) with δ = σ̂2u.

For the estimation of σ2u different approaches exist. Fay and Her-
riot, (1979) propose a moment estimator from which they derive an al-
gorithm to estimate σ2u. Rao, (2003, pp. 118-119) reviews several other
ideas. Also based on a moment estimator he derives the estimator
also used in Prasad and Rao, (1990). Both moment estimators have
the property that they do not rely on a normal distribution, which
is also true for the estimation of the regression coefficients. Altern-
atively σ2u can be estimated using maximum likelihood or restricted
maximum likelihood, which, in contrast, relies on the distributional
assumptions. For details see also Datta and Lahiri, (2000).

2.3.1.2 Mean Squared Prediction Error

The MSPE of the EBLUP under the Fay-Herriot model, θ̂FHi , is the
subject of several studies. However it needs to be noted that inter-
estingly Fay and Herriot, (1979) did not assess the quantification of
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uncertainty associated with their predictions. In principle the MSPE
can be defined for an EBLUP as it was discussed in Section 2.2.3.
Datta, Rao et al., (2005) study the MSPE estimation using the results
of Prasad and Rao, (1990) for different estimators of the variance com-
ponent σ2u. They compare the method of moment estimator of Prasad
and Rao, (1990) with the original estimator of Fay and Herriot, (1979)
and the maximum likelihood estimator proposed by Datta and Lahiri,
(2000). The main finding is that for the MSPE estimation using the
predictor by Fay and Herriot, (1979) performs the best overall.

A jackknife MSPE estimator for linear mixed models was intro-
duced by Jiang, Lahiri and Wan, (2002) and later subjected to sev-
eral refinements; see for example Chen and Lahiri, (2003). Chen and
Lahiri, (2008) then introduced a jackknife estimator based on the res-
ults of Jiang, Lahiri and Wan, (2002) and explicitly targeted the MSPE
estimation of the prediction under a Fay-Herriot model. They found
satisfying results for the MSPE estimation using their method; how-
ever the conclusion with respect to the estimation of σ2u is not as clear
as in Datta, Rao et al., (2005), where they compare a method of mo-
ments estimator to the method proposed by Fay and Herriot, (1979).

A different line of discussion is stimulated by the fact that it is as-
sumed that the sampling variances, σ2ei, are known parameters. In
practice this is not the case and these parameters are estimated us-
ing the sample data. This can mean that they are themselves direct
estimators; but if a direct mean is considered unreliable then its vari-
ance estimation cannot be considered reliable. Fay and Herriot, (1979)
use generalised variance functions – see Wolter, (2007, pp. 272 ff) for
a discussion of these methods – instead of direct estimators. Maiti
et al., (2014) suggest instead to shrink both means and variances to
account for the possibility of unstable direct variance estimates and
also provide an estimator of the MSPE of the predictions. This ap-
proach is based on a Bayesian modeling strategy. You and Chapman,
(2006) provide results for the case that direct variance estimates are
used in a hierarchical Bayes approach and can account for that extra
variability in the MSPE estimation. MSPE estimators for an EBLUP
based prediction using estimated sampling variances can be found
in Wang and Fuller, (2003) and in Rivest and Vandal, (2003). Wang
and Fuller, (2003) derive an MSPE using asymptotic properties of the
EBLUP. Rivest and Vandal, (2003) on the other hand extend the res-
ults of Prasad and Rao, (1990) and add an extra term to the MSPE
estimator to account for the additional variability associated with the
estimation of direct sampling variances.

2.3.1.3 Discussion

From a practical point of view the assumption of known sampling
variances under the model is not plausible. Here these variances,
though subject to estimation, are treated as known constants. Some
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approaches to deal with this problem have been reviewed in Section
2.3.1.2 because in principle this relates mostly to an underestimation
of the true uncertainty of the predictions. Another dimension which
was for example addressed by Maiti et al., (2014) is the instability
of predictions when very heterogenous sampling variances are ob-
served, and to deal with this by shrinking both means and variances.
A further approach is to stabilise the sampling variances by using
generalised variance functions or other smoothing techniques. Albeit
these parameters are assumed to be known they can have a large im-
pact on the validity of domain predictions. In Section 3.1 I show how
the robust FH model relates to this discussion.

The response variable, ỹi, denotes a direct estimator. This is, of
course, not necessarily the sample mean but can be any other statistic.
An important feature of this statistic is that it is design unbiased. So
in principle it can be a direct design based estimator such as the HT
estimator. However it is assumed that the sampling errors are inde-
pendent. This can be a plausible assumption under simple random
sampling but is not necessarily valid under an informative sampling
design. With respect to the response variable it also needs to be noted
that quite often it is not the direct estimator itself but a suitable trans-
formation that is used. Fay and Herriot, (1979) log-transform the
direct estimator and suggest the use of a transformation such that
a normal distribution is plausible, i.e. is supported by the observed
data. Hence several suggestions have been made as to how to op-
timally transform the response variable and how to assess the estim-
ation of the MSPE of the back transformed domain prediction; see
for example Slud and Maiti, (2006). Sugasawa and Kubokawa, (2015)
review and introduce several parametric transformations for the FH
model and also discuss the possibility of MSPE estimation.

One of the main motivations to consider area level models is based
on the availability of data. Especially with census or administrative
data it may not be possible to give unit level information directly
to the analyst due to reasons of confidentiality. Thus only aggregates,
i.e. direct domain predictions, are available. Even with the availability
of information there are other reasons to consider. One is the integ-
ration of sampling weights which in general is not directly feasible
in model based methodology. Area level models present a way to at
least incorporate design weights into the direct estimation and then
have a design unbiased estimator on the area level. Other reasons
can be practical considerations, e.g. the reduction of computational
demands because area level data is often connected with a dramatic
reduction in the number of observations hence more complex vari-
ance structures can be modeled with less computational effort. Other
reasons are discussed in more detail in Namazi-Rad and Steel, (2015)
who consider different scenarios for the availability of auxiliary in-
formation, e.g. unit and area level variables and contextual variables.
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Their findings show that overall unit level models have more poten-
tial to reduce the MSPE of domain predictions; this is not surprising
as parameter estimation under a unit level model uses more informa-
tion and thus is more precise. This may leave the availability of data
as the main reason to consider area level models.

Area level models in Small Area Estimation have been used in
many applications and the Fay-Herriot model is subject to numerous
extensions. See for example Clement, (2014) for a review in disease
mapping; Guadarrama et al., (2015) for a review of methods used
for poverty mapping; and Benavent and Morales, (2016) for an EB-
LUP under a multivariate FH model. A comprehensive review of
extensions to the FH model can be found in Rao, (2003, pp. 153 ff)
and Rao and Molina, (2015, pp 81 ff). The following Section reviews
some advances for incorporating structures in space and time into
the estimation process. Some of these results in addition to a robust
extension is then the subject matter of Chapter 3.

2.3.2 Spatial and Temporal Fay-Herriot Models

This Section reviews spatial and temporal extensions to the FH model.
These extensions are again the subject of Chapter 3 where they are
then combined with robust estimation methodology which is
reviewed in Section 2.5. In principle it is intuitive that if historical
data, e.g. annually repeated surveys, are available they should be ex-
ploited; and the same is true of spatial structures. From a mixed
model perspective two components can be modified in order to take
such information into account: the random effect and the model error
term. The use of correlated random effects to allow for spatial, tem-
poral, or spatio-temporal effects may also be beneficial with respect
to domain predictions. In constrast to modifications to the model er-
ror this may add to the improvement of domain predictions in terms
of MSPE and is looked upon favourably in the literature. Modifying
the model error can be motivated to account for correlated sampling
errors of the direct estimators. This may be of special interest if, for
example, the area level information is based on a panel survey.

2.3.2.1 Spatial Extensions

The standard FH model (2.8) uses a random effect to capture unob-
served variation between areas. However it ignores unobserved spa-
tial patterns which may be present when areas refer to geographical
units. In the FH model the area specific random effects are inde-
pendent; when spatial correlation is an issue then the assumption of
correlated random effects appear instead to be more plausible since
neighbouring areas may be similar. If no covariates are present to
capture such effects Molina, Salvati et al., (2009) show that taking
spatial correlation into account can be beneficial for domain predic-
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tions. Singh, Shukla et al., (2005), Petrucci and Salvati, (2006), and
Pratesi and Salvati, (2008) investigated the possibility of incorporat-
ing a simultaneous autoregressive process (SAR) into the domain pre-
dictions. In principle there are two options to model spatial correla-
tion: conditional autoregressive models (CAR) and SAR. The main
difference is that CAR models are based on a Markov field which im-
plies that spatial correlation exists only locally between two or more
neighbours but does not affect other non neighbouring units, i.e. such
a process has no memory across space. SAR processes do not have
this restriction and are more useful in describing a global correlation
structure. For a comprehensive overview of the different approaches
see Cressie, (1993). In order to incorporate spatial correlation we can
modify model (2.8) such that:

ỹi = x>i β+ u1i + ei (2.10)

where the only difference to model (2.8) is the replacement of ui with
u1i to represent the random effect. This is the model used by Pratesi
and Salvati, (2008). In contrast to the formulation in model (2.8) u1i
now follows a SAR(1), i.e. a simultaneous autoregressive process of
order one, which is defined by:

u1i = ρ1
∑
l 6=i

wilu1l + ε1i

where |ρ1| < 1 and ε1i ∼ N(0,σ21) are i.i.d. with i = 1, . . . ,D. wil
are the elements of W which is the row standardised transformation
of the proximity matrix W0. The elements in W0 are equal to one
where areas are neighboured and zero otherwise, it then follows that
the dimension of W0 is D×D. Note that this definition of W0 is but
one possibility. In general the choice of W must lead to a nonsingular
form of ID − ρ1W, where ID denotes an identity matrix of order D,
such that the variance structure can be identified (Rao and Molina,
2015, p. 87). Using the methodology of Section 2.2 the BLUP can be
stated as:

θ̃SFHi = x>i β̃+ ũ1i

where θ̃SFHi depends on the variance parameters δ = (ρ1,σ21). Pratesi
and Salvati, (2008) use a maximum likelihood estimator for both para-
meters. Replacing the unknown parameters with their respective es-
timates the EBLUP can be obtained by:

θ̂SFHi = x>i β̂+ û1i. (2.11)

This model is again the subject matter of Section 3.2.2 where the vari-
ance structure is reviewed in more detail. The MSPE for the EBLUP
under model (2.10) is developed by Pratesi and Salvati, (2008) who
extend the results from Prasad and Rao, (1990).
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A different approach to incorporate spatial correlation structures,
but for unit level models, can be found in Chandra, Salvati, Cham-
bers and Tzavidis, (2012) who use a geographically weighted regres-
sion model and derive the EBLUP under this model. Salvati, Tza-
vidis et al., (2012) use a geographically weighted M-quantile regres-
sion model for small area predictions. Porter et al., (2014) is an ex-
ample how a CAR process may be used in the context of the FH
model, which is, additionally, extended to allow for functional covari-
ates. The model in (2.10) assumes spatial stationarity of the regression
parameters; that is that they do not vary spatially. Hence Chandra,
Salvati and Chambers, (2015) extend this approach for spatial non-
stationarity and derive a nonstationary EBLUP.

2.3.2.2 Temporal Extensions

An early extension by Choudhry and Rao, (1989) allows for an autore-
gressive process in the error term, which, in the context of the FH
model, is one way to account for correlated sampling errors. Rao and
Yu, (1994) then introduced a model to use autocorrelated random ef-
fects to borrow strength for domain predictions:

ỹit = x>itβ+ ui + u2it + eit (2.12)

where i = 1, . . . ,D and t = 1, . . . , T where D and T are the total num-
ber of areas and time periods, respectively. Here eit ∼ N(0,σ2eit) is
independent with known variances σ2eit. ui corresponds to the ran-
dom effect in model (2.8) and follows a normal distribution with zero
mean and variance σ2u. Correlation over time is now incorporated by
adding u2it which is a correlated random effect following an AR(1),
i.e. an autoregressive process of order one:

u2it = ρ2u2i,t−1 + ε2it

where ρ2 is the autocorrelation coefficient with |ρ2| < 1 and ε2it ∼

N(0,σ22) being i.i.d. with i = 1, . . . ,D and t = 1, . . . , T . The BLUP
under model (2.12) can then be defined as:

θ̃TFHit = x>itβ̃+ ũi + ũ2it

where the variance parameters δ = (σ2u, ρ2,σ22) are assumed to be
known. Replacing these parameters with their respective estimates
the EBLUP can be obtained:

θ̂TFHit = x>itβ̂+ ûi + û2it. (2.13)

Rao and Yu, (1994) used a method of moments estimator for the ele-
ments in δ. Extensions to this model have been made by Datta, Lahiri
and Maiti, (2002) who replace the AR(1) process with a random walk.
Singh, Mantel et al., (1991) use a random slope model instead of cor-
related random effects, but also use an AR(1) to describe the variation
of the random regression coefficients.
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2.3.2.3 Spatio Temporal Extensions

The subject matter of this Section is the combination of the spatial
model (2.10) and temporal model (2.12); this combination was intro-
duced by Marhuenda et al., (2013). A similar approach but for a
multinomial response can be found in López-Vizcaíno et al., (2015).
Singh, Shukla et al., (2005) use a similar approach with respect to spa-
tial autocorrelation but they use a State Space Model with a Kalman
filter to take advantage of time series data.

Following Marhuenda et al., (2013) a spatio temporal FH model
can be formulated as:

ỹit = x>itβ+ u1i + u2it + eit (2.14)

where in contrast to model (2.12) the first random effect component
has been replaced with a correlated random effects component fol-
lowing a SAR(1). To summarise this model, we have u1i following a
SAR(1), u2it following an AR(1), and eit are i.i.d.; furthermore u1i,
u2it and eit are assumed to be pairwise independent. Following the
presentation of the previous sections, the spatio temporal BLUP un-
der model (2.14) can be defined by:

θ̃STFHit = x>itβ̃+ ũ1i + ũ2it.

Marhuenda et al., (2013) have used a REML estimator for the un-
known variance components δ = (ρ1,σ21, ρ2,σ22). Replacing the un-
known components with their respective estimates leads then to the
EBLUP under model (2.14):

θ̂STFHit = x>itβ̂+ û1i + û2it. (2.15)

In contrast to Singh, Shukla et al., (2005) who derive an analytical
MSPE for spatio-temporal domain predictions and Pratesi and Salvati,
(2008) who derive an MSPE for spatial predictions, Marhuenda et al.,
(2013) propose to use a parametric bootstrap for the estimation of the
MSPE.

2.3.2.4 Discussion

The use of correlation across space to improve domain predictions
is in principle a promising approach for applications. However an
important aspect and result of the literature reviewed is that mod-
eling spatial autocorrelation in terms of a random effect is useful
only when this structure cannot be captured by auxiliary information,
i.e. in the fixed effects part of a mixed model. This means that such
models can be used to capture unobserved spatial correlation. Also of
interest is that although the proximity matrix W0 is introduced to rep-
resent neighbouring units in a geographical sense it can refer to more
abstract relationships. Neighbouring units may also be defined, for



2.4 unit level models 23

example, by capturing the structure between industry sectors which
are inter-related. Such structures, in contrast to geographical units,
may be defined through domain expertise. Thus this strategy can be
generally useful for domain predictions instead of being restricted to
the geographical sense of area predictions.

The use of information over time on the other hand is quite dif-
ferent. Marhuenda et al., (2013) note that in practice we may be in-
terested in making predictions for the current time period – and not
the past – and use historic information as additional data. The use of
historic information may lead to an improvement of parameter estim-
ates due to the increased sample size. The temporal random effect in
model (2.12) can additionally be of use in improving domain predic-
tions. Singh, Shukla et al., (2005) note that this is especially the case
if the historic information, often itself a prediction, is more reliable
than the available information of the current time period.

The spatial, temporal, and spatio-temporal FH models are again
the subject matter of Chapter 3 where they are combined with robust
estimation methodology. Note that the review in this Chapter may
not be sufficient to deduce the representation of these models as lin-
ear mixed models; this will be discussed in more detail in Section
3.2.

2.4 unit level models

The Battese-Harter-Fuller (BHF) model, which can also be regarded
as a linear mixed model, was introduced by Battese et al., (1988). The
main focus of the present Thesis is the extension of area level models.
However some recent advances in the field, especially with respect to
robust estimation methodology, have been made for unit level models.
In Chapter 3 these results are applied to the area level; here the basic
unit level model and unit level notation is reviewed preparatory to
more details in Section 2.5 below. A review of unit level models in
the context of linear mixed models and EBLUP based predictions can
be found in Jiang and Lahiri, (2006), Rao, (2003), and in Rao and
Molina, (2015) who also review a variety of extensions.

The unit level model of Battese et al., (1988) can be expressed as
linear mixed model by:

yij = x>ijβ+ ui + eij (2.16)

where yij denotes the response of unit j = 1, . . . ,Ni in area i =

1, . . . ,D. The random effects, ui, are independent and identically dis-
tributed following a normal distribution such that ui ∼ N(0,σ2u). The
error terms eij are i.i.d. following a normal distribution with zero
mean and variance σ2e. Furthermore the random effect and model
error are independent. xij denote the auxiliary variables for the jth
unit in the ith area.
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Following Rao and Molina, (2015, pp. 78 ff) this model can be split
into sampled and non-sampled units. Let the set of n sampled and
N−n non-sampled units be denoted by S and R respectivey. The sets
can furthermore be split into the distinct S1 ∪ · · · ∪ SD and R1 ∪ · · · ∪
RD, where Si and Ri denote the sampled and non sampled units in
area i = 1, . . . ,D, respectively. Then (2.16) can be written in matrix
notation as

y =

(
yS
yR

)
=

(
XS
XR

)
β+

(
ZS
ZR

)
u+

(
eS
eR

)
where the subscripts R and S denote respectively the sampled and
non-sampled part of the model. The fundamental assumption of this
representation is that the sampled units follow the population model.
This is plausible under simple random sampling within each domain
and, as Rao and Molina, (2015, p. 79) note, also when XS contains the
variables used for sampling.

These results can now be used to derive an EBLUP for the target
statistic. In principle this also happens according to Section 2.2; how-
ever we are generally not interested in a prediction at unit level but
for the area level target statistic. Following Rao and Molina, (2015,
pp. 174 ff) an EBLUP under model (2.16) for the ith area mean can be
derived as

θ̂BHFi = N−1
i

∑
j∈Si

yij +
∑
j∈Ri

(x>ijβ̂+ ûi)

 (2.17)

where β̂ denotes the BLUE of βwhich is estimated using the sampled
information. Note that this predictor is based on the auxiliary inform-
ation for each unit in the non-sampled part of the population. It may
be unrealistic to have such information for each observation. This
assumption can be relaxed by using the area means of the popula-
tion to make domain predictions; however this information needs to
be available to the analyst. The unknown parameters of the model,
i.e. β, σ2u and σ2e, can be estimated using standard ML and REML
estimation techniques and are based on the sampled data.

A wide range of MSPE estimators have been proposed for basic
unit level small area methods – a comprehensive review of these
methods can be found in Rao and Molina, (2015, 179 ff). Among these
methods is an unconditional MSPE estimator which has been pro-
posed by Datta and Lahiri, (2000). For the robust extension of (2.17),
which is introduced in the following Section, a number of methods
are discussed in more depth in Section 2.5.3.

2.5 robust methods in small area estimation

The quality of predictions using model based methods is strongly
dependent upon the distributional assumptions. Serious problems
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with these methods can arise already when single outlying observa-
tions are present in the data. Hence discussion and some progress
has been made in connection with methods robust against outliers.
Outliers are here defined as representative outliers as in Chambers,
(1986). A thorough discussion of what exactly outlying observations
on the area level are will be given in Section 3.1 ahead.

In the broader context of this subfield within SAE the present Thesis
relies strongly on the results of Sinha and Rao, (2009) who propose ro-
bust estimation equations for linear mixed models. Their proposition
focuses on the unit level model (2.16); but the methodology builds
on linear mixed models where (2.16) can be derived as a special case
of these models. Also the basic area level model (2.8) can be framed
within this context; and the estimation equations can be adapted ac-
cordingly. This is also pointed out in Sinha and Rao, (2008) and in
Rao and Molina, (2015, pp. 146 ff). The use of these results for area
level models is again addressed in Chapter 3 where robust extensions
to the FH model are proposed.

In what follows the main results around the methodology intro-
duced by Sinha and Rao, (2009) are reviewed. Together with the
models reviewed in Section 2.3 these results are the basis for the ex-
tensions proposed in this Thesis. The Section is structured as fol-
lows: Section 2.5.1 reviews the methodology around robust estima-
tion equations; in Section 2.5.2 these results are extended to allow for
a correction of the bias associated with this type of robust predictions;
then in Section 2.5.3 different possibilities to estimate the MSPE of the
area level predictions are described; and in Section 2.5.4 these results
are embedded in a broader context of proposed robust methods in
the SAE field.

2.5.1 Robust Estimation Equations

Section 2.2 reviewed the domain prediction under linear mixed mod-
els. The key to these predictions are the BLUE given by (2.3) and the
BLUP given by (2.4). These estimators can be derived based on the
log-likelihood of the joint density of y and u of (2.2)

y = Xβ+ Zu + e

when we assume normality in the distribution of u and e. Note that
the model can now be stated as y ∼ N(Xβ, V) where V = ZVuZ> +

Ve. The first derivatives of the log-likelihood with respect to β and u
for given variance parameters δ lead then to the so-called mixed model
equations:

X>V−1
e (y − Xβ− Zu) = 0 (2.18)

Z>V−1
e (y − Xβ− Zu) − V−1

u u = 0. (2.19)
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Henderson, (1963) has shown that the solutions to (2.18) and (2.19)
are identical to the BLUE and BLUP as defined in (2.3) and (2.4),
respectively.

Fellner, (1986) studied the robust estimation of β and u by modify-
ing (2.18) and (2.19) to restrict the influence of outlying observations.
He suggests the use of an influence function to restrict the impact of
the residuals in (2.18) and (2.19), transforming them into:

X>V− 1
2

e ψ

(
V− 1

2
e (y − Xβ− Zu)

)
= 0 (2.20)

and

Z>V− 1
2

e ψ

(
V− 1

2
e (y − Xβ− Zu)

)
− V− 1

2
u ψ

(
V− 1

2
u u

)
= 0 (2.21)

where ψ(·) is a bounded monotonous function. Fellner, (1986) sug-
gests to use Huber’s influence function (Huber, 1964) where ψb(x) =
xmin

(
1, b

|x|

)
for a given tuning constant b where a common choice

for b is 1.345. Rao, (2003, p. 102) suggests to use a robust version
of Henderson’s (Henderson, 1950) estimation equations for the un-
known parameters in δ; remember that V = V(δ) where δ denotes
the vector of unknown variance parameters.

Building on these results Sinha and Rao, (2009) propose a similar
approach in that they use robustified estimation equations. In contrast
to the approach by Fellner, (1986) these equations are derived from
the marginal model of (2.2) and specifically for β and δ; thus the first
derivatives of the marginal log-likelihood of y with respect to β and
δ are:

X>V−1 (y − Xβ) = 0

and

(y − Xβ)>V−1 ∂V
∂δl

V−1 (y − Xβ) − tr
(

V−1 ∂V
∂δl

)
= 0

for l = 1, . . . ,Q where Q denotes the total number of variance para-
meters in δ. These estimation equations are now modified in order to
restrict the influence of outlying observations similar to (2.20) in that
the residuals have bounded influence using an influence function de-
noted by ψ(·):

X>V−1U
1
2ψ(r) = 0 (2.22)

ψ(r)>U
1
2V−1 ∂V

∂δl
V−1U

1
2ψ(r) − tr

(
KV−1 ∂V

∂δl

)
= 0 (2.23)

where K = E(ψ2b(z))In is a diagonal matrix of the same order as
V with z following a standard normal distribution; and r = r(β) =

U− 1
2 (y − Xβ) denotes the vector of the standardised residuals and

U = U(δ) is the matrix containing the diagonal elements of V.
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In order to find solutions for β and δ based on the robust es-
timation equations (2.22) and (2.23) Sinha and Rao, (2009) propose
Newton-Raphson algorithms based on a Taylor series expansion. Schmid,
(2011) and Schoch, (2012) have reported numerical problems with
this approach; and different alternative solutions have been investig-
ated. Schmid, (2011) proposes to find the minimum of the squared
estimation equations in (2.23) for all variance parameters; and this
was further optimised by Auerbach, (2015) giving stable and satis-
fying results. Schoch, (2012) uses instead an iteratively re-weighted
least squares (IRWLS) algorithm for a solution of (2.22) which also
yields satisfactory results. A further proposition has been offered by
Chatrchi, (2012) which is to derive a system of fixed point equations
based on (2.23): she derives a stable algorithm – using a fixed point
algorithm – for δ.

The main advantage of these alternatives may be that they do not
rely on the derivatives of the estimation equations, which was already
a known concern in the work of Sinha and Rao, (2009). See Kennedy
Jr and James, (1980, Chapter 11) and Thisted, (1988, Chapter 4) for
comprehensive overviews for solving ML based robust estimation
equations, they also suggest the IRWLS algorithm as an alternative
to the NR algorithm for this very reason.

With given robust estimates for β and δ, Sinha and Rao, (2009)
solve the robust mixed model equation (2.21) proposed by Fellner,
(1986) in order to derive a robust EBLUP (REBLUP). Although they
also suggest to use a NR algorithm which is developed using a Taylor
series expansion, the numerical solution appears to be less problem-
atic. On the other hand Schoch, (2012) suggests finding solutions on
the basis of a robust version of a method of moments estimator; and
a similar suggestion can be found in Rao and Molina, (2015, p. 196):
they propose the use of a robust version of (2.4):

ûψ = VuZ>V−1U
1
2ψ(r) (2.24)

where the notation is the same as given before with the only differ-
ence being that ûψ now depends on the robust parameter estimates
β̂
ψ

and δ̂
ψ

. From a computational point of view this has the obvi-
ous advantage that no iterative algorithm is needed. Rao and Molina,
(2015, p. 196) note that a disadvantage here may be that (2.24) de-
pends on the composite error – Zu + e – of (2.2) whereas in (2.21) the
influence function is applied only to e. However, an empirical invest-
igation of this issue seems not to be available in the literature at this
time.

Given the robust estimates β̂
ψ

, δ̂
ψ

, and ûψ, Sinha and Rao, (2009)
derive the REBLUP for area level means under the BHF model (2.16).
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The REBLUP under the BHF model is then a robust variation of (2.17)
and can be stated as:

θ̂RBHFi = N−1
i

∑
j∈Si

yij +
∑
j∈Ri

(
x>ijβ̂

ψ
+ ûψi

) . (2.25)

2.5.2 Bias Correction

Predictions using a REBLUP in the form of (2.25) can result in the
introduction of a bias. This can also happen in the case of different
outlier robust estimation approaches as already noted, for example
by Tzavidis and Chambers, (2005), in the context of M-quantile re-
gression. In general a bias can be introduced if outliers in u or e are
present but are not drawn from a distribution with zero mean or are
from an asymmetric distribution.

This may be viewed as a contrast to the situation say in which we
have a well behaved population model following, for example, the
Gaussian Linear Mixed Model; in this situation outliers can occur
randomly due to sampling but should be of no concern under re-
peated sampling. This effectively means that realisations of outliers
are driven purely by chance. In many real world scenarios outliers
have a direction: for instance outliers for income data are typically
high incomes. The same holds true for example for the revenue of
a company. This is modeled in the robust SAE literature as either a
mixture distribution in which outlying observations are believed to
follow a different population model with a shifted location than the
rest of the observations; or as a non-symmetric, heavy tailed distribu-
tion which is better suited for describing the occurrence of outlying
observations than a symmetric distribution.

Where we in fact suspect a mixture or non-symmetric population
model, then weighting down outlying observations effectively means
that we tend to ignore the outlier population model or the inherint
asymmetry. The robust estimation of location parameters using the
techniques described above are essentially a trade-off between pre-
dicting the mean and median which, with respect to bias, introduces
a problem with an asymmetric population model.

This reasoning explains why some advances have been attempted
to control a potential bias introduced by robust estimation techniques.
Chambers, Chandra, Salvati et al., (2014) have proposed a correction
of REBLUPs in the form of (2.25) by adding an area specific estimator
of the potential bias:

θ̂RBHF−BCi = θ̂RBHFi +

(
1

ni
−
1

Ni

)∑
j∈Si

φiψc

(
ê
ψ
ij

φi

)
(2.26)



2.5 robust methods in small area estimation 29

where êψij = yij− x>ijβ̂
ψ
− ûψi is the unit level prediction error and φi

with i = 1, . . . ,D is the median absolute deviation of êψij within area
i. Note that here ψc denotes typically the same influence function as
in the robust estimation equations, ψb, with the important restriction
that c > b. This means that ψc is still bounded but more liberal than
ψb; this introduces the possibility to compute a potential prediction
bias for each area.

An extension of this approach was introduced by Jiongo, Haziza et
al., (2013) whose main concern has been that the correction in (2.26)
only depends on the sampled units within domains. Hence they pro-
pose two alternatives. First they propose a bias correction based on
the results of Chambers, (1986) which, in contrast to (2.26), relies on
S instead of Si – i.e. the whole sample and not just the sampled units
within domains – and they call this a fully-bias correction. The second
approach uses a conditional bias to account for units in the popula-
tion. This effectively reduces to the different treatment of the robust
predictions of the random effects in their two approaches. In their
simulation study they find an improvement in terms of bias for all
three bias corrections for the REBLUP in (2.25). However, especially
in terms of stability measured by relative efficiency – relative to the
EBLUP in (2.17) – the two approaches by Jiongo, Haziza et al., (2013)
show promising results in their simulation study.

At this point it is important to note that for area level robust pre-
dictions the application of the results of Chambers, Chandra, Salvati
et al., (2014) and Jiongo, Haziza et al., (2013) are not immediately
obvious. All three approaches are based on some form of mean of
the unit level prediction error which is not available at the area level.
However the underlying problem of a potential bias continues to per-
sist – also at the area level. A solution for robust area level predictions
is discussed in Section 3.4.

2.5.3 Mean Squared Prediction Error

One of the challenging problems in this discipline is the estimation
of the MSPE in model based SAE (Pfeffermann, 2013). This is only
aggravated with the combination of robust estimation methodology
so that Sinha and Rao, (2009) initially proposed a bootstrap instead
of an analytical solution. In Section 2.5.3.1 below existing bootstrap
methods in this context are reviewed. Then in Section 2.5.3.2 one ana-
lytical solution is presented based on a pseudolinear representation
of the REBLUP which also allows the estimation of the MSPE of the
bias corrected REBLUP.
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2.5.3.1 Bootstrap Methods

In order to estimate the MSPE for the REBLUP in (2.25) Sinha and
Rao, (2009) propose the use of a parametric bootstrap. With the ro-
bust parameter estimates β̂

ψ
and δ̂

ψ
=
(
σ̂
2ψ
u , σ̂2ψe

)
samples are gen-

erated from the following model:

y∗ij = x>ijβ̂
ψ
+ u∗i + e

∗
ij

with j = 1, . . . ,ni and i = 1, . . . ,D where u∗i ∼ N(0, σ̂2ψu ) and e∗ij ∼
N(0, σ̂2ψe ). In each repetition, i.e. for each bootstrap sample, the boot-
strap population mean is computed as:

Ȳ∗i = N−1
i

∑
j∈Si

y∗ij +
∑
j∈Ri

(
x>ijβ̂

ψ
+ (1−niN

−1
i )(u∗i + ē

∗
i

)
where ē∗i ∼ N(0, (Ni − ni)−1σ̂

2ψ
e ). Using each bootstrap sample, the

REBLUP (2.25) is computed and the suggested bootstrap estimator of
the MSPE with B repetitions is then defined by:

M̂SPE
(
θ̂RBHFi

)
=
1

B

B∑
b=1

(
θ̂
RBHF(b)
i − Ȳ

∗(b)
i

)2
where θ̂RBHF(b)i and Ȳ∗(b)i denote respectively the REBLUP and the
bootstrap population mean of the bth bootstrap sample.
Jiongo, Haziza et al., (2013) use a very similar approach with the
important difference that their model – from which the bootstrap
samples are drawn – depends on the non-robust parameter estimates
δ̂ = (σ̂2u, σ̂2e). Sinha and Rao, (2009) argue that they are interested
in resampling the non-contaminated part of the observations because
the MSPE of their robust estimator should be uneffected by outliers.
Jiongo, Haziza et al., (2013) found that the method used by Sinha
and Rao, (2009) lead to poor coverage rates of constructed confidence
intervals and they suspect that this is because the robust parameter
estimates do not reflect a sufficiently large part of the sample.

Jiongo and Nguimkeu, (2014) propose a different bootstrap method.
Their non-parametric approach is different from the above in that
the random effects, u∗i , and the error term, e∗ij, are drawn from a
transformed set of the estimated {ûi}

D
i=1 and {{êij}

Ni
j=1}

D
i=1 under a

non-robust BHF model to generate bootstrap populations. From these
generated populations samples are drawn using the same sampling
scheme as for the realised sample at hand. With these differences
they provide preliminary results which show very good properties in
terms of relative bias and relative root mean squared error of their
bootstrap estimator. Albeit their results are very promising, it is not
entirely clear how to adapt this approach in the case of mixed linear
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models with correlated random effects which would be needed for
the spatial and temporal extensions reviewed in Section 2.3.2.

Mokhtarian and Chambers, (2013) proposed a further extension
which is to use a robust block bootstrap. Similar to the approach
taken by Jiongo and Nguimkeu, (2014) they also construct a set of er-
rors and random effects from which they draw their bootsrtap
samples. However instead of using a robust estimation method, they
construct outlier robust samples; this means that the way in which
the bootstrap samples are constructed is robust against outliers. On
each sample then a non-robust small area estimator can be used. This
approach has the interesting effect that a MSPE estimator for robust
domain predictions as well as the robust predictions themselfes can
be produced. Although the results look promising it is at this time,
again, not clear how to extend their method for models with correl-
ated random effects.

2.5.3.2 Pseudolinearisation-based Approach

Parallel to the development of the bootstrap methods discussed above
Chambers, Chandra and Tzavidis, (2011) provide an analytical solu-
tion for a bias-robust MSPE estimator for small area predictions. The
appeal of their method lies in their available applicability for a wide
range of predictors. Their method can be used for any predictor
which can be represented as a weighted sum of the sampled response
vector. Chambers, Chandra, Salvati et al., (2014) then adapted this ap-
proach for the REBLUP in (2.25) and the bias corrected version in
(2.26). They derive an analytical estimator to the conditional MSPE
– conditional on the set of random effects – based on a pseudolin-
ear form of the REBLUP and extend this approach to a linearisation-
based approach.

Following Chambers, Chandra, Salvati et al., (2014) the RBLUP un-
derlying (2.25) – i.e. with known parameters δ – can be represented
as a weigthed sum of the sampled response values:

θ̃RBHFi =
∑
j∈S

w̃RBHFij yj =
(
w̃RBHFiS

)>
yS

where yS denotes the vector of sampled response values and w̃RBHFiS

the vector of weights to produce the ith area prediction. w̃RBHFiS is
here defined as:(

w̃RBHFiS

)>
= N−1

i

(
1>iS + (Ni −ni)

(
x̄>iRAS + z̄>iRBS (IS − XSAS)

))
where in contrast to (2.25) we have substituted xij with x̄iR denoting
the known population means of the auxiliary variables and similarly
z̄iR denotes the known vector for selecting the random effects for area
i. Here 1iS denotes a vector with n elements which are equal to one if
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the jth element is from area i and zero otherwise; and IS is a (n×n)
identity matrix. Furthermore

AS =

(
X>SV−1

S U
1
2

SW1SU− 1
2

S XS

)−1

X>SV−1
S U

1
2

SW1SU− 1
2

S

where W1S = diag
(
{w1j}

n
j=1

)
n×n

is a diagonal matrix with

w1j = ψ

(
U

− 1
2

j

(
yj − x>j β̃

ψ
))(

U
− 1
2

j

(
yj − x>j β̃

ψ
))−1

as elements. Note that here U− 1
2

j denotes the jth diagonal element of

the matrix U− 1
2

S . Continuing,

BS =

(
Z>SV− 1

2

eS W2SV− 1
2

eS ZS + V− 1
2

u W3SV− 1
2

u

)−1

Z>SV− 1
2

eS W2SV− 1
2

eS

where W2S = diag
(
{w2j}

n
j=1

)
n×n

and W3S = diag
(
{w3i}

D
i=1

)
D×D

are diagonal matrices where their respective elements are defined by:

w2j = ψ

(
1

σ
ψ
e

(
yi − x>i β̃

ψ
− ũψi

))( 1

σ
ψ
e

(
yi − x>i β̃

ψ
− ũψi

))−1

and

w3i = ψ

(
ũ
ψ
i

σ
ψ
u

)
σ
ψ
u

ũ
ψ
i

.

The pseudolinear representation for θ̃RBHFi needs to be modified
for the REBLUP in that we substitute the unknown variance paramet-
ers with their robust estimates, δ̂

ψ
. In addition let ŵRBHFij denote the

weight of the REBLUP under the BHF model for the jth observation
to predict the ith area mean. Chambers, Chandra, Salvati et al., (2014)
then derive the estimator of the MSPE following the results of Cham-
bers, Chandra and Tzavidis, (2011) which in turn are based on the
results of Royall and Cumberland, (1978). Thus an estimator for the
MSPE is given by:

M̂SPE
(
θ̂RBHFi

)
= V̂

(
θ̂RBHFi

)
+ B̂

(
θ̂RBHFi

)2
(2.27)

where

V̂
(
θ̂RBHFi

)
= N−2

i

∑
j∈S

(
a2ij + (Ni −ni)n

−1
)
λ−1j

(
yj − µ̂j

)2
is an estimator of the conditional prediction variance with aij =

Niw
RBHF
ij − I (j ∈ i) where I (j ∈ i) denotes an indicator function for

when observation j is in the ith area; and

B̂
(
θ̂RBHFi

)
=
∑
j∈S

ŵRBHFij µ̂j −N
−1
i

∑
j∈(Ri∪Si)

µ̂j
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is an estimator of the conditional prediction bias. Note that µ̂j is an
unbiased estimator of the the conditional expectation
µj = E

(
yj|xj, uψ

)
and λj = 1− 2φjj +

∑
k∈Sφ

2
kj is a scaling constant.

Due to the shrinkage effect associated with EBLUPs, Chambers,
Chandra and Tzavidis, (2011) suggest the use of the unshrunken ver-
sion of the EBLUP under the BHF model for µ̂j. The approach can be
utilised to derive an analytical MSPE estimator for the bias corrected
version of the REBLUP. Chambers, Chandra, Salvati et al., (2014) do
this by replacing the weights in the pseudolinear representation and
argue for the omission of the squared bias term in (2.27) since it is an
approximately unbiased estimator of the area mean.

Note that the benefit of this pseudolinear representation has the un-
derlying assumption that the weights and sampled response values
are independent; furthermore this estimator of the MSPE neglects
the uncertainty associated with the estimation of the variance com-
ponents. Chambers, Chandra, Salvati et al., (2014) hence note that
this is a first order approximation to the actual MSPE estimator of the
REBLUP. A second note is that this approach involves an increase in
the MSE of the MSPE estimator. However, Chambers, Chandra, Sal-
vati et al., (2014) argue that in realistic applications this approach has
good repeated sampling properties – for details see the references in
Chambers, Chandra, Salvati et al., (2014).

Chambers, Chandra, Salvati et al., (2014) also provide a linearisation-
based approach to the estimation of the conditional MSPE. This ap-
proach explicitly aims to incorporate the uncertainty in the estimation
of the variance components and hence is a second order approxima-
tion. The pseudolinear form has, in principle, the great advantage
that it is easily adapted for other small area estimators through re-
placing the weights. The linearisation-based approach makes it ne-
cessary to provide components to capture the uncertainty associated
with specific variance components and variance structures. For this
reason the pseudolinear form is further explored and adapted for the
robust area level estimators in Section 3.3.2 and Section 3.5.2 below.

2.5.4 Discussion

The discussion in this Section has been narrowed to the SAE field
and specifically around the results by Sinha and Rao, (2009). Their
results are strongly influenced by Richardson and Welsh, (1995) who
propose robust estimation equations for linear mixed models and by
Huggins, (1993) who proposes similar methods. A further extension
of these methods to generalised linear mixed models can be found in
Yau and Kuk, (2002).

Recent extensions to the robust methods by Sinha and Rao, (2009)
can be found in Schmid and Münnich, (2014) who use a unit level
model with spatially correlated random effects; they propose a spatial
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REBLUP (SREBLUP). Schmid, Tzavidis et al., (2016) then build on
the results of Chambers, Chandra, Salvati et al., (2014) and make the
necessary extensions for the SREPLUP. Rao, Sinha et al., (2014) have
extended the unit level mixed model to allow for P-splines in the
fixed part of the model. It is interesting to note that they also report
problems with their originally proposed Newton-Raphson algorithm
and suggest using a fixed point algorithm for the variance parameters
instead.

In general the approach to outlier robust predictions, as it was dis-
cussed above, is but one possible approach; it is plausible to apply
it in an application when the analyst believes that the population
model is correctly specified for a substential part of the population.
When the model is incorrect – for example in the case of a mixture
distribution or in general in the context of non-symmteric outliers –
the proposed methods can easily lead to a prediction bias. However
solutions have been suggested to overcome this issue. Similar meth-
ods – in that they use robust estimation equations – with respect to
survey methods can be found in Beaumont and Rivest, (2009) and
Hulliger, (1999) who recommend for example a robust HT estimator;
and Beaumont, (2004) has introduced robust extensions to general-
ised regression estimation.

A different approach to robust small area predictions can be found
in Chambers and Tzavidis, (2006) and in Tzavidis, Marchetti et al.,
(2010) which is to model a conditional quantile instead of a condi-
tional mean. This approach also leads to the same problem under
non-symmetric outliers in that the predictions can be biased. Tza-
vidis and Chambers, (2005) have suggested a correction term for this
bias which was then adapted for the REBLUP by Chambers, Chandra,
Salvati et al., (2014).

Furthermore robust small area predictions can be addressed by
changing the underlying model assumptions. This is most natural
in the situation where the original distributional assumption, for ex-
ample a normal distribution, is implausible and needs to be replaced.
Choices can fall on symmetric distributions with more probability
mass on the tails or on non-symmetric distributions. Bell and Huang,
(2006) for example use a Bayesian approach and choose a t-distribution
for the random effects. Datta and Lahiri, (1995) suggest the use of a
Cauchy distribution or a mixture distribution. Outside the SAE field
examples for robust modeling can be found in Lange et al., (1989)
and Peel and McLachlan, (2000) who formulate a likelihood based on
a multivariate t-distribution.

Although most of the references focus on robust small area predic-
tion under unit level models, several possibilities have been explored
for area level models. Bell and Huang, (2006) and Huang and Bell,
(2006) both use the t-distribution to model the random effect in the
FH model within the context of poverty mapping. Xie et al., (2007)
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also use a hierarchical Bayes approach using a t-distribution to pre-
dict the proportion of overweight individuals in small areas. Fabrizi
and Trivisano, (2010) explore the possibility to use exponential power
distributions to model the random effect; put simply, this is a nor-
mal distribution where the skewness and kurtosis are parameterised
such that this distribution can be used to model heavy tails or non-
symmetry. They also use a Bayesian approach. Ghosh, Maiti et al.,
(2008) modify the Hierarchical Bayes and Empirical Bayes estimators
by using an influence function. This is a similar approach taken as
proposed in Chapter 3 however in the setting of a Bayesian frame-
work – whereas the estimation methodology underpinning the meth-
ods of this Thesis is based on Maximum Likelihood. Gershunskaya,
(2010) and Chakraborty et al., (2015) propose to use the FH model
but replace the distribution of the random effects with a mixture
distribution. This essentially means that they have to detect which
observations are outliers and fit a separate model. All these studies
can claim some advantages – in terms of MSPE – for their respective
method when outliers are present.





3
R O B U S T A R E A L E V E L M O D E L S

[Outliers:] observations obtained
under seemingly normal circumstances,

but that turn out to be extremely deviant
from the main body of observations.

— Abelson, (1995, p. 69)

3.1 the problem of outlying observations for area level

models

Outliers can have severe and unfortunate impact on predictions. This
is true both for the case of linear mixed models as well as for hier-
archical Bayes; both these methodologies are being used for area level
models. Section 2.5.4 above contains a review of literature on robust
area level models. Here it is noteworthy that those studies focused
on how outliers can be dealt with in the context of hierarchical Bayes.
In what follows the robust estimation methodology of Sinha and Rao,
(2009) is adapted to area level models which leads to outlier robust
predictions under mixed linear models. Before the robust methods
are discussed the different scenarios in which we may be interested
in using robust methods are first described; i.e. what exactly are out-
liers at the area level?

Chambers, (1986) has introduced the terms representative and non-
representative outliers to distinguish between two common types:

• Representative outliers are observations with large absolute val-
ues that are correctly recorded and cannot be considered unique,
i.e. they represent a substantial part of the target population.

• Non-representative outliers may be described as incorrectly col-
lected observations which should not be part of the sample, or
observations which are unique in the population.

From a practical point of view substantial knowledge of the data gen-
erating process and of the target population is needed to be able to
distinguish between these two types. A factor which further com-
plicates matters is that area level models are often used in situations
where we have no access to unit level data. With this in view the dis-
cussion in this Thesis focuses on the case where we assume to have
representative outliers or are in the situation where it is not possible
to argue for either of these alternatives.

37
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Given that we consider representative outliers it is important to
understand the source and effect of such observations. For the FH
model in (2.8) the regression residuals can be derived as:

ỹi − x>i β = ui + ei.

Bell and Huang, (2006) argue that two types of outliers need to be
considered:

• Outliers in ui are area level outliers. These values indicate that
for outlying areas the fixed part, i.e. the regression line, is not
a good fit. In this case neither the regression estimator nor the
direct estimator is a good predictor for this area; unless it hap-
pens to be an area with sufficient sample size to support the
direct estimator.

• Outliers in ei are unit level outliers. The source of such values
are single units in the sample and in this case the synthetic
estimator, i.e. the regression line, is a better choice.

Given this distinction Bell and Huang, (2006) argue that in practice
it is not possible to indicate which type of outlying observations are
observed and that the existing literature mainly focuses on dealing
with area level outliers since they lead to a simple extension of the
FH model – see for example Datta and Lahiri, (1995) and Xie et al.,
(2007).

In contrast to this way of classification I want to distinguish between
three types of outlying observations and furthermore to illustrate that
it may be possible to distinguish between unit and area level outliers.
In the following sections these types are characterised as a prelimin-
ary to the study of robust area level models.

3.1.1 Unit Level Outliers

Unit level outliers can be representative or non-representative but in
most cases it is beyond our reach to judge which kind they are since
we may only have access to aggregates. These observations will influ-
ence the direct estimator in that this quantity may have unexpectedly
large absolute values. They also influence the estimation of the stand-
ard error of the direct estimator, which in turn may be used as the true
or rather the given variance parameters in the Fay-Herriot model.

In the situation where the direct variance estimators are treated as
having the known variance structure two conflicting effects need to
be considered. First, we use an obviously unreliable estimator for the
sampling error and assume that such values can be used as the true
variance parameters. Such estimators will have poor properties when
the target is the true sampling error especially in the context of out-
liers. This problem has stimulated the discussion around smoothing
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the variance estimates prior to using them in a Fay-Herriot model –
see Section 2.3.1.2 for a review of this debate. However, unit level out-
liers may lead to outlying estimates of the standard errors, which in turn
may have an unwanted effect on the smoothing of these parameters.
This situation is further discussed in Section 3.1.3.

Second, we may consider the direct variance estimators not as hav-
ing an informative quantity for the true sampling error as it is as-
sumed under the FH model, but as informative about the unit level
sample instead. This is an important aspect because these estimates
give an index of reliability. For a given sample size the estimated
sampling variance is large if outliers are present or, in general, if the
sample is heterogeneous; and it is low for areas in which we have a
reliable direct estimator. In this case the Fay-Herriot model weights
down unreliable direct estimators, which is why this model may be
able to adjust itself for unit level outliers. This property is explored
in Section 6.3 using model based simulations.

In addition to these two scenarios it is also relevant to consider the
use of robust direct estimators. From a practical point of view we
may only have access to non-robust estimators. On the other hand
it may be crucial feedback for a data provider to additionally report
robust estimates, e.g. a robust mean or a median. Also it is unclear
how this relates to the self-adjusting effect of the Fay-Herriot model
as it was characterized above. This aspect is also addressed in the a
model based simulation study in Section 6.3.

3.1.2 Area Level Outliers

Area level outliers are domains or areas which are far away from the
main body of the observations. The source of such observations are
not single units influencing the direct estimator, but the fact that there
exist domains which are substantially different.

Under a linear mixed model this means that there are outliers in
the random effect, ui. From a model perspective, where we treat
the random effect as an i.i.d. random variable following a normal
distribution, such values may arise by chance alone. This would mean
that in truth the distribution is indeed normal but we are in one of
those rare cases in which we observe abnormal behaviour of single
domains.

This line of argumentation seems to be unrealistic for applications
in SAE since under repeated sampling we would expect the same do-
mains to be abnormal. This opens up a more fundamental discussion
about linear mixed models in Small Area Estimation; and it gives
reason to frame a random effect as fixed but unknown quantity. In
this setting the existence of outliers means that the normal distribu-
tion may well be a good approximation for the majority of areas but
not for them all.
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In an application in which such values are observed a robust estim-
ation technique can be beneficial. The main effect of area level outliers
is that the variance parameter of the random effect will be overestim-
ated. Also the parameter estimates of the fixed effects part can be
influenced by such observations, although it is unclear whether they
are under or over estimated. Looking at the EBLUP under the FH
model in (2.9):

θ̂FHi = γiỹi + (1− γi)x>i β̂

where γ̂i = σ̂2u/(σ̂
2
u + σ2ei) we see that the larger the estimated vari-

ance parameter σ̂2u – for fixed values of σ2ei – the more weight is given
to the direct estimator. Thus an overestimation of σ̂2u will reduce the
beneficial effect for the predictions in terms of MSPE since we fall
back to the direct estimator.

This type of outlying observations can be seen as one of the main
reasons for studying a robust extension to the FH model. Estimating
the model parameters using robust estimation equations will reduce
the impact of outlying areas and preserve the improvement in MSPE
for the non-outlying areas. However as was pointed out by Bell and
Huang, (2006) this also means that we will have a poor fit for the
outlying observations. This will be partially addressed by the bias
correction presented in Section 3.4 which means that we fall back
on the direct estimator for outlying areas which is only appropriate
when the direct estimator has sufficient precision.

3.1.3 The Creation of Overly Influencial Observations

The third kind of outlying observations can best be understood when
framed as overly influencial observations. They are not necessarily far
away from the centre of the data, i.e. large in absolute values. Fur-
thermore they cannot be understood by looking at the direct estim-
ator alone but must be seen as pairs of direct estimator and sampling
variance. Together they determine the impact of a single observation
on the overall predictions under a FH model.

To be able to distinguish them from area and unit level outliers let
us consider two hypothetical scenarios from which these values can
arise:

• There are no outliers present and the unit level population model
is correctly specified as a linear mixed model. However the
sample sizes for most areas are very small and only for very few
domains do we have sufficient sample size to support reliable
direct domain predictions. This may result in heterogeneous
area level information with respect to estimated sampling vari-
ances. And the effect can be that direct estimates of domains
with sufficient sample size will dominate the global mean and
thus effectively become the value we are shrinking against.
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• We have unit level outliers influencing domain specific direct
estimators. However instead of using the estimated sampling
variance we smooth the variances against a global parameter –
essentially shrinking both means and variances for example as
suggested by Maiti et al., (2014). This will result in outlying do-
mains for which, after smoothing, the direct estimators appear
to be more reliable than they in reality are. In substance this
reduces the self adjusting effect described in Section 3.1.1.

Both these scenarios are situations in which we have heterogeneous
variance estimates and where the FH model may not yield stable and
reliable results. Especially the second scenario should not be inter-
preted as an argument against smoothing or that we can ignore un-
stable variance estimation. Although the variances are not smoothed
the influence of observations is nevertheless bounded within a robust
estimation procedure. Here the robust model may present an altern-
ative to smoothing strategies – although this may not have been the
initial intention – without loosing the ability to weight down areas
with unit level outliers. This claim is in fact not easy to support by
empirical evidence. It will however be further discussed in a model
based simulation in Section 6.3.

3.1.4 Outlook

In the following sections the robust estimation methodology of Sec-
tion 2.5.1 is adapted for area level models. Results for this approach
can also be found in Rao and Molina, (2015, 146 ff) who derive ro-
bust estimation methodology for the FH model based on the results
of Sinha and Rao, (2009). The approach of Sinha and Rao, (2009)
is directly applicable to the FH model but is here extended, firstly,
by proposing robust estimation equations for area level models with
correlated random effects; and secondly, by proposing algorithms for
the model parameters and predictions which do not rely on the Taylor
series expansion used by Sinha and Rao, (2009).

The reason for these extensions are that the original approach fo-
cused on the case where the variance structure of the random effects
is a diagonal matrix; this is not so in the case of the spatial and
temporal extensions. Furthermore the proposed Newton-Raphson
algorithm for the random effects was found to be surprisingly un-
stable for area level models in that it manifested itself in thousands
of iterations until numerical convergence was reached. A possible
reason may be the ratio between observations and the random ef-
fects, e.g. where we have D areas and make D predictions. However
a conclusive analysis of this problem is not at hand.

In addition simulation studies are conducted in order to complete
the link between unit and area level outliers and their effect on the
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area level predictions. This approach is discussed in more detail in
Chapter 6.

3.2 extensions to the fay-herriot model

In the following sections the models under consideration are reviewed.
This includes the methods reviewed in Section 2.3.2 as well as the FH
model. These models will be framed in the context of linear mixed
models since the robust estimation equations are – where possible –
stated for the general case of linear mixed models. For the particular
optimisation strategies of the model specific variance parameters it
will be necessary to give some results for each model. In these situ-
ations the following sections will act as reference points in order to
maintain the flow of the arguments.

3.2.1 Fay-Herriot Model

For a review of the FH model see Section 2.3.1. In what follows
the model is framed as a linear mixed model in order to achieve a
consistent notation for the robust parameter estimation. The model
can be stated as:

y = Xβ+ Zu + e

u ∼ N (0D, Vu)

e ∼ N (0D, Ve)

where y denotes the (D× 1) vector of observed direct estimates; X the
(D× P) design matrix; β the (P× 1) vector of regression coefficients;
Z = ID is an identity matrix; u is the (D× 1) vector of random effects;
and e is the (D× 1) vector of sampling errors. Furthermore 0D de-
notes a (D× 1) vector containing zeros; Vu = Vu(σ2u) = σ2uID×D is
the variance covariance matrix of u; and Ve = diag

(
{σ2ei}

D
i=1

)
with

known sampling variances σ2ei. Furthermore u and e are independ-
ent. The unknown model parameters are β and δ = (σ2u).

3.2.2 Spatial Fay-Herriot Model

For a review of the spatial extension to the FH model see Section
2.3.2.1. Here the model by Petrucci and Salvati, (2006) in (2.10) is
represented as linear mixed model and as such it can be represented
as:

y = Xβ+ Zu + e

u ∼ N (0D, Vu)

e ∼ N (0D, Ve)
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where the notation is the same as for the FH model with the following
differences: u = u1 with u1 being the (D × 1) vector of spatially
correlated random effects following a SAR(1):

u1i = ρ1
∑
l 6=i

wilu1l + ε1i

ε1i ∼ N(0,σ21) i.i.d.

with i = 1, . . . ,D, where wil are the elements of the row standardised
proximity matrix W. Let W0 denote the proximity matrix then one
possible definition of W0 is that the elements are equal to one if area
i and l are neighboured and zero otherwise – see Section 2.3.2.1 for a
discussion of such definitions. This leads to the following distribution
of u1:

u1 ∼ N
(
0D,σ21Ω1(ρ1)

)
where

Ω1 =Ω1(ρ1) =
(
(ID − ρ1W)>(ID − ρ1W)

)−1
thus Vu = σ21Ω1(ρ1). Furthermore u1 and e are independent. The
unknown model parameters are β and δ = (ρ1,σ21). Because the
results will be needed in later sections the partial derivatives of V(δ)

with respect to each element in δ are given here: ∂V/∂σ21 = Ω1(ρ1)

and

∂V
∂ρ1

= −σ21Ω1
∂Ω−1

1

∂ρ1
Ω1

with

∂Ω−1
1

∂ρ1
= −W − W> + 2ρ1W>W.

3.2.3 Temporal Fay-Herriot Model

A review of temporal extensions can be found in Section 2.3.2.2. Here
the representation of the temporal model by Rao and Yu, (1994) in
(2.12) is reviewed as a linear mixed model of the form:

y = Xβ+ Zu + e

u ∼ N (0D+DT , Vu)

e ∼ N (0DT , Ve)

where y denotes the (DT × 1) vector of observed direct estimates; X
the (DT × P) design matrix; β the (P × 1) vector of regression coeffi-
cients; Z = (Z1, Z2) where Z1 = ID⊗ (1T ), 1T is a T × 1 vector of ones,
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and Z2 = IDT ; u = (u0, u2) is the (D+DT × 1) vector of random ef-
fects; and e is the (DT × 1) vector of sampling errors. Note that u0
denotes the vector of random effects similar to the FH model in that
u0 ∼ N(0D,σ2uID). u2 is a (DT × 1) vector of autocorrelated random
effects following an AR(1):

u2it = ρ2u2i,t−1 + ε2it

with i = 1, . . . ,D and t = 1, . . . , T , where ρ2 is the autocorrelation
coefficient with |ρ2| < 1 and ε2it ∼ N(0,σ22). Furthermore u0, u2 and
e are pairwise independent. The distribution of u2 is given by:

u2 ∼ N
(
0DT ,σ22Ω2(ρ2)

)
where Ω2 = Ω2(ρ2) is a block diagonal matrix in which each block
is defined by:

Ω2i(ρ2) =
1

1− ρ22



1 ρ2 · · · ρT−22 ρT−12

ρ2 1 ρT−22
...

. . .
...

ρT−22 1 ρ2

ρT−12 ρT−22 · · · ρ2 1


T×T

with i = 1, . . . ,D. Thus Vu = Vu(δ) = diag
(
σ2uID,σ22Ω(ρ2)

)
is the

covariance matrix of u; and Ve = diag
(
{{σ2eit}

T
t=1}

D
i=1

)
is the covari-

ance matrix of e with known sampling variances for each time period
and area. Hence the unknown model parameters are β and δ =

(σ2u, ρ2,σ22). The partial derivatives of V(δ) with respect to the vari-
ance parameters are then given by: ∂V/∂σ2u = Z1IDZ>1 , ∂V/∂σ22 =

Ω2, and

∂V
∂ρ2

=σ22diag

({
∂Ω2i
∂ρ2

}D
i=1

)

with

∂Ω2i
∂ρ2

=
1

1− ρ22



0 1 · · · · · · (T − 1)ρT−22

1 0 (T − 2)ρT−32
...

. . .
...

(T − 2)ρT−32 0 1

(T − 1)ρT−22 · · · · · · 1 0


+

2ρ2

1− ρ22
Ω2i.
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3.2.4 Spatio-Temporal Fay-Herriot Model

A review of this model can be found in Section 2.3.2.3. Here the
model (2.14) by Marhuenda et al., (2013) is reviewed as a linear mixed
model of the from:

y = Xβ+ Zu + e

u ∼ N (0D+DT , Vu)

e ∼ N (0DT , Ve)

where the notation is the same as for the temporal model with the
following differences: here u = (u1, u2) where u1 denotes the spa-
tially correlated random effect as also defined for the spatial model;
and u2 the autocorrelated random effect as defined for the temporal
model. Thus the variance structure of u is given by Vu = Vu(δ) =

diag
(
σ21Ω1(ρ1),σ

2
2Ω2(ρ2)

)
and hence the unknown model paramet-

ers are β and δ = (ρ1,σ21, ρ2,σ22). The partial derivatives of V(δ) with
respect to each element in δ are given by: ∂V/∂σ22 and ∂V/∂ρ2 are
defined as for the temporal model; ∂V/∂σ21 = Z1Ω1Z>1 and

∂V
∂ρ1

=− σ21Z1Ω1
∂Ω−1

1

∂ρ1
Ω1Z>1

with

∂Ω−1
1

∂ρ1
=− W − W> + 2ρ1W>W.

3.3 robust predictions under area level models

The concrete approach for the outlier robust predictions under area
level models is set out hereunder. The approach is kept in conformity
with the general notation for linear mixed models where the spatio
and temporal extensions can be framed as special cases within this
class of models.

3.3.1 Robust Estimation Equations

In principle I follow the procedure given by Sinha and Rao, (2009)
which is to start with the derivatives with respect to β and δ of the
marginal log-likelihood of y:

X>V−1 (y − Xβ) = 0

and

(y − Xβ)>V−1 ∂V
∂δl

V−1 (y − Xβ) − tr
(

V−1 ∂V
∂δl

)
= 0
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with l = 1, . . . ,Q where Q denotes the total number of variance para-
meters in δ. Sinha and Rao, (2009) propose to robustify these equa-
tions by replacing them with:

X>V−1U
1
2ψ(r) = 0 (3.1)

and

ψ(r)>U
1
2V−1 ∂V

∂δl
V−1U

1
2ψ(r) − tr

(
KV−1 ∂V

∂δl

)
= 0 (3.2)

where K = E(ψ2b(z))In is a diagonal matrix of the same order as
V with z following a standard normal distribution; and where r =

r(β) = U− 1
2 (y − Xβ) denotes the vector of the standardised resid-

uals and U = U(δ) is the matrix containing the diagonal elements
of V. Furthermore ψb(x) = xmin

(
1, b

|x|

)
is the influence function

proposed by Huber, (1964) for a given tuning constant b where a
common choice for b is 1.345 – see Sinha and Rao, (2009). These ro-
bust estimation equations have been utilised also for the area level
models under consideration. A difference will be to find solutions to
these equations as outlined later in this Section.

For the random effect, u, Sinha and Rao, (2009) propose to use the
estimation equations of Fellner, (1986) given in (2.21). This estimation
equation is based on the derivative of the log-likelihood function of
the joint probability distribution of u and y with respect to u:

Z>V−1
e (y − Xβ− Zu) − V−1

u u = 0.

The idea of the robust version is now to restrict the influence of u
and e in the estimation equation using the same influence function as
before. However, instead of using the robust estimation equation of
Fellner, (1986):

Z>V− 1
2

e ψ

(
V− 1

2
e (y − Xβ− Zu)

)
− V− 1

2
u ψ

(
V− 1

2
u u

)
= 0

I propose the following form:

Z>V−1
e U

1
2
eψ

(
U− 1

2
e (y − Xβ− Zu)

)
− V−1

u U
1
2
uψ

(
U− 1

2
u u

)
= 0

(3.3)

where Ue and Uu denote diagonal matrices with the diagonal ele-
ments of Ve and Vu, respectively. This modification is very similar
to the idea in Sinha and Rao, (2009) in that only the diagonal ele-
ments are used to standardise the residuals. In fact this modification
is not necessary for the robust BHF model or for a robust FH model
because for these models Vu is a diagonal matrix. This is not the case
however in the setting of correlated random effects – e.g. in the case
of a SAR(1) or AR(1) model – which seek to rely on this extension.
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Let β̃ψ and ũψ define the solutions for known variance parameters,
δ, to the robust estimation equations (3.1) and (3.3) respectively. Then
the area level RBLUP can be defined as:

θ̃RBLUPi = x>i β̃
ψ
+ z>i ũψ (3.4)

with i = 1, . . . ,n where n can be the number of domains, D, or for
the temporal and spatio-temporal model DT . Here xi denotes the
(P × 1) vector of auxiliary information for the ith observation and
zi similarly the column vector containing the ith row in Z where
the form of Z depends on the specific model. Here (3.4) acts as a
place-holder for the area level spatial RBLUP (SRBLUP), the temporal
RBLUP (TRBLUP), and the spatio-temporal RBLUP (STRBLUP). The
RBLUP depends on the unknown variance parameters, δ, which need
to be estimated. If we replace δ with the robust parameter estimates
δ̂
ψ

we denote β̂
ψ

and ûψ as robust solutions and hence the REBLUP
can be derived as:

θ̂REBLUPi = x>i β̂
ψ
+ z>i ûψ. (3.5)

Here the area level spatial REBLUP (SREBLUP), the temporal REB-
LUP (TREBLUP), and the spatio-temporal REBLUP (STREBLUP) con-
stitute special cases of (3.5).

3.3.2 Pseudolinear Representation

The solutions to the estimation equations (3.1) and (3.3) are derived
from the pseudolinear form of the RBLUP which follows a similar
form as for the RBLUP under the unit level model by Chambers,
Chandra, Salvati et al., (2014) – the latter was reviewed in Section
2.5.3.2. Following this idea the area level RBLUP (3.4) can be rewrit-
ten into:

θ̃RBLUPi = x>i β̃
ψ
+ z>i ũψ

=
(

x>i A + z>i B (In − XA)
)

y

= w̃>i y

where w̃i denotes the vector of weights. In the following I motivate
the specific form of A and B. Note that A(β̃

ψ
)y = β̃

ψ and that
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the specific form of A can be derived starting from the estimation
equation in (3.1):

X>V−1U
1
2ψ
(

U− 1
2 (y − Xβ)

)
= 0

X>V−1U
1
2W1U− 1

2 (y − Xβ) = 0

X>V−1W1︸ ︷︷ ︸
W∗1

(y − Xβ) = 0

W∗1y = W∗1Xβ

(W∗1X)−1W∗1︸ ︷︷ ︸
A

y = β

where W1 = W1(β) = diag
(
{w1i}

n
i=1

)
is a diagonal matrix with the

elements defined by:

w1i = ψ

(
U

− 1
2

i (yi − x>i β)
)(

U
− 1
2

i (yi − x>i β)
)−1

where U− 1
2

i is the ith diagonal element of U− 1
2 . The extension is

possible because U is a diagonal matrix. Furthermore the form can
be simplified because U

1
2 , W1, and U− 1

2 are also diagonal matrices.
Hence

A = A(β) =
(

X>V−1W1X
)−1

X>V−1W1

which is similar to the form for the robust BHF model derived by
Chambers, Chandra, Salvati et al., (2014) – see Section 2.5.3.2 for de-
tails.

To derive B note that:

ũψ = B(ũψ) (I − XA) y

= B(ũψ)
(

y − Xβ̃ψ
)

and that the approach taken is similar as for A. However the form of
B is different from the approach by Chambers, Chandra, Salvati et al.,
(2014) because of the different estimation equations for the random
effects (3.3). This different form simplifies the form of the two weight-
ing matrices – W2 and W3 in the equations below – as they are also
diagonal matrices. Thus starting from (3.3) the specific form of B can
be derived as:

Z>V−1
e U

1
2
eψ

(
U− 1

2
e (y − Xβ− Zu)

)
− V−1

u U
1
2
uψ

(
U− 1

2
u u

)
= 0

Z>V−1
e U

1
2
eW2U− 1

2
e (y − Xβ− Zu) − V−1

u U
1
2
uW3U− 1

2
u u = 0

Z>V−1
e W2︸ ︷︷ ︸

W∗2

(y − Xβ− Zu) − V−1
u W3︸ ︷︷ ︸

W∗3

u = 0
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where I continue with W∗2 and W∗3 to simplify the notation. As before

U
1
2
e , U− 1

2
e , U

1
2
u, and U− 1

2
u cancel out because they are diagonal matrices

as are W2 and W3. Continuing:

W∗2 (y − Xβ− Zu) = W∗3u

W∗2 (y − Xβ) = (W∗2Z + W∗3)u

(W∗2Z + W∗3)
−1W∗2︸ ︷︷ ︸

B

(y − Xβ) = u

and thus

B(u,β) = B =
(

Z>V−1
e W2Z + V−1

u W3

)−1
Z>V−1

e W2

where W2 = W2(β) is a (n×n) diagonal matrix with elements:

w2i = ψ

(
U

− 1
2

ei (yi − x>i β− z>i u)
)(

U
− 1
2

ei (yi − x>i β− z>i u)
)−1

where U− 1
2

ei denote the diagonal elements of U− 1
2

e ; and W3 = W3(u)
is a (m×m) diagonal matrix with elements:

w3j = ψ

(
U

− 1
2

uj uj

)(
U

− 1
2

uj uj

)−1

where U− 1
2

uj denote the diagonal elements of U− 1
2

u and m the number
of elements in u. Now we can state more precisely:

B(ũψ, β̃ψ)
(

y − Xβ̃ψ
)
= ũψ.

This approach can be adapted for the REBLUP in (3.5) when we re-
place the model parameters by their estimators β̂

ψ
and δ̂

ψ
and the

prediction for u with ûψ. The area level REBLUP is then given by:

θ̂REBLUPi = ŵ>i y.

where ŵi denotes the vector of weights depending on the estimated
model parameters. This form of representation leads to two import-
ant results. First it leads to the derivation of an iterative solution
for the estimation equations (3.1) and (3.3) presented in the follow-
ing Section; and second to an analytical MSPE estimator similar to
that proposed by Chambers, Chandra and Tzavidis, (2011) – this is
presented in Section 3.5.2.

3.3.3 Solutions for the Robust Estimation Equations

3.3.3.1 Solution for β

For the solutions of the robust estimation equations I begin with the
solution for the regression coefficients. Recall from the pseudolinear
representation that:

β = A(β)y
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and that β̂
ψ

= A
(
β̂
ψ
)

y. This representation indicates that we have
a fixed point function for β which, in this special case, leads to an
iterative re-weighted least squares (IRWLS) algorithm to solve (3.1)
for β:

β(m+1) = A
(
β(m)

)
y

=
(

X>V−1W1(β
(m))X

)−1
X>V−1W1(β

(m))y (3.6)

with adequate starting values β(0) and known variance parameters
δ. This proposition is very similar to the IRWLS algorithm suggested
by Schoch, (2012); however it depends on a different choice for the
robust estimation equation. Details of IRWLS algorithms for robust
M-estimation can also be found in Maronna et al., (2006, pp. 104-105).
A natural choice as a starting value for the weighting matrix is to
set the diagonal elements to one. This will lead to the non-robust
generalised least squares estimator in the first iteration. This solution
is acceptable since – as Maronna et al., (2006, pp. 104-105) note – for a
continuous choice of ψ the algorithm is non-sensitive to the starting
values with respect to convergence. Bad starting values can however
increase the number of iterations. This property is investigated in
Section 4.2. Note also that this iterative algorithm has the desirable
property that it reduces to the GLS estimator if we set the tuning
constant of ψb to infinity because of the special form of W1.

3.3.3.2 Solution for u

Similarly a fixed point function for u can be defined by:

u = B(u) (y − Xβ)

where we can define an algorithm for known regression coefficients,
β, and variance parameters, δ:

u(m+1) =B(u(m)) (y − Xβ) (3.7)

=
(

Z>V−1
e W2(u(m))Z + V−1

u W3(u(m))
)−1

×Z>V−1
e W2(u(m)) (y − Xβ)

with suitable starting values u(0). The starting values can be chosen
similarly to the IRWLS algorithm in that we set the diagonal elements
in W2 and W3 to one. However what I propose here is to use the non-
iterative but outlier robust estimator of (2.24):

ûψ = VuZ>V−1U
1
2ψ(r)

to compute starting values. This estimator has been reviewed in Sec-
tion 2.5.1 and can be found in Rao and Molina, (2015, p. 196). Like
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the iterative solution in (3.7) it also depends on the known parameter
vectors β and δ. Also non-robust starting values showed acceptable
results in the simulation presented in Section 4.2; however robust
starting values have a significant impact on the number of iterations
needed when outliers are present in the data. Similar to the IRWLS
algorithm for β, if the tuning constant of the influence function is
chosen to be infinity the algorithm in (3.7) has the desirable property
that it reduces to the form of the non-robust estimation equation of
(3.3) because of the special form of W2 and W3, i.e. they reduce to
identity matrices. And – as reviewed in Section 2.5.1 – the solution
to the non-robust equation (3.3) is equivalent to the BLUP for u given
by (2.4).

3.3.3.3 Solutions for δ

An algorithm to solve the robust estimation equation (3.2) for δ was
derived by Chatrchi, (2012) for the case of the robust BHF model
in (2.25). This approach is adapted for the robust area level models
under consideration to derive fixed point equations for the variance
parameters based on (3.2). In order to stay as general as possible and
yet present simple solutions it is necessary to distinguish between
two cases. First when δ is a scalar under a given model. Second
when δ has more than one element. This will lead to a form in which
the solutions for the spatial and temporal extensions are just special
cases. When we set δ = δ, i.e. the first case, (3.2) can be written as:

0 = ψ(r)>U
1
2V−1∂V

∂δ
V−1U

1
2ψ(r) − tr

(
KV−1∂V

∂δ
δ−1δ

)
=⇒ tr

(
KV−1∂V

∂δ
δ−1δ

)
= ψ(r)>U

1
2V−1∂V

∂δ
V−1U

1
2ψ(r)

=⇒ δ = tr
(

KV−1∂V
∂δ
δ−1

)−1

︸ ︷︷ ︸
c−11 (δ)

ψ(r)>U
1
2V−1∂V

∂δ
V−1U

1
2ψ(r)︸ ︷︷ ︸

c2(δ)

where c1(δ) and c2(δ) are both scalar depending on δ. An iterative
equation to solve for δ can now be formulated as:

δ(m+1) = c−11 (δ(m))c2(δ
(m)) (3.8)

for an adequate starting value δ(0) and known regression coefficients
β. If (3.2) is a convex and continuous function the fixed point function
converges against the true parameter regardless of the starting value –
as long as they are chosen as values in the parameter space (Maronna
et al., 2006, p. 328). Section 4.2 provides some empirical results on
the matter.

The solution in 3.8 proved to be more robust with respect to starting
values especially for the variance parameters. However for the correl-
ation parameters in the spatial and temporal extensions the method
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often needs many iterations. On the other hand starting values are
not as critical since the correlation parameters are bounded between
minus and plus one. Hence for the correlation parameters a Newton-
Raphson algorithm is utilised instead:

δ(m+1) = δ(m) −
d(δ(m))

d ′(δ(m))
(3.9)

where d(·) denotes the robust estimation equation of (3.2) and d ′(·)
its first derivative with respect to the parameter δ. The simulation of
Section 4.2 shows that a numerical approximation to the derivative is
sufficient and already yields satisfying results. Thus the first derivat-
ive, d ′(δ(m)), is approximated by d(δ(m) − h) where h is some small
number. For a review of such methods see for example Maronna et
al., (2006, 46 ff) and more generally McCullough, (2004).

Now turning to the more general case where δ has more than one
element; the solution of Chatrchi, (2012) is based on the idea to add
V−1V to the term inside the trace in (3.2). This was necessary because
under the unit level model, Ve contains an unknown parameter. In
the case of the FH model and its extensions, Ve is assumed to be
known and thus can be omitted. The following approach is specific
if the parameters in Ve are known but can be extended easily to the
more general case. Starting from (3.2) we can write:

0 =ψ(r)>U
1
2V−1 ∂V

∂δl
V−1U

1
2ψ(r)

− tr
(

KV−1 ∂V
∂δl

(ZVuZ>)−1(ZVuZ>)
)

with l = 1, . . . ,Q where we now need to find matrices V̄ul such that:

0 =ψ(r)>U
1
2V−1 ∂V

∂δl
V−1U

1
2ψ(r)︸ ︷︷ ︸

c2l(δ)

− tr
(

KV−1 ∂V
∂δl

(ZVuZ>)−1︸ ︷︷ ︸
C∗l (δ)

(ZV̄u1Z> . . . ZV̄uQZ>)δ
)

with l = 1, . . . ,Q. Because the sum of matrices in the trace are square
matrices we can now solve for δ. To simplify the solution we can
set Q = 2 because this is the case relevant for the specific area level
models as will be shown later:

δ = C−1
1 (δ)c2(δ) (3.10)

where

C1(δ) =

(
tr
(
C∗1(δ)ZV̄u1Z>

)
tr
(
C∗1(δ)ZV̄u2Z>

)
tr
(
C∗2(δ)ZV̄u1Z>

)
tr
(
C∗2(δ)ZV̄u2Z>

))
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and

c2(δ) =

(
c21(δ)

c22(δ)

)
.

Similarly to the case discussed earlier we can now state an iterative
equation as:

δ(m+1) = C−1
1 (δ(m))c2(δ(m))

for adequate starting values δ(0) and known regression coefficients
β. Some adjustments to this solution need to be made to take the dif-
ferent definitions of Vu into account. For the specific form of ∂V/∂δl
see the results in the respective section for each model, i.e. Sections
3.2.1, 3.2.2, 3.2.3, and 3.2.4. In the following sections the necessary ad-
justments are highlighted and specifically the special form of V̄ul are
derived where necessary. The FH model is omitted since (3.8) is dir-
ectly applicable when we set δ = σ2u and use the notation of Section
3.2.1.

solutions for the robust spatial fh model

In principle δ = (ρ1,σ21) under the spatial FH model of Section 3.2.2.
Hence the specific form of (3.10) needs to be derived. In this case each
V̄ul with l = 1, 2 needs to be defined. Although it is possible to find
such matrices, an implementation has lead to unstable results. This
difficulty can be met by splitting the problem into finding solutions
for δσ = (σ21) and δρ = (ρ1) separately. This means that each iterat-
ive equation depends on the other known parameter. Admittedly this
is numerically not optimal since it will lead to an increase in overall
iterations. However, as will be shown in Section 4.2, it leads to ac-
ceptable and stable results. For the specific adaptation of the iterative
equations for δ this means that the iterative fixed point function (3.8)
is used to find solutions for δσ and the Newton-Raphson algorithm in
(3.9) for δρ separately; all other specifications under the spatial model
can be found in Section 3.2.2.

solutions for the robust temporal fh model

Under the temporal model of Section 3.2.3 the variance parameters
are defined as δ = (σ2u, ρ2,σ22). Although not all combinations have
been empirically validated the same numerical problems may be sus-
pected to arise when we try to optimise the variance and the correl-
ation parameter jointly. Hence in this case the problem is split into
finding solutions for δσ = (σ2u,σ22) and δρ = (ρ2). Both iterative
equations assume known parameters of the left out elements.

For δρ we can simply use the Newton-Raphson algorithm in (3.9)
which is directly compatible with the results of Section 3.2.3. For δσ
we need to find V̄u1 and V̄u2 where ρ2 is treated as
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known parameter. Using the results of Section 3.2.3 we can find these
solutions:

Vu =

(
σ2uID 0D×DT

0DT×D σ22Ω2

)

=σ2u

(
ID 0D×DT

0DT×D 0DT×DT

)
+ σ22

(
0D×D 0D×DT

0DT×D Ω2

)

=
(

V̄u1 V̄u2
)(σ2u

σ22

)

and with the definition of V̄u1 and V̄u2 read in conjunction with the
results in Section 3.2.3 the iterative equation (3.10) can be used.

solutions for the robust spatio-temporal fh model

For the solutions under the spatio-temporal model of Section 3.2.4 we
recall that δ = (ρ1,σ21, ρ2,σ22). By the same reasoning as before we can
split the problem into finding solutions for δσ = (σ21,σ22) and δρ =

(ρ1, ρ2). Beginning with deriving the matrices for δσ with known
parameters δρ we can take a similar approach as for the temporal
model:

Vu =

(
σ21Ω1 0D×DT

0DT×D σ22Ω2

)

=σ21

(
Ω1 0D×DT

0DT×D 0DT×DT

)
+ σ22

(
0D×D 0D×DT

0DT×D Ω2

)

=
(
Ω̄1 Ω̄2

)(σ21
σ22

)
.

With this result we can now adapt the iterative equation (3.10) when
we set V̄u1 = Ω̄1 and V̄u2 = Ω̄2 and use the results in Section 3.2.4.

Similarly we can derive solutions for δρ with known parameters
δσ. In this case however the presented solution has not lead to a
stable implementation. To enable and simplify future research the
derivation is stated here:

Vu =

(
σ21ρ1Ω

∗
1 0D×DT

0DT×D σ22ρ2Ω
∗
2

)

=ρ1

(
σ21Ω

∗
1 0D×DT

0DT×D 0DT×DT

)
+ ρ2

(
0D×D 0D×DT

0DT×D σ22Ω
∗
2

)

=
(
Ω̄
∗
1 Ω̄

∗
2

)(ρ1
ρ2

)
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where Ω∗1 can be derived by:

Ω1(ρ1) =
(
(ID − ρ1W)> (ID − ρ1W)

)−1
=Ω1Ω1 (ID − ρ1W)> (ID − ρ1W)

= ρ1Ω1Ω1 (ID − ρ1W)>
(
ρ−11 ID − W

)︸ ︷︷ ︸
Ω∗1

and Ω∗2 can be derived by:

Ω2(ρ2) = ρ2 diag
(
{Ω∗2i}

D
i=1

)
︸ ︷︷ ︸

Ω∗2

with

Ω∗2i =
1

ρ2 − ρ
3
2



1 ρ2 · · · ρT−22 ρT−12

ρ2 1 ρT−22
...

. . .
...

ρT−22 1 ρ2

ρT−12 ρT−22 · · · ρ2 1


T×T

.

As said before this solution can formally be used to adapt the iterative
equation (3.10) when we set V̄u1 = Ω̄

∗
1 and V̄u2 = Ω̄

∗
2 in conjunction

with the results in Section 3.2.4. At present it is unknown as to why
this method does not yield stable results. This is why instead a step-
wise Newton-Raphson algorithm is used: when we split the problem
of finding solutions for δρ into δρ1 = (ρ1) and δρ2 = (ρ2) solutions
can be found using the Newton-Raphson algorithm in (3.9) when
the left out parameter is known. Although this result is unsatisfying
the results in Section 4.2 show that this method produces stable and
reliable results.

3.3.3.4 Algorithm

Given the previously adapted and proposed iterative equations we
can now define the overall optimisation strategy. In fact the overall al-
gorithm is similar to the approach suggested by Sinha and Rao, (2009)
and the literature reviewed in Section 2.5.1. Of course the concrete
implementations to find the solutions for β, δ, and u are different.

1. Choose initial values β(0) and δ(0) and set m = 0. Initial values
for β are chosen by setting the diagonal elements in the weight-
ing matrix to one. For δ an arbitrary value from the respective
parameter space can be chosen – see Section 4.2 for results.

2. Compute β(m+1) using equation (3.6) with given parameters δ
until convergence is reached.
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3. With the solution of 2. for β compute δ(m+1) using the model
specific solutions for (3.8), (3.9), and (3.10). This step itself can
involve several algorithms for the respective variance and correl-
ation components of the variance structure as was enunciated
in Section 3.3.3.3.

4. Set m = m+ 1.
5. Repeat steps 2. to 4. until the set of parameters jointly reaches

convergence. Declare these solutions to be the robust parameter
estimates β̂

ψ
and δ̂

ψ
.

6. With the solutions β̂
ψ

and δ̂
ψ

compute u(m+1) using equation
(3.7) until convergence is reached. Declare these solutions to be
the robust predictors, ûψ. The starting values, u(0), are com-
puted using the robust predictor in (2.24).

The stopping rule utilised to determine whether convergence is
reached is defined in a form which proved to be useful when we
optimise many parameters at the same time. Remember that in the
case of the random effects D or DT parameters are sought for at the
same time. To account for this fact, let p denote a parameter vector of
length P and pl an element with l = 1, . . . ,P then the stopping rule is
defined as:

log

(
1+

1

P

P∑
l=1

| p
(m+1)
l − p

(m)
l |

max(1, | p(m)
l |)

)
< ε

where p(m)
l denotes a parameter value in the iteration m and ε is

some small constant. This stopping rule may appear to be artificial
but it is motivated for the following reasons: it shows good properties
when many, say hundreds or thousands, parameters are optimised
jointly. This is so because first it is scaled down by taking the mean
over all parameters and second by taking the log. The one is added
to avoid negative values of the logarithm. Inside the sum the relat-
ive absolute differences of the parameter estimates at iteration m and
m+ 1 are computed. In fact only the relative difference is used when
the denominator is larger than 1; otherwise the absolute difference is
being used. Here the advantage of the relative difference is that the
numerical precision is independent of the magnitude of the true para-
meters – this is also pointed out by Weihs et al., (2014, pp. 143-144).
Weihs et al., (2014) and McCullough, (2004) also provide a discussion
of the choice of such stopping rules. The properties and results of
this algorithm is the subject matter of Section 4.2.

3.4 bias correction

The discussion in Section 2.5.2 already highlighted the importance of
addressing the potential bias of a robust prediction when we suspect
non-symmetric outliers. Chambers, Chandra, Salvati et al., (2014) and
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Jiongo, Haziza et al., (2013) have suggested different corrections to the
unit level REBLUP to take this prediction bias into account. However
the methods reviewed are based on the estimation of the within do-
main prediction error; this approach is not directly applicable to area
level models since we may only have a single observation per domain.

However the general problem remains. To find a solution we need
to review the different kinds of outliers observable at the area level.
In Section 3.1 we distiguished between two types: area level and unit
level outliers. Following Bell and Huang, (2006) area level outliers
are values with large absolute values in the random effect and thus
are values for which the synthetic regression estimator is a poor fit.
Independently of this question Fay and Herriot, (1979) refer to Efron
and Morris, (1971) and Efron and Morris, (1972) who argue that the
Bayes Estimator and the Emperical Bayes Estimator may improve the
overall prediction performance but may be ill suited for specific do-
mains. In essence this also describes the situation in which area level
outliers are present in the data and we are driven to use a robust es-
timation procedure since we shrink the prediction towards a global
conditional mean. Although this may improve the overall quality of
the predictions it will not improve the prediction for the outlying
domains.

In this setting we can address area level outliers in the same way
as was already discussed by Fay and Herriot, (1979). Following their
results the idea is to bound the area level predictions using the known
sampling variances – Efron and Morris, (1971) and Efron and Morris,
(1972) refer to this strategy as a limited translation estimator. Hence
we can modify the REBLUP of equation (3.5) into a bias corrected
version:

θ̂REBLUP−BCi =


yi − c if θ̂REBLUPi < yi − c

θ̂REBLUPi if yi − c 6 θ̂REBLUPi 6 yi + c

yi + c if θ̂REBLUPi > yi + c

(3.11)

with i = 1, . . . ,n where c is a constant. Fay and Herriot, (1979) sug-
gest to set c = σei to balance the tradeoff between loss in efficiency
and gain in reduced bias. This approach can be directly applied to
the spatial and temporal extensions and thus to the area level REB-
LUP; the area level REBLUP-BC in (3.11) acts as a placeholder for all
extensions.

Since we need the pseudolinear representation below, we can state
(3.11) as:

θ̂REBLUP−BCi = ŵ∗>i y



58 robust area level models

where ŵ∗>i denotes the vector of weights given the parameter estim-
ates for β, δ, and the prediction of u:

ŵ∗i =


(1− c/yi)1(j = i) if θ̂REBLUPi < yi − c

ŵi if yi − c 6 θ̂REBLUPi 6 yi + c

(1+ c/yi)1(j = i) if θ̂REBLUPi > yi + c

where 1(j = i) denotes a vector where the element j = i is equal to
one and zero otherwise.

This solution may be beneficial when we observe area level outliers.
However it is unclear how this modification relates to the scenario
in which we have asymmetric unit level outliers. In fact this is a
situation which can hardly be targeted by an area level correction
without additional information. In Chapter 6 this issue is addressed
again in model based simulation studies.

3.5 mean squared prediction error

In this Section the parametric bootstrap by Sinha and Rao, (2009)
is adapted for the methods under consideration. Also a pseudolin-
earisation-based MSPE estimator is derived based on the results by
Chambers, Chandra and Tzavidis, (2011).

3.5.1 Parametric Bootstrap Methods

To estimate the MSPE of the robust prediction under the BHF model
in (2.25) Sinha and Rao, (2009) have proposed a parametric bootstrap
method – see Section 2.5.3.1 for a review. This method is here adapted
for the case of robust area level models and – as before – kept in
general notation to include all models under consideration.

With the robust parameter estimates, β̂
ψ

and δ̂
ψ

, the bootstrap
samples are generated from:

y∗ = Xβ̂
ψ
+ Zu∗ + e∗

u∗ ∼ N(0n, Vu(δ̂
ψ
))

e∗ ∼ N(0n, Ve).

Note that here n can either be set to the number of domains, D, or for
the temporal extensions to DT . For each bootstrap sample the target
statistic is computed as:

θ∗(b) = Xβ̂
ψ
+ Zu∗(b).
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Using one of the robust area level models – including its respective
bias corrected version – the target statistic is predicted using the bth
bootstrap sample. Hence the MSPE estimator is given by:

M̂SPE
(
θ̂
ψ
i

)
=

B∑
b=1

(
θ̂
ψ(b)
i − θ

∗(b)
i

)2
where θ̂ψ(b)

i denotes the robust prediction for area i using the bth
bootstrap sample and θ∗(b)i denotes the true value of the respective
bootstrap sample for area i. The extension by Jiongo, Haziza et al.,
(2013) to the bootstrap method of Sinha and Rao, (2009) can be ap-
plied directly when we use non-robust parameter estimates to gener-
ate the bootstrap samples. An empirical investigation of this method
can be found in Section 6.2 in a model based simulation and then
again in Chapter 7 in a design based simulation.

3.5.2 Pseudolinearisation-based MSPE

In the following I propose to adapt the results of Chambers, Chandra
and Tzavidis, (2011) – the pseudolinearisation-based approach to
MSPE estimation – for the models under consideration. This idea was
adapted for the robust prediction under the BHF model in Chambers,
Chandra, Salvati et al., (2014) and extended to account for the extra
variability associated with the estimation of the variance parameters
δ. In principle the extension would be desirable but is not being ad-
apted for the models under consideration; this can be an avenue for
further research but at this point it is beyond the scope of the present
Thesis. A review of the pseudolinear MSPE estimator for the unit
level REBLUP can be found in Section 2.5.3.2 above.

The MSPE estimator can be formulated as:

M̂SPE
(
θ̂
ψ
i

)
= V̂

(
θ̂
ψ
i − θi

)
+ B̂

(
θ̂
ψ
i

)2
(3.12)

where we are now interested in an estimator for the prediction vari-
ance and bias. Following Chambers, Chandra and Tzavidis, (2011)
we can formulate a robust predictor as the weighted sum of the dir-
ect estimators:

θ̂
ψ
i = w>i y

where wi denotes the vector of fixed weights. Fixed here refers to the
requirement that they do not depend on y and furthermore w>i 1n = 1.
The prediction bias can be derived as

E(θ̂ψi − θi) =

n∑
k=1

wikE(yk) − θi

=

n∑
k=1

wikθk − θi (3.13)
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where wik denotes the kth element in wi. And the prediction vari-
ance can be obtained by:

V
(
θ̂i − θi

)
=V

(
n∑
k=1

wikyk − (x>i β+ z>i u)

)

=V

(
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k=1

wik(z>k u + ek) − z>i u

)

=V

(
n∑
k=1

wikz>k u +

n∑
k=1

wikek − z>i u

)

=V

(
n∑
k=1

aikz>k u +

n∑
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wikek

)

=

n∑
k=1

a2ikz>kVuzk + 2
∑∑
k<l

aikailz>kVuzl

+

n∑
k=1

w2ikσ
2
ek (3.14)

where aik = (wik − I(k = i)) and I(k = i) denotes an indicator func-
tion which is one if k = i and zero otherwise. Note that we need
the term z>kVuzk for the case of correlated random effects; and in
fact it reduces to σ2u under the FH model. The variance of the sum
can be separated as above because u and e are independent under
all models under consideration. The first two terms are the variance
and covariance of the weighted sum of random effects – see for ex-
ample Bamberg et al., (2012, p. 118) – and the remaining third term is
the variance due to sampling which is here assumed to be independ-
ent between all areas. The difference to the approach of Chambers,
Chandra and Tzavidis, (2011) is that the leading two terms here are
stated for the more general case of correlated random effects; and the
third term is stated for a more specific case, i.e. when the sampling
variances are known.

Following the results by Chambers, Chandra, Salvati et al., (2014)
we can now find an estimator for the conditional MSPE of the REB-
LUP by using (3.14) with an estimated variance covariance structure
V̂u and the weights defined in Section 3.3.2 for the robust area level
EBLUP. The bias can be estimated accordingly when we use an estim-
ator θ̂i for θi in (3.13). Chambers, Chandra, Salvati et al., (2014) note
that this estimator should be an unbiased estimator and they have
suggested to use the unshrunken version of the respective method.
For area level models it may be tempting to use the direct estimator
since it is unbiased. However this strategy has lead to very unstable
results. Instead the regression estimator is used.

This MSPE estimator is based on the assumption that the weights
are fixed. This is of course not the case under the respective models
and hence it is based on a pseudo-linear form. This approach directly
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extends to the bias correction when we use the derived weights of
Section 3.4 instead. In this case Chambers, Chandra, Salvati et al.,
(2014) recommend that the squared bias term in (3.12) can be omitted
since the unit level correction leads to an approximately unbiased es-
timator. This may not be the case for the area level models since we
cannot correct for a bias due to unit level asymmetric outliers. The es-
timator is evaluated in Section 6.2 where its properties are compared
to the bootstrap methods presented earlier.

3.6 discussion

This Section gives a short overview of the main findings of this
Chapter. Furthermore I will outline how the remaining parts of this
Thesis connect to these findings. As a summary I want to highlight
the following items:

• The approach by Sinha and Rao, (2009) for the estimation of
robust mixed linear models in the SAE field has been modified
to account for the case correlated random effects.

• These findings have been combined with the results by Cham-
bers, Chandra and Tzavidis, (2011) and Chambers, Chandra,
Salvati et al., (2014) to derive the area level REBLUPs – the area
level SREBLUP, TREBLUP, and STREBLUP – in a pseudo linear
form. The results are presented in a general form to include the
general class of mixed linear models.

• This pseudolinear representation has lead to algorithms to find
solutions for the robust estimation equations. An IRWLS al-
gorithm for β has been derived as well as a fixed point al-
gorithm for the random effects, u.

• Furthermore a simple bias correction for the robust prediction
has been adapted based on the results of Efron and Morris,
(1972).

• And finally the approach by Chambers, Chandra and Tzavidis,
(2011) to the estimation of the MSPE of domain predictions has
been extended to be used with the robust area level models with
correlated random effects. In this regard also the parameteric
bootstrap method for the MSPE estimation by Sinha and Rao,
(2009) has been adapted although hardly any changes have been
necessary in this case.

The various methods and extensions are now further investigated
in two ways. First, it will be described how the robust predictors are
implemented inside a software package in the R-language (R Core
Team, 2015): saeRobust (Warnholz, 2016). In this case especially the
stability of the algorithms are of interest – see Chapter 4. Second,
these methods are used in model based – Chapter 6 – and design
based – Chapter 7 – simulation studies. These simulations aim at ex-
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ploring the statistical properties of the robust predictions compared
to their non-robust counterparts. These simulation studies are con-
ducted using the R-language and a simulation framework developed
alongside this Thesis. This framework is implemented in the
R-package saeSim (Warnholz and Schmid, 2016) and some discussion
regarding this implementation is provided in Chapter 5.



Part II

I M P L E M E N TAT I O N





4
R O B U S T S M A L L A R E A E S T I M AT I O N I N R

It is important to distinguish between an algorithm
and its implementation. The former is a theoretical approach

to a problem and leaves many practical details unanswered.
The latter is how the approach is applied practically.

— McCullough, (2004)

4.1 outline

In what follows the numerical properties of the software implement-
ation are investigated. The robust estimators are implemented in the
package saeRobust (Warnholz, 2016) for the R-language (R Core Team,
2015) which is available as supplementary material to this Thesis. The
main reason for providing this package is to simplify the process of
reproducing the results presented in Part iii. A second reason is to
provide an initial version of a software package which is ready to be
used in practice – although further extensions and research may be
needed in order to provide a comprehensive suit of tools for conduct-
ing real world analyses. This Section provides a general discussion of
the current version of the software but it does not aim to be a manual
of instructions. The package itself provides documentation which can
be used for that purpose.

At present several software packages are available for the R-lan-
guage. Molina and Marhuenda, (2015) have introduced the package
sae which is a comprehensive collection of common unit level mod-
els, e.g. the BHF model reviewed in Section 2.4, and the non-robust
spatial- and temporal extensions to the FH model reviewed in Section
2.3.2. Other packages focus on the implementation of single estimat-
ors: e.g. saery (Lefler et al., 2014) implements the EBLUP in (2.12)
of Rao and Yu, (1994). Robust methods in the SAE field are imple-
mented in the package rsae (Schoch, 2014) which implements the
methods introduced in Schoch, (2012) reviewed in Section 2.5.1.

An implementation concerning robust methods for area level mod-
els is not available at present. Also the methods and advances re-
viewed in Section 2.5.1 have not been published in terms of software
– except for the results by Schoch, (2012). In this respect saeRobust
aims to provide a first – but stable – version implementing the models
under consideration. This may also prove useful as a vessel for robust
unit level models since most of the software components involved are
designed to be reused. E.g. the robust score functions, the proposed
algorithms for the regression coefficients and random effects, as well

65
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as more general features such as the pseudolinear representation of a
robust estimator are directly reusable as functions.

In this Chapter some numerical problems and in general the sta-
bility of the software implementation is investigated. This analysis
is strongly influenced by the ideas in Weihs et al., (2014, 87 ff) and
Zielke, (1974) which have been invaluable in contributing towards a
stable implementation. The idea utilised here is to create a numer-
ically challenging scenario by imposing a high condition number in
the testing data. Zielke, (1974) has proposed simple testing matrices
to this extend, and Weihs et al., (2014) review a general procedure to
test the solution in linear least squares problems. By contrast to these
approaches we are interested in the creation of a scenario in which
spatial and temporal structures need to be identified. Here I assume
the correctness of the underlying subroutines in the Matrix package
by Bates and Maechler, (2016) and the R-language and focus on the
unknown model parameters of these respective models.

Two scenarios are created and investigated in a Monte Carlo sim-
ulation study. Both suffer from bad starting values as the solutions
should not be influenced by the choice of these values. In one of the
scenarios we can then see if and to what extent results vary when we
impose very extreme values in the data. In this respect the current im-
plementation does find solutions under both scenarios without soft-
ware failure; however this is a result of conducting this study by tun-
ing the implementation. Finding solutions refers to the implemented
algorithm being able to find solutions to the estimation equations in
(3.1), (3.2), and (3.3). Hence some references are given to the value at
the last iteration of these estimation equations. The statistical proper-
ties of the estimators are investigated separately in Chapter 6.

Some code examples are provided in Section 4.3 to illustrate the
current state of the implementation. As stated earlier this software
version may lack some software features which should be available
during a data analysis. In this regard some open research questions
and remarks are mentioned in Section 4.4.

4.2 stability

To find a stable implementation various configurations of the
algorithm have been investigated. This includes the order of the nes-
ted algorithms as well as starting values and boundaries. A main
concern has been the stability with respect to software failure in com-
bination with the ability to find solutions to the estimation equations.
This leads to some choices which increase the number of iterations
and hence the computational demand. The latter can be dramatically
reduced at the cost of stability: some remarks in this respect are given
in Section 4.4.
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4.2.1 Algorithm

To avoid confusion in discussing the results some details on the im-
plementation which are not part of the algorithms of Section 3.3.3
themselves are given here.

The implementations of algorithms where the parameter space is
known to be restricted have modified return values. Thus the correl-
ation parameter of the spatial and temporal extensions are bounded
between 10−5 − 1 and 1− 10−5; and all variance parameters have a
lower bound of 10−5 to avoid zero or negative variance parameters
– see also the discussion in Rao and Molina, (2015, 151 ff). These
restrictions are mostly relevant in optimisations with bad starting val-
ues; and they mainly prevent software failures. In these situations
they also enable the algorithm to find solutions at all.

The algorithm for the model parameters, i.e. the parameter in the
fixed effects part and the variance components, is nested. This means
that solutions for the regression coefficients are found in a separate
algorithm; also solutions for the variance parameter are sought for
in one or more individual algorithms. These algorithms are then
iterated over until all model parameters jointly reach the stopping
rule given in Section 3.3.3.4. This means that we observe an overall
number of iterations as well as a number of iterations for each nested
algorithm. Hence we have two maximum numbers of iterations as
additional stopping rules: one for each nested algorithm and one for
the overall optimisation. The value for ε in the convergence criterion
given in Section 3.3.3.4 is set to 10−6 to guarantee sufficient numerical
accuracy.

4.2.2 Testing Scenarios

To test the stability of the algorithms two scenarios may be compared.
In both scenarios non optimal starting values are used. A main fo-
cus lies on the ability of the algorithms to find a solution in a given
number of iterations. The overall number of iterations as well as the
number of iterations in each nested algorithm is restricted to 100. The
maximum number of iterations for the random effects is restricted to
1000 and some problems with this optimisation strategy are discussed
below. 500 Monte Carlo repetitions are conducted for each scenario.
The following two scenarios are compared:



68 robust small area estimation in r

• Base: The basic scenario is an area level scenario in which we
draw random numbers from:

yi = 100+ 10xi + z>i u + ei

xi ∼ N (0, 16) i.i.d.

u ∼ N (0, Vu)

ei ∼ N
(
0,σ2ei

)
where Vu and zi for each model are chosen correctly. This
means that each model is specified with the correct variance
structure during testing. The variance parameters in all the
models are set to 100 and correlation parameters are set to 0.5.
The sampling variances, σ2ei, are generated as an equidistant se-
quence of real numbers between 25 and 225. Furthermore they
are time invariant in scenarios with a time dimension and are
used as the known model parameters. The number of domains
is set to D = 40 and the number of time periods – in scenarios
with a time dimension – is set to T = 10. In scenarios with spa-
tial correlation the proximity matrix is defined such that each
domain has two neighbouring units; with an exception being
the first and last domain which only have one neighbouring
unit. This definition is used for data generation as well as dur-
ing the parameter estimation. For more general forms of such
defenitions see (Bivand et al., 2008, p. 250).

• Outlier: The outlier scenario imposes deterministic outliers: i.e.
they are not generated randomly but are fixed at a value of
10000 in ei for 10 per cent of the domains. The outlier domains
are chosen randomly in each Monte Carlo repetition to avoid
an artificial scenario in combination with the values of σ2ei. The
choice of the value 10000 is arbitrary and may give rise to a
numerically challenging situation. However it is more extreme
than scenarios typically considered in the literature when study-
ing robust methods – see the corresponding Chapter 6 and ref-
erenced literature.

The starting values for the regression coefficients are computed by
setting the values of the diagonal weighting matrix in the IRWLS al-
gorithm to one,
yielding non-robust starting values. All variance parameters are set
to one and correlation parameters to zero. Starting values for the ran-
dom effects are computed using the non iterative but robust estimator
of equation (2.24). The tuning constant for the influence function is
fixed at 1.345.
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4.2.3 Results

In order to avoid unnecessary repetition for each separate model, the
solutions for the regression coefficients and random effects for the
RFH models are discussed in more detail. The solutions for the spa-
tial and temporal extensions then focus on the specific solutions for
the variance components. Furthermore it should be noted that fig-
ures with kernel density estimates omit the labels of the estimated
density, i.e. the y-axis. Because of the scale of the different entities
investigated the concrete realisations of these values are non-inform-
ative; the figures should only be used as a descriptive tool to evaluate
the solutions.

To begin with, consider Figures 4.1 and 4.2 which present the es-
timates of the regression coefficients of the robust estimation under
the FH model. The distribution on the right side presents the corres-
ponding values of the estimation equation (3.1) at the solution for the
respective parameter. Since the algorithm aims to find the root of the
estimation equation we should expect values close to zero. In this re-
gard the IRWLS algorithm shows acceptable performance regardless
of the scenario.
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Figure 4.1: RFH – Parameter Estimates: Intercept – Robust parameter estim-
ation under the FH model.

A distinction between the two scenarios manifests itself in the dif-
ferent estimations of the intercept parameter. Although a robust es-
timation technique is applied on average a higher intercept is estim-
ated in the outlier scenario. The reason we observe this effect is that
outlying domains are not removed but weighted down, hence on av-
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Figure 4.2: RFH – Parameter Estimates: Slope – Robust parameter estima-
tion under the FH model.

erage more observations with higher values are present in the data
which explains this effect.

The estimation of the variance parameter σ2u yields stable results
overall in the sense that the algorithms converge. A known issue also
present here is that we can estimate values close to zero as can be
seen in Figure 4.3. This effect is more visible under the Base scen-
ario in combination with a situation where we have a non optimal
ratio between observations and variability in the data resulting in a
wide range of solutions – between 0 and 200. The right hand side of
Figure 4.3 also indicates that the algorithm may reach the stopping
rule; however the value of the estimation equation is not satisfactory
– again we would expect values close to zero – when the solution for
the parameter is close to zero. In this regard the value of the estima-
tion equation may be a good indicator for the quality of the solution.

Similar to the case of the intercept we can observe on average
higher estimates for the outlier scenario – see Figure 4.3. This may
suggest an overestimation of the parameter despite the fact that we
are using a robust method; but this can be explained by the increased
variability under the outlier scenario. To put this result in perspective:
when we estimate the variance with a non-robust method we would
tend to reach values close to 105.

In all the results presented so far the stopping rule to indicate
convergence has been reached. Neither the optimisation in the base
scenario nor in the outlier scenario has reached the maximum of the
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Figure 4.3: RFH – Parameter Estimates: Variance – Robust parameter estim-
ation under the FH model.

Scenario First Second Remaining Max Converged
Overall Base 3 28 1.000

Outlier 3 14 1.000
- Coefficients Base 9.0 6 2 26

Outlier 13.0 5 2 26

- Variance Base 53.5 28 7 100

Outlier 50.0 26 8 100

Random Effect Base 9 989 1.000
Outlier 101 1000 0.992

Table 4.1: Median Number of Iterations in Optimisation until Convergence
Was Reached. The column Converged contains the relative fre-
quency of runs in which the stopping rule was reached before
the maximum number of iterations. First, Second, and Remaining
refer to the first, second, and remaining iterations in the nested
algorithms for the parameter estimates. The column Remaining
for the scenario Overall contains the aggregate for the overall iter-
ations.
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allowed iterations – see Table 4.1. In most cases few iterations are
needed.

These overall iterations represent only part of the solution. We
can observe that the optimisation is more involved in the case of the
outlier scenario to optimise the regression coefficients, i.e. more iter-
ations are needed in the first overall iteration. This can be explained
by starting from non-robust starting values which may result in large
absolute values for the intercept. We can also see that the algorithm
of the variance parameter takes approximately 50 iterations in the
first overall iteration: in some cases even up to 100; however iterating
between finding solutions for the regression coefficients and variance
parameter adjusts itself only after a few overall iterations. There is
no notable difference between the two scenarios; many iterations are
needed in both cases where bad starting values are involved.

The solutions for the random effects on the other hand present
more concern. Although in most cases 1000 iterations are sufficient
we still observe very high median values, especially for the outlier
scenario. With this effect in mind consider Figure 4.4 which shows
the median of the predicted random effect in each solution. Given
their distributional assumption we should expect values around zero
which can be confirmed for the base scenario. Also there seems to
be no relationship between the solution for the variance, σ2u, and the
median random effect. Though this is appears to be different under
the outlier scenario. One possible explanation is that the prediction
of the random effect compensates the over estimation of the intercept
– thus we observe negative median values of the random effects.

With respect to the relatively high median number of iterations for
the random effects presented in Table 4.1 this solution can be unac-
ceptable. In fact we not only observe a large number of iterations for
the outlier scenario but in some cases also for the base scenario. To
give some details regarding the underlying process consider Figure
4.5 which presents the first 10 iterations of 1000 of one Monte Carlo
repetition – this is one selected repetition for the sake of illustration.
Here we can compare the evolution of the fitted values and the cor-
responding values of the estimation equation (3.3) which, after all, is
what should be close to zero at its solution. What we observe is that
for most domain predictions the value of the estimation equation is
close to zero only after a few iterations. Only for some domains are
better solutions searched for. This effect becomes stronger as the num-
ber of domains increase. This suggests to investigate the solution for
the random effects, i.e. the values of the estimation equation, after
just a few iterations – especially when computation time is relevant.

Most of these effects are also present in the case of the spatial and
temporal extensions to the FH model. Hence the main interest in
the following discussion centres around the extensions with respect
to the robust estimates of the variance parameters. When we look
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Figure 4.4: RFH – Median of Predicted Random Effects – Robust prediction
under the FH model. Right panels denote smoothed regression
lines and confidence bands over all repetitions.
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Figure 4.5: RFH – Convergence of Random Effects – Robust prediction un-
der the FH model. First 10 iterations of 1000 total (no conver-
gence according to stopping rule).
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at Figure 4.6 we are directly comparing the estimates of the correl-
ation parameter and the variance. Remember that these results are
for a scenario based on a model with spatial correlation and a true
correlation parameter of 0.5 with a variance of 100. Two effects can be
seen similar to what was discussed earlier. First in the base scenario
we estimate variance parameters close to zero which coincides with
larger values for the estimation equation as before. Furthermore we
observe a higher value for the variance parameter and a lower value
for the correlation parameter in the outlier scenario. What happens
is that the additional variation due to the outliers is captured by the
variance component and the spatial correlation structure is somewhat
shadowed.
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Figure 4.6: RSFH – Parameter Estimates: Variance Components – Robust
parameter estimation under the spatial FH model.

As stated earlier the overall algorithm has a maximum number of
100 iterations as well as has each nested algorithm – referred to as
the 100 Iter strategy. This is a setting suboptimal with respect to
the number of iterations; however it is one which has proofed to be
without a single software failure during the simulation. Figure 4.7
illustrates the choice when we set the maximum number of iterations
of each nested algorithm to one – referred to as the 1 Iter strategy. It is
counter intuitive that the 100 Iter strategy needs a lot more iterations
but this is because the figure compares the results of each overall
iteration. In fact it needs 1160 iterations to find a solution for the
variance and 147 for the correlation parameter compared to 232 for
the 1 Iter strategy.
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Figure 4.7: RSFH – Parameter Estimates: Variance Components – Different
optimisation strategies: 100 Iter allows for a maximum of 100

nested iterations in each overall repetition; 1 Iter allows only for 1

iteration in nested algorithms. Cumulative number of iterations
for 100 Iter is 1160 for the variance parameter and 147 for the
correlation parameter.

Studying Figure 4.7 further we can observe how the choice of the
number of iterations changes the overall behaviour. In the left panels
we see that we start from a large initial estimate for the variance and a
lower for the correlation parameter. This happens because in the first
iteration all the variation is captured by the variance parameter since
the correlation parameter is fixed at its initial value of zero. In each
further iteration the relationship between correlation parameter and
variance is balanced out. The evolution in the right hand side panels
presents a different path since here each algorithm only has one step.
In this setting the correlation parameter has a higher initial estimate
and the variance a lower one. Both strategies yield approximately the
same solutions as indicated by the figure. The panel on the right hand
side for the correlation parameter also reveals that the algorithm can
be unstable when we have bad starting values.

The 1 Iter strategy often needs fewer iterations – which is a trade-
off with a software failure rate of approximately 10 per cent in these
testing scenarios. In preliminary tests it has often proofed useful to
set the maximum number of iterations at some small number, say
10, to achieve a balance between the two settings. For applications
this suggests that even if the algorithm fails, a different choice of the
number of iterations may still provide useful results.
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Finally still open for discussion are the temporal and spatio-tem-
poral extensions. Figure 4.8 and 4.9 show respectively the parameter
estimates of the extensions. A main overall effect is that the estima-
tion of the variance components of the AR(1) process are influenced
by outliers under both models. In contrast to the results seen earlier
the estimation of the variance parameter of the random intercept and
SAR(1) process is much more stable. One explanation for this effect
may be that the random effect components, i.e. the random intercept
and SAR(1) process, are constant over time during this simulation.
This may result in a stronger signal of the structure opposed to the
AR(1) process. In this setting the AR(1) process captures the higher
variability in the data due to the outlying observations which masks
the correlation structure in this case. What may also have an effect
here is that we do not consider area level outliers; under area level
outliers all observations belonging to one domain are outlying obser-
vations. However the testing framework only sets single observations
to 10000. Hence these results may be artificial in their statistical prop-
erties.
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Figure 4.8: RTFH – Parameter Estimates: Variance Components – Robust
parameter estimation under the temporal FH model.

In conclusion we move to the number of iterations needed to find
solutions for the spatial and temporal extensions which can be found
in Table 4.2. Here we see that the stopping criterion has not been
reached in all cases. The main reason for this result is the choice of
the starting values. Allowing for more iterations leads to better res-
ults in all cases. One positive aspect is that the overall number of
iterations is kept relatively low in most scenarios. Furthermore the
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Figure 4.9: RSTFH – Parameter Estimates: Variance Components – Robust
parameter estimation under the spatio-temporal FH model.

algorithm for the correlation parameter in the AR(1) as well as the
SAR(1) shows very promising behaviour. Although they are based
on a numeric approximation of the derivative of the estimation equa-
tion convergence is reached rapidly. The main reason may be the
restriction of the parameter space to ρ < |1| which makes it more
robust against the choice of starting values.

4.3 code examples

In this Section I present some code examples using the R-package
saeRobust to illustrate the current state of its development. An im-
portant software package implementing the SFH and STFH as well
as the basic FH model in the R-language is the sae package of Molina
and Marhuenda, (2015). They also provide several examples on how
to use their implementation with various data sets. For this purpose
I adapt these examples.

As an introductory example we can make use of the synthetic data
set grapes (Molina and Marhuenda, 2015) which contains informa-
tion on the geographical area for grape production in Tuscany, Italy.
The data set comprises the information of the 274 municipalities in
Tuscany. The target variable is the number of hectare used for grape
production: grapehect. The sampling variance of this direct estim-
ator is stored in the variable var; additional covariates are the area
used for agriculture within each municipality: area; and the average
number of working days in the reference year (2000): workdays. Addi-
tionally we have the proximity matrix of these municipalities stored
in grapesprox.
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Scenario First Second Remaining Max Converged
SFH - Overall Base 7 100 0.996

Outlier 5 100 0.996
- CorSAR Base 5 4 3 100

Outlier 5 4 2 100

- VarSAR Base 44 25 15 100

Outlier 45 26 13 100

TFH - Overall Base 5 40 1.000
Outlier 4 12 1.000

- CorAR Base 5 4 2 8

Outlier 4 3 2 5

- Variances Base 36 23 8 52

Outlier 37 20 4 50

STFH - Overall Base 8 100 0.994
Outlier 7 57 1.000

- CorSAR Base 5 4 3 7

Outlier 5 4 3 7

- CorAR Base 4 4 2 7

Outlier 4 3 2 5

- Variances Base 35 25 9 63

Outlier 37 23 7 49

Table 4.2: Median Number of Iterations in Optimisation until Convergence
Was Reached. The columns converged contains the relative fre-
quency of runs in which the stopping rule was reached before
the maximum number of iterations. First, Second, and Remaining
refer to the first, second, and remaining iterations in the nested
algorithms for the parameter estimates. The column Remaining
for the scenario Overall contains the aggregate for the overall iter-
ations.

Before I illustrate the incorporation of the spatial correlation struc-
ture, we can see how the basic, but robust, FH model can be estim-
ated:

library("saeRobust")

data("grapes", package = "sae")

data("grapesprox", package = "sae")

fitRFH <- rfh(

grapehect ~ area + workdays,

data = grapes,

samplingVar = "var"

)

fitRFH

##
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## Call:

## rfh(formula = grapehect ~ area + workdays, data =

## grapes, samplingVar = "var")

##

##

## Coefficients:

## (Intercept) area workdays

## -6.33547 -0.01069 0.52660

##

## Variance Components:

## variance

## 91.03

The function rfh is the central interface to the robust prediction un-
der all models as will be illustrated below. We specify the fixed effects
part of the model using a formula object in R and the sampling vari-
ance is identified by the variable name in the data set. The simple
output we see here is in direct correspondence to a linear model in
R with the additional information about the estimated variance para-
meters.

As we saw in the previous section it is relevant to check the num-
ber of iterations and the values of the estimation equations at their
respective solutions:

summary(fitRFH)

##

## Call:

## rfh(formula = grapehect ~ area + workdays, data = grapes, samplingVar

## = "var")

##

##

## Coefficients:

## (Intercept) area workdays

## -6.33547 -0.01069 0.52660

##

## Variance Components:

## variance

## 91.03

##

## Min. 1st Qu. Median Mean

## Random Effects -2.835e+01 -2.264e+00 3.926e-02 -3.022e-02

## Residuals -1.046e+02 -4.979e+00 6.298e-05 3.926e+00

## 3rd Qu. Max.

## Random Effects 2.643e+00 2.226e+01

## Residuals 5.066e+00 2.084e+02

##

##

## ## Solutions to the Robust Estimation Equations:

##

## (Intercept) area workdays variance

## 2.924e-07 4.050e-04 7.079e-05 2.338e-07

##

## Random Effects:

## Min. 1st Qu. Median Mean 3rd Qu.
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## -3.234e-05 0.000e+00 0.000e+00 -1.160e-07 0.000e+00

## Max.

## 2.888e-07

##

##

## ## Iterations:

## Allowed: 100 (10) -- 100

## model parameter random effects

## 31 9

When we call the summary generic function we get detailed informa-
tion on the solutions and the needed iterations. Here the values of the
respective robust estimation equations are sufficiently close to zero.
Overall the algorithm needed 31 iterations. Each nested algorithm
has been restricted to 10 iterations. The optimiser for the random ef-
fects needed 9 iterations. With regard to the algorithm the user has
the option to specify starting values, the number of iterations, and
numerical tolerance used in the stopping criterion.

Some diagnostic plots can be obtained for the model residuals, the
predictions, and the MSPE estimation. They are triggered using the
plot generic function on the respective data type; that is the respect-
ive object containing the fitted model, the prediction, or the MSPE
estimation. In the following presentation the returned plots are mod-
ified to fit into the general theme of this Thesis. Beginning with the
residual plots we can use:

plot(fitRFH)
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Figure 4.10: Quantile-Quantile Plots for Standardised Residuals (left) and
Random Effects (right)

and obtain the quantile-quantile plots in Figure 4.10. Since the FH
model and all extensions under consideration assume a heterosce-
dastic sampling distribution it is not meaningful to plot the estimated
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sampling errors – here denoted as residuals. Thus the standardised
residuals are used instead:

ê∗i = êi/σei

where êi is the realisation under the fitted model of the sampling
error for area i. Note that this extends to all models when we set i =
1, . . . ,n and n can be equal to D or DT for a given model. See Section
3.2 for the notation and models underpinning the above formulation.

Figure 4.10 shows here deviation from the normal distribution for
residuals and random effects. In both plots we see more extreme
values than we should expect; hence this is a situation in which the
robust estimation technique may be beneficial. We can estimate the
non-robust version by setting the tuning constant to some large value:

rfh(

grapehect ~ area + workdays,

data = grapes,

samplingVar = "var",

k = 10000

)

##

## Call:

## rfh(formula = grapehect ~ area + workdays, data = grapes, samplingVar

## = "var", k = 10000)

##

##

## Coefficients:

## (Intercept) area workdays

## -5.75112 -0.01049 0.52206

##

## Variance Components:

## variance

## 97.43

What we can observe is that the intercept and variance parameter
are estimated at a higher value than before. This is an indicates that
outlying observations may have an effect on the parameter parameter
estimation.

To obtain the predictions we can make use of the predict generic
function. Here a data.frame is returned containing the realised ran-
dom effects, the direct estimator, the REBLUP, and the bias corrected
REBLUP:

predsRFH <- predict(fitRFH, c("reblup", "reblupbc"))

head(predsRFH)

## re direct reblup reblupbc

## 1 0.4184722 30.94776 30.84878 30.84878

## 2 -3.8894206 57.21614 65.82273 65.82274
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## 3 -3.7106460 73.75407 73.86895 73.86895

## 4 17.2199779 66.24203 63.22792 63.22792

## 5 -0.3898053 36.93180 37.20691 37.20691

## 6 -5.1509866 78.53393 78.54315 78.54315

Now we can plot these predictions using, again, the plot generic
function:

plot(predsRFH)
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Figure 4.11: Bland-Altman Plots for Predictions – Solid line is the mean of
the differences; dashed lines are the limits-of-agreements: mean
plus / minus the 97.5% quantile of the standard normal distri-
bution times the standard deviation of the differences.

and obtain the plots in Figure 4.11 where for each predictor a mean-
difference plot is utilised to compare the direct predictor with the
respective robust estimation technique. These plots are inspired by
Bland and Altman, (1986) who use a mean-difference plot to judge
whether two methods of measurement are equivalent. The goal here
is to compare a new method to a gold standard in the field of Medi-
cine. Interpreting this more freely in the SAE field we want to achieve
a similar feat: to understand the difference between the direct es-
timator and an alternative modelling strategy. As additional visual
reference the solid line is the mean of the differences which may be
expected to be close to zero when the REBLUP is unbiased. The limits-
of-agreement, the dashed lines, indicate larger divergence between the
two techniques. They are here constructed as the mean plus and
minus the 97.5% quantile of the standard normal distribution times
the standard deviation of the differences. We may suspect here that
for larger values of the direct estimator we predict lower values using
the REBLUP; although there are only few observations supporting
this observation. Furthermore we see that the bias correction has
little impact on the overall presentation.
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Now turning to the estimation of the MSPE we make use of the
function mse which returns a data.frame containing the direct es-
timator with the sampling variances as well as the REBLUP and the
MSPE estimation using the pseudolinear-based approach of Section
3.5.2. The parametric bootstrap of Section 3.5.1 can be triggered when
we set the argument type to "boot":

mseRFH <- mse(fitRFH, type = "pseudo", predType = "reblup")

head(mseRFH)

## direct reblup samplingVar pseudo

## 1 30.94776 30.84878 21.5305443 17.4731401

## 2 57.21614 65.82273 201.4299002 63.3683787

## 3 73.75407 73.86895 2.8182181 2.7346395

## 4 66.24203 63.22792 21.3808940 17.5369665

## 5 36.93180 37.20691 64.2439319 37.8925166

## 6 78.53393 78.54315 0.1629171 0.1626368

Again we can trigger some diagnostic plots using the plot generic
function:

plot(mseRFH, ylim = c(0, 400))
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Figure 4.12: Plots for Coefficient of Variation – direct vs. REBLUP. The do-
mains in the left panel are sorted for the CV of the direct estim-
ator.

to obtain the plots in Figure 4.12. The plot on the left hand side is
similar to the one provided by Molina and Marhuenda, (2015). Here
we plot the coefficient of variation (CV) against a sorted sequence of
domain identifiers. As in Molina and Marhuenda, (2015) the present-
ation is restricted to values which have a smaller CV than 400. What
we can observe is a clear benefit of using the REBLUP for domain
predictions; here the very unreliable domains – measured in terms of
CV – benefit the most.

The above presented methods, that are the mse, predict, and plot

methods, are implemeted for the robust estimation of the standard
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FH model – as presented above – and furthermore the spatial and
temporal extensions. The same function names can be used. From the
perspective taken in saeRobust we estimate a robust FH model with
varying variance structures. Hence the specification of the variance is
simply an argument to the function rfh. This design choice is close
to the functionality implemented for example in the package nlme

(Pinheiro et al., 2016) for nonlinear mixed effects models.
As an example I present the same analysis as above for the robust

estimation of the spatial FH model. From the previous analysis we
have an initial estimate for the variance and furthermore we may sus-
pect a positive spatial correlation between the municipalities hence
we can supply some initial values:

fitRSFH <- rfh(

grapehect ~ area + workdays,

data = grapes,

samplingVar = "var",

correlation = corSAR1(as.matrix(grapesprox)),

x0Var = c(0.5, 90)

)

fitRSFH

##

## Call:

## rfh(formula = grapehect ~ area + workdays, data = grapes, samplingVar

## = "var", correlation = corSAR1(as.matrix(grapesprox)), x0Var = c(0.5,

## 90))

##

##

## Coefficients:

## (Intercept) area workdays

## -3.93102 -0.01176 0.51633

##

## Variance Components:

## correlation variance

## 0.5456 65.5172

Remember that grapeprox is the row standardised proximity matrix
also supplied by the package sae. In this case an additional para-
meter, correlation, is added to the output. The analysis can now
be continued using the previously used methods but is omitted as
there are no new features of saeRobust to be discovered. To trigger
the estimation of the temporal model we can make use of corAR1 and
for the spatio-temporal model we can use corSAR1AR1 to specify the
respective correlation structure in the random effects.

Additional features which have been ommitted from the presenta-
tion so far are for example the possibility to compute the MSPE using
the parameteric bootstrap. This can be done using the function mse

and by setting the argument type to "boot". As an example consider
the following code:
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mse(fitRSFH, type = "boot", B = 50)

As before, this method is implemented for all models under consider-
ation; the correct bootstrap method is selected depending on the first
argument to the method.

4.4 discussion

In principle the results of the stability tests are promising as in both
scenarios acceptable solutions can be found when we set the number
of iterations to a higher value. Acceptable here refers to a value close
to zero at the solution for the respective estimation equation. This
however presents a trade off between the number of iterations, sta-
bility, and computational demand, which can become relevant with
temporal data. The key to computationally less demanding solutions
is the choice of starting values and the restriction of the maximum
number of iterations of the nested algorithms. To address this trade-
off the implementation in saeRobust allows to set both parameters as
well as the number of iterations for the optimisation of the random
effects.

Starting values for the regression coefficients, the variance paramet-
ers, and the random effects can be supplied by the user. And related
to computational demand users can run a model with only a subset
of the data at hand to produce better starting values and then update
the analysis and continue with an updated data set. This can be ac-
complished using the update function. This strategy was originally
implemented to implement the parametric bootstrap method how-
ever it may also be valuable in situations with large data sets. Also
it may be important to first optimise the model parameters and then
find solutions for the random effects which is possible by continuing
a model fitting process with updated parameters.

Furthermore it is important to investigate the estimation equations
at their solutions. A common return value of such fitting procedures
is to provide the reason of convergence – see for example the function
sae::eblupFH in the R package sae. Such a value may indicate that
the maximum number of iterations has been exceeded or that the con-
vergence criterion has been reached. However as McCullough, (2004)
notes the fact that we reach the stopping rule can be very mislead-
ing – it is in fact the estimation equation we should evaluate and
in addition the second derivative of the log-likelihood to ensure that
we found indeed a maximum. This is supported and illustrated by
the results above when the numerical solver reaches the stopping cri-
terion but the value of the estimation equation is not approximately
zero. E.g. this happens with variance estimates close to zero. For this
reason a design choice in the package’s output is to report the value
of the estimation equation as well as each step during optimisation.
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However what is not currently provided is the possibility to evalu-
ate the second derivative of the log-likelihood which may present a
possible future extension.

Two practical issues which have not been discussed in the SAE
literature are model selection and inference on parameter estimates
for robust methods. The implementation in Schoch, (2014) relies for
example on the asymptotic normality of the regression parameters.
However there is little empirical evidence on using such results. Spe-
cifically for area level models where we may have only a few observa-
tions – e.g. 40 – it is not clear whether it is advisable to place reliance
on such results. For this reason the current version of saeRobust

only supports a link to the parametric bootstrap with the function
bootstrap. With respect to model selection the actual log-likelihood
function for robust methods is generally unknown since robust ver-
sions of its partial derivatives are used. Hence it is not clear how to
provide information criteria for the robust methods under considera-
tion – see also the discussion in Koller, (2016).

The discussion in this Chapter focused on the properties of the im-
plementation. The statistical properties of the robust methods have
not been investigated so far and are the subject matter of the Chapters
6 and 7 in model and design based simulations. An important out-
come of this Thesis are the accompanying software implementations.
With this regard also the package saeSim (Warnholz and Schmid,
2016) can be seen as one result of this Thesis; it aims to simplify
the process of setting up simulation studies and hence is introduced
in the following Chapter 5.



5
S I M U L AT I O N T O O L S F O R S M A L L A R E A
E S T I M AT I O N

Instead of imagining that our main task is
to instruct a computer what to do,

let us concentrate rather on explaining
to human beings what we want a computer to do.

— Knuth, (1992, p.99)

5.1 outline

In this Chapter I want to present a framework for simulation studies
within the SAE field. The framework is implemented in the R-package
saeSim (Warnholz and Schmid, 2016). It should be noted that the
content here presented has in part been previously published as an
Article: “Simulation Tools for Small Area Estimation: Introducing the
R-package saeSim” – Warnholz and Schmid, (2016). Here a shorter
version of that Article is presented. Content specific to a general intro-
duction to the SAE field is not included here; in contrast to the code
examples presented in the Article here the SAE methods implemen-
ted in saeRobust (Warnholz, 2016) are applied instead of the utilities
in sae (Molina and Marhuenda, 2015). Furthermore where appropri-
ate text passages have been altered to integrate the content into the
general context of this Thesis.

The set of tools available in the package saeSim have been designed
to provide an infrastructure which makes it easier to reproduce the
results of model and design based simulation studies. Reproducib-
ility here comprises the availability of the full academic research,
including data and the source code. Open source tools like the R-
language and LATEX can be used in tight integration to combine the
statistical analysis with the written words in an article. This can be
achieved by using tools like knitr (Xie, 2013), sweave (Leisch, 2002),
and, more recently, rmarkdown (Allaire et al., 2014). Such tools can
assist in making research more reproducible. The tools provided by
saeSim aim at simplifying the process of writing the source code for
a simulation study; in the context of reproducible research this may
prove to be useful in the development of script files as well as in
combination with the tools discussed above.

Real data is often very sensitive and can be subject to strict con-
fidentiality restrictions. Synthetic data generation mechanisms can
be used to provide safe data which can be made publicly available
– for a more detailed discussion see Rubin, (1993), Alfons, Kraft et

87
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al., (2011), and Kolb, (2013). Burgard et al., (2014) describe this as
an open research philosophy. Such synthetic data sets can be used
to test newly proposed statistical methods in a close-to-reality frame-
work. In general, simulation studies in statistics can be divided into
two concepts:

• Design based: Here the simulation study is based on true or
synthetic data of a fixed population. Samples are then selected
repeatedly from the underlying finite population and different
estimation methods are applied in each replication. The estim-
ates so obtained are compared to the true population values in
terms of, for instance, the relative bias (RBIAS) and relative root
mean squared prediction error (RRMSPE).

• Model based: Here the simulation study uses data drawn dir-
ectly from a model. In each iteration the population is gen-
erated from a model and a sample is selected according to a
specific sampling scheme. The sample is used to estimate the
target statistic for which quality measures (like the RBIAS and
RRMSPE) are derived.

Further discussion partaining to model and design based simula-
tions can be found in Münnich et al., (2003), Salvati, Chandra et al.,
(2010), and Alfons, Templ et al., (2010).

A closely related software packages in the R-language is simFrame

(Alfons, Templ et al., 2010) which helps to configure simulation stud-
ies in a reproducible environment. It includes a wide range of fea-
tures – like data generation, sampling schemes, outlier contamination
mechanisms, and missing values – and was originally developed for
simulations in the context of survey statistics but is now designed to
be as general as possible (Alfons, Templ et al., 2010). The package
simPop (Meindl et al., 2014) supports the generation of synthetic pop-
ulation data. This can be a suitable environment in scenarios where
the reproducibility of results and confidentiality issues play an im-
portant role.

Compared to simFrame the package saeSim is different in design
and its main focus is to assist applications in the SAE field. Most
importantly it is based on a framework which is mapped into the
software package. This framework defines the overall structure and
aims for unifying the shared elements between simulation studies. A
simulation is here defined as a stream of data to be manipulated in a
sequence of steps. Furthermore it provides the definition of the inter-
face between these steps. The package saeSim maps this framework
into the R-language and combines it with commonly used facilities in
this context; e.g. tools for data generation, sampling, and a link to the
parallel computing capabilities in R.

The framework is presented more concretely in the following Sec-
tion 5.2. This is followed by code examples in Section 5.3 implement-
ing a simple model based simulation study designed to illustrate the
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capabilities of the package. Section 5.4 concludes this Chapter with a
brief discussion.

5.2 a simulation framework

The framework strongly relies on the idea of describing a simula-
tion as a process of data manipulation. Independent of simulation
studies, Wickham and Francois, (2015) and Wickham, (2016) promote
this idea by providing tools for cleaning and transforming data. In
those frameworks every defined function takes a data.frame as input
and returns it modified. This leads to a natural connection between
all defined functions, since the result of one function can be directly
passed to the next as an argument. The symbioses of these packages
with the pipe operator, %>%, from the package magrittr (Bache and
Wickham, 2014) only emphasizes this process.

In saeSim this approach is extended to simulation studies in the
SAE field. The main focus here is the description of a simulation
as a process of data manipulation. Each step in this process can be
defined as a self contained component – a function in R – and thus
can be easily replaced, extended, and reused.

Simulation studies address three different levels: these are the pop-
ulation, the sample, and the data on aggregated level. Figure 5.1
illustrates these levels. The left column describes the steps in the data
manipulation, the right column presents the function names used in
saeSim to define the corresponding steps. The population-level defines
the data on which the study is conducted and may be based on real
population data, a synthetic population, or randomly generated vari-
ates from a model. In the context of a design based simulation the
simulation study would be based on true or synthetic data of one pop-
ulation. In model based simulations the population can be randomly
drawn from a population model in each repetition.

The scope of the framework is not to opt for viewpoints. The aim is
to incorporate the different simulation concepts in a common frame-
work. The base (first component in Figure 5.1) of a simulation study
is a data table; here the question is whether this data is fixed or ran-
dom over repetitions: or from a more technical point of view, is the
data generation (the second step in Figure 5.1) repeated in each re-
petition or omitted in the study. Depending on the choice of a fixed
or random population it is necessary to re-compute the population
target statistics like domain means and variances, and other statistics
of interest (third component in Figure 5.1).

The sample-level is necessary when domain predictions are conduc-
ted for unit-level models. Independently of how the population is
treated – whether as fixed or random – this phase consists of two
steps: firstly, of drawing a sample according to a specific sampling
scheme and secondly, of conducting computations on the samples
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Figure 5.1: Process of Simulation – Left column contains the steps in a simu-
lation. Right column contains the corresponding function names
to represent those steps in R.

(fourth and fifth component in Figure 5.1). Given the sample, small
area methods are applied. Of interest here are, for instance, estimated
model parameters, domain predictions, or measures of uncertainty
for the predictions.

Since the sample-level is necessary when unit level models are ap-
plied, the aggregate-level is relevant when area level models are ap-
plied (the seventh and last component in Figure 5.1). Area level
models in SAE typically only use information available for domains
– in contrast to units. Thus the question for simulation studies for
area level methods is whether the data is generated on unit level
and is used after the aggregation (sixth component in Figure 5.1) or
whether the data is generated directly on area level, i.e. drawn from
an area level model. Depending on whether or not unit-level data and
sampling are part of the simulation process, the aggregate-level fol-
lows the generation of the population or is based on the aggregated
sample.

Depending on the scope of the research, some steps in this simu-
lation framework can be more relevant than others. The framework
defines a complete list of steps which may be relevant. Single com-
ponents may be omitted if they are not relevant in specific applica-
tions. For example data generation is not relevant if we have popula-
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tion data; or the sample-level is not used when the sample is directly
drawn from the model.

Seen in this way, saeSim maps the different steps into R. Two layers
with separate responsibilities need to be discussed. The first is how
different simulation components can be combined; and the second is
when they are applied. Regarding the first, in saeSim the emphasis
is on the interface of each component. To be precise, functions are
used which take a data.frame as argument and have a data.frame

as return value. The return value of one component is the input of
the next. This definition of interfaces is used for all existing tools in
saeSim. The second column in Figure 5.1 shows how the different
steps in a simulation can be accessed. It is important to note that
the functions in Figure 5.1 control the process, the second layer, i.e.
when components are applied. Each of these functions take a simu-
lation setup object to be modified and a function with the interface
discussed above as arguments. To illustrate these implementation de-
tails the following Section gives some code examples to implement a
model based simulation.

5.3 code examples

In this Section I want to illustrate some of the features of saeSim using
code examples. To begin with I introduce some basic functionalities
since the package relies on the so called pipe operator (%>%) which may
need some explanation. The pipe operator is designed to make oth-
erwise nested expressions more readable as a line can be read from
left to right, instead from inside out (Bache and Wickham, 2014). As
a simple example consider the following lines which are equivalent
in terms of their functionality:

library("magrittr")

colMeans(matrix(rnorm(10), ncol = 2))

rnorm(10) %>% matrix(ncol = 2) %>% colMeans

Code written using saeSim is based on the idea of passing data
forward through a sequence of data manipulation steps. This idea
is emphasised by using the pipe operator. The following example
illustrates some design aspects of the package as well as the use of
the pipe operator:

library("saeSim")

setup1 <- sim_base_lm() %>% sim_sample(sample_number(5))

setup2 <- sim_base_lm() %>% sim_sample(sample_fraction(0.05))

Without knowing anything about the setup defined in sim_base_lm

we notice that setup1 and setup2 only differ in the sampling scheme
applied. sim_sample operates as a control when a function is ap-
plied (after the population-level) and sample_number(5) and sample_-
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fraction(0.05) define the explicit ways of drawing samples. Separ-
ating the responsibility of each component into what is applied and
when it is applied makes it possible to add new components to any
step in the process. The composition of a simulation in this manner
will focus on the definition of components and hide control structures.
Any function can be passed to sim_sample which has a data.frame

both as an input and as return value. The only responsibility of that
function is to draw a sample – which makes it easy to find, under-
stand, and reuse when published. The pipe operator is used to add
new components to the setup.

In what follows one way of constructing a simulation in a model
based setting is reviewed. The aim is to make domain predictions
using the FH model and the robust extension introduced. In this
example we start with a unit level population model. From this pop-
ulation samples are drawn in each iteration with SRSWOR where the
domain specific sample sizes are: ni ∈ {5, . . . , 15}. Considered here
is the case of 40 domains with 1000 units each. The first step is to
generate the data under the following model:

yij = 100+ 5 · xi + ui + eij

where xi ∼ N(0, 16), ui ∼ N(0, 4) and eij ∼ N(0, 32). The variance
parameter of the unit level error, eij is chosen such as to lead to
sampling errors of the sample mean between 2 and 6 – see Section
6.3 below for a more detailed presentation of a similar scenario.

In this case the base-component is a data frame with an id variable
named idD and constructed with the function base_id. Any random
number generator in R can be used. For the reproducibility of the
following results the seed is set to one. The seed is not part of a
simulation setup in saeSim but needs to be defined by the user:

set.seed(1)

setup <-

base_id(nDomains = 40, nUnits = 1000) %>%

sim_gen_generic(rnorm, sd=4, name = "x", groupVars = "idD") %>%

sim_gen_generic(rnorm, sd=2, name = "u", groupVars = "idD") %>%

sim_gen_generic(rnorm, sd=sqrt(32), name = "e")

setup

## data.frame [40,000 x 5]

##

## # data.frame [40,000 x 5]

## idD idU x u e

## <int> <int> <dbl> <dbl> <dbl>

## 1 1 1 -2.505815 -0.3290472 -3.2168761

## 2 1 2 -2.505815 -0.3290472 -0.7646857

## 3 1 3 -2.505815 -0.3290472 6.6642664

## 4 1 4 -2.505815 -0.3290472 -8.6185953

## 5 1 5 -2.505815 -0.3290472 3.3598670

## 6 1 6 -2.505815 -0.3290472 1.8834517

## # ... with 3.999e+04 more rows
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Note that if you print a simulation setup to the console, as in the
above example, one simulation run is performed and only the first
rows (the head) of the resulting data are printed. This enables inter-
activity with the object itself; however, it hides the fact that the setup
object is a collection of functions to be called. We can also see that the
variables x and u are generated to be constant for all units within a
domain. This is an operation triggered by the usage of the argument
groupVars.

Using this simulation setup we can now compute the response vari-
able and also the domain mean in the population which is going to
be our target variable:

setup <- setup %>%

sim_comp_popMean %>%

sim_resp_eq(y = 100 + 5 * x + u + e)

setup

## data.frame [40,000 x 7]

##

## # data.frame [40,000 x 7]

## idD idU x u e y popMean

## * <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 1 -5.988335 2.248824 -0.2295507 72.07760 72.35218

## 2 1 2 -5.988335 2.248824 4.2040069 76.51116 72.35218

## 3 1 3 -5.988335 2.248824 -2.0089078 70.29824 72.35218

## 4 1 4 -5.988335 2.248824 0.5039513 72.81110 72.35218

## 5 1 5 -5.988335 2.248824 2.3808408 74.68799 72.35218

## 6 1 6 -5.988335 2.248824 -12.8642923 59.44286 72.35218

## # ... with 3.999e+04 more rows

Here we make use of a set of preconfigured convenience func-
tions to compute the population mean in each domain. Also we
can see how to add arbitrary variable definitions to the setup using
sim_resp_eq for creating the response variable. Now we can draw
samples from this population model as follows:

sampleSizes <- round(seq(5, 15, length.out = 40))

setup <- setup %>%

sim_sample(sample_numbers(sampleSizes, groupVars = "idD")) %>%

sim_comp_n()

setup

## data.frame [400 x 8]

##

## # data.frame [400 x 8]

## idD idU x u e y popMean n

## * <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

## 1 1 508 -4.497571 -1.906189 -7.511993 68.09396 75.42649 5

## 2 1 346 -4.497571 -1.906189 -4.632248 70.97371 75.42649 5

## 3 1 582 -4.497571 -1.906189 3.313183 78.91914 75.42649 5

## 4 1 573 -4.497571 -1.906189 5.666321 81.27228 75.42649 5

## 5 1 174 -4.497571 -1.906189 -6.090321 69.51563 75.42649 5
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## 6 2 206 -1.353329 -2.315472 -3.750388 87.16750 90.94664 5

## # ... with 394 more rows

In this step sampleSizes is used to store the sample sizes to be
drawn from each domain. The function sample_numbers is respons-
ible for drawing samples and the additional argument groupVars trig-
gers the operation to be made in each domain. The default is to draw
samples without replacement. Furthermore we store the sample size
as variable in the data. Since in this example we are interested in ap-
plying area level models we need to add an aggregation step. In this
setting we compute the sample mean for the response variable and
the single regressor, x. Furthermore we need to add an estimator for
the sampling variance within the domains which is here implemen-
ted using a direct variance estimator:

setup <- setup %>%

sim_agg() %>%

sim_comp_sample(

comp_var(samplingVariance = var(y) / n),

by = "idD"

)

setup

## data.frame [40 x 8]

##

## # data.frame [40 x 8]

## idD x u e y popMean n

## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 1.3794532 -0.3774379 0.40906571 106.92889 106.63586 5

## 2 2 2.0420706 1.1389641 0.09954804 111.44887 111.17720 5

## 3 3 -1.1771188 -2.8497507 -3.76998827 87.49467 91.11176 6

## 4 4 5.0512936 3.4489851 -1.19986561 127.50559 128.60690 6

## 5 5 -1.3484770 0.4596911 -3.60295546 90.11435 93.94134 6

## 6 6 0.5125505 1.9468516 -2.08368623 102.42592 104.46338 6

## # ... with 34 more rows, and 1 more variables: samplingVariance <dbl>

Notice that we use the function sim_comp_agg with the additional
argument by to repeat this computation within each domain. In this
example sim_agg will compute the means in the sample for each nu-
meric variable. Hence we arrive at a data set containing 40 rows: one
for each domain.

Thus far it has been possible to utilise preconfigured features from
the package. In this sense it is useful to have a tested set of tools
which can assist in configuring with relative ease the repetitive ele-
ments across simulation studies. However an important aspect of the
package is the definition of the interface between components: each
component – defined by a function – takes a data.frame as input
and returns the modified version. Making predictions using the FH
model and its robust extension is something which is not covered by
the package. Here the non-robust predictions are made by setting the
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tuning constant to a large numeric value. Hence we need to define
these steps:

library("saeRobust")

comp_fh <- function(dat) {

modelFit <- rfh(y ~ x, dat, "samplingVariance", k = 1000)

dat$FH <- modelFit$reblup

dat

}

comp_rfh <- function(dat) {

modelFit <- rfh(y ~ x, dat, "samplingVariance")

dat$RFH <- modelFit$reblup

dat

}

setup <- setup %>%

sim_comp_agg(comp_fh) %>%

sim_comp_agg(comp_rfh)

The above code illustrates how new components can be defined.
Notice that the definition of these components only need a few lines
of code and have a single purpose. This can contribute to the repro-
ducibility of simulation studies since these components are easily un-
derstood. A main aspect contributing to the readability is that these
definitions are decoupled from any control structures which are often
present in script files for simulation studies.

The object setup stores all necessary information to run one iter-
ation of the simulation. In what follows R = 10 repetitions are per-
formed. The result is a list of data.frames. These results are then
combined into a single data set:

simResults <- sim(setup, R = 10) %>% do.call(what = rbind)

simResults[c("idD", "idR", "popMean", "y", "FH", "RFH")] %>%

head

## idD idR popMean y FH RFH

## 1 1 1 79.11658 80.36806 80.84265 80.94357

## 2 2 1 97.87564 97.49684 97.36191 97.23226

## 3 3 1 124.94693 123.25169 124.46248 124.64608

## 4 4 1 86.26846 90.63665 88.70489 88.27641

## 5 5 1 78.91773 77.32984 77.53927 77.63569

## 6 6 1 114.04013 117.34472 116.61518 116.73686

An additional variable idR is automatically added as an ID-variable
to distinguish between iterations. In saeSim no further tools for pro-
cessing the resulting data are implemented. There are many tools
readily available in R for that purpose.
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5.4 discussion

In the previous example I illustrated how a model based simulation
can be configured using the R-package saeSim. A design based config-
uration differs simply in that it starts with sampling instead of with
data generation; otherwise the same tools can be utilised. Code ex-
amples for a design based simulation can be found in Warnholz and
Schmid, (2016).

The main design aspect making saeSim a useful tool is that simu-
lations can be composed by combining different components. Fur-
thermore it may contribute towards a reasonable way for defining
such components within the R-language: as short single argument
functions which take a data.frame as input and return it modified.

The presentation of this package here has not been exhaustive but
has focused on communicating the main idea in the composition of
simulation studies. Other features which are available and worthy
of note are the generation of outlying data points. Such values are
always generated as part of the population and hence focus on the
presence of representative outliers as defined by Chambers, (1986).
Furthermore some effort has gone into building a connection to par-
allel and high performance computing facilities. In this regard the
package parallelMap (Bischl and Lang, 2015) is utilised as an inter-
face to Rs parallel computing capabilities. This also includes a link to
the package BatchJobs (Bischl, Lang et al., 2015) which can be used
in conjunction with many high performance infrastructures.
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M O D E L B A S E D S I M U L AT I O N S T U D I E S

With the advent of computers it became possible
to carry out simulations of models which were

intractable using ’classical’ theoretical techniques.

— Landau and Binder, (2014, p. xv)

6.1 performance of robust area level predictions

In this Section I investigate the statistical properties of the proposed
predictors. Using model based simulation studies the empirical bias
and the mean squared prediction error are compared over a variety
of simulation scenarios as well as between the spatial and temporal
extensions of the FH model. The proposed methods for estimating
the MSPE of predictions will be presented separately in Section 6.2.

The simulation scenarios are developed under an area level model;
thus we consider the situation in which we know the true sampling
variances and we generate the Monte Carlo sample directly from the
area level model. This is in conceptual contrast to the setting in Sec-
tion 6.3 where we consider the situation in which the sampling vari-
ances are estimated as part of the study and thus need to generate
the data on the unit level. However the area level perspective is con-
sidered in the literature for evaluating area level models – see for
example Fabrizi and Trivisano, (2010) and Marhuenda et al., (2013) –
and hence this will be considered first.

Although the area level perspective on the data generating process
may be incomplete – in that we assume the sampling variances to be
known – it is the model under consideration. It presents the possibil-
ity of studying the performance of the estimation procedures where
the model assumptions appear to be violated due to outlying obser-
vations. However in this setting we are limited to the study of area
level outliers since it is not obvious how we can simulate unit level
outliers into an area level data generating process – see also Section
3.1 for a discussion of unit and area level outliers.

Since several models with various correlation structures have been
considered it is tempting to investigate a multitude of specifications.
In this respect some choices have been made to restrict the present-
ation of results to a concise set to support the understanding of dif-
ferent model specifications in the context of outliers. Although we
will see some benefits in utilising spatial and temporal correlation
structures, the study does not aim at showing the superiority of such
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methods but focuses on the effect of outliers instead. We will only
consider non-symmetric outliers since they represent the realistic use-
case scenario. The choices of the simulation settings are presented in
Section 6.1.1; the results are then presented in Section 6.1.4; this is fol-
lowed by a discussion taking other literature into account in Section
6.1.4.

6.1.1 Simulation Scenarios

To avoid the specification of too many scenarios only a temporal set-
ting is considered. Similar to the approach of Marhuenda et al., (2013)
the FH model and spatial FH model are treated as special cases when
we use only the data from the current time period. The temporal and
spatio-temporal extensions then use all available information; how-
ever predictions are only made for the current time period. In such a
setting it is possible to compare the different model specifications in
terms of a unified strategy.

The area level model from which the data is generated in each
Monte Carlo repetition is defined as:

yit = 100+ 5xi + u1i + u2it + eit

with i = 1, . . . ,D and t = 1, . . . , T where D = 40 and T = 10. The
current time period is defined to be t = T .

• The single regressor, xi, is a deterministic sequence defined by
xi =

i
2D +1. This is a similar setting to the choices made by Mar-

huenda et al., (2013); however the specification here is constant
over time.

• The sampling errors, eit, are drawn from eit ∼ N(0,σ2ei). The
sampling variances, σ2eit = σ2ei, are known during the estima-
tion; they are defined as an ascending and equidistant sequence
between 2 and 6: σ2ei =

4(i−1)
D−1 + 2.

• The random effect components are generally generated from
the spatio-temporal model, i.e. u1i ∼ SAR(1) and u2it ∼ AR(1)
– see also the more concrete presentation in Section 3.2.4. The
proximity matrix to generate the spatial correlation structure is
of type rook (Bivand et al., 2008, p. 250) and correctly specified in
the estimation. Models with uncorrelated random effects are de-
duced where the respective correlation parameter is set to zero.
Since the impact of outliers is our main concern only those scen-
arios are considered where the spatial and temporal correlation
is set to ρ = ρ1 = ρ2 and the respective variance parameters to
σ2u = σ21 = σ22. The concrete choices for ρ and σ2u depend on
the respective scenarios as defined below.
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The scenarios which are considered are defined now by the com-
bination of spatial and temporal correlation in combination with the
presence of outliers:

• (0, 0) denotes the scenario in which we set ρ = 0 and σ2u = 2,
i.e. we have uncorrelated random effects and no outliers.

• (0.5, 0) denotes the scenario in which we set ρ = 0.5 and σ2u = 2.
Here we have no outliers but have both spatial and temporal
correlation in the random effects.

• (0, u) denotes the outlier scenario when we set ρ = 0. Area
outliers are the domains for which i ∈ {5, 15, 25, 35} to avoid an
artificial setting in combination with σ2ei. For regular observa-
tions σ2u = 2. Outliers are drawn from ui ∼ N(9, 25) and they
ignore any correlation structure, i.e. u1i = u2it = 0 for these
observations and are replaced by ui.

• (0.5, u) denotes the scenario in which outliers are generated in
the same way as for (0, u) with the difference that ρ = 0.5 for
the generation of the regular observations.

6.1.2 Quality Measures

The methods to be compared are the robust spatial and temporal
extensions of the FH model. The non-robust methods are denoted
by FH, SFH, TFH, and STFH; and their robust counterparts by RFH,
RSFH, RTFH, and RSTFH. In fact these methods were introduced as
area level REBLUP, SREBLUP, TREBLUP, and STREBLUP in Section
3.3 and are here abbreviated for notational simplicity. Furthermore
we have the bias corrected versions of the predictors using the cor-
rection proposed in Section 3.4. This correction is only applied to
the robust predictions and the respective models are referred to by
RFH.BC, RSFH.BC, RTFH.BC, and RSTFH.BC. The tuning constant
for the robust predictions is fixed at 1.345. Furthermore the direct
estimator is denoted by Direct; this is the generated value for yiT .

To assess the quality of the predictions under the various methods
two measures are utilised: the relative bias (RBIAS) and the relative
root mean squared prediction error (RRMSPE). These measures are
computed over all realisations of the Monte Carlo repetitions; in total
R = 500 repetitions have been conducted. Let θ̂Mir denote the pre-
diction for the ith area in the rth repetition with r = 1, . . . ,R under
the model M where M is one of the considered models, e.g. the RFH
model. The Monte Carlo RRMSPE is here defined as:

RRMSPEMi =

√√√√ 1

R

R∑
r=1

(
θ̂Mir − θir
θir

)2
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where θir denotes the true target statistic in the Monte Carlo repeti-
tion r and is defined by:

θir = θiTr = 100+ 5xi + u1ir + u2iTr

where the target statistic is defined as the true value in time period
t = T . The relative bias for the ith area can accordingly be defined as:

RBIASMi =
1

R

R∑
r=1

θ̂Mir − θir
θir

.

6.1.3 Results

The main results are summarised in Figures 6.1 and 6.2. They present
the RBIAS and RRMSPE in per cent over 500 Monte Carlo repeti-
tions. Most of the findings conform to expectations in that the robust
methods have a beneficial effect in terms of MSPE when outliers are
present and are comparable but never superior otherwise. However
a number of findings are more surprising and need some explana-
tion. To that extent consider three observations we can make when
studying the figures:

1. In terms of bias the robust temporal and spatio-temporal exten-
sions are unbiased in the presence of outliers, whereas all other
methods are positively biased.

2. The non-robust temporal and spatio-temporal models are less
efficient in terms of MSPE even in scenarios without outliers.

3. The bias correction shows good overall results. However it
seems to add to the MSPE in the case of the temporal and spa-
tio-temporal models.

Firstly it may be observed that the models that take the temporal
structure into account are unbiased. Several properties of the models
as well as the simulation setting contribute to this effect. Identify-
ing the spatial correlation structure is problematic in this simulation
scenario. One emerging point is the amount of variance which is due
to the spatial correlation structure; this variation has a variance para-
meter set to σ21 = 2 which is small compared to the overall variance
in the data. Also the small sample size of D = 40 may have an effect
– the more data we have the easier it is to identify small effects or in
this case a correlation structure. This is also present when compar-
ing the FH and SFH models where no difference in terms of MSPE is
visible – even in the scenarios (0.5, 0) and (0.5, u).

The inability to identify this spatial effect leads to a similar result
as was evident in Figure 4.9. There we observed that under contamin-
ation the temporal correlation structure is influenced by outliers and
at the same time the spatial structure has been identified correctly.
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Figure 6.1: Relative Root Mean Squared Prediction Error of Spatial and Tem-
poral REBLUPs
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Figure 6.2: Relative BIAS of Spatial and Temporal REBLUPs
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Here we observe a similar effect: yet in contrast the spatial structure
captures the outlier contamination and the temporal autocorrelation
can be identified correctly. So in contrast to the stability tests the
effect has changed due to the different nature of outlying areas; in
Section 4.2 outliers are single observations; here outlying areas in-
clude all observations over time. Thus in the results we see the ability
of the temporal models to borrow strength from the correctly identi-
fied temporal autocorrelation. The reduced bias for outlying areas is
due to the spatial correlation structure used for the prediction of such
domains. In fact this effect would not only be present for the robust
methods but also for the non-robust methods. Basically we have an
over parametrised model – since the signal of the spatial correlation
is too weak – which captures the mixture distribution used to induce
the outlier contamination.

Now the question is why do non-robust methods seem to be less
beneficial in terms of MSPE even when there are no outliers; this is
the second observation. As this result is surprising a comparison has
been made using the implementation from the R-package sae (Mo-
lina and Marhuenda, 2015) to rule out errors in the software. The
results remain the same. What we really observe here is that in ap-
proximately 30 per cent of the simulation runs, the variance para-
meters for the temporal and spatio-temporal models are estimated
to be close to zero. Using the implementation in sae such results
are sometimes denoted as not converged; using saeRobust the evalu-
ation of the estimation equations at their respective solutions reveal
unsatisfactory results, i.e. values which cannot be considered to be
close to zero. In terms of predictions the estimation of zero variance
parameters results in random effects close to zero: hence only the
regression estimates are used as a synthetic estimator. This also ex-
plains the small variation between area predictions which is revealed
by the small boxes in Figure 6.1 for the TFH and STFH model.

Two settings in the simulation can be tweaked to improve the res-
ults for the non-robust methods. First, the ratio of variance due to the
random effects can be increased, thus simplifying the identification of
these correlation structures. Second, the strength of the outlier con-
tamination can be increased. In a study where the mean of the outlier
distribution was set to 100 the estimation under the TFH and STFH
models yielded results comparable to their robust counterparts. As
was discussed earlier in such a setting these models are over paramet-
rised and can thus model the mixture distribution used for inducing
the outlier contamination.

Still open to question in this line of argumentation is the problem
of why the predictions under the RTFH and RSTFH models do not
suffer from a similar fate. The concrete mechanism explaining the
difference is unknown at present. In various simulations the robust
methods have revealed to be less sensitive to the misspecification of
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the sampling variances. In many cases zero variance parameters for
the random effects can be explained by settings in which the spe-
cified sampling variances are large compared to the overall variance
in the data. Using the true sampling variances means that we use the
parameters from a super population model; such values may be less
optimal in concrete realisations. However this is a broad and more
conceptual discussion which is again addressed in Section 6.3 and
somewhat beyond the scope of the discussion here.

The third observation is that the bias correction does not improve
the results for the temporal models. The bias correction constructs an
interval around the inefficient but unbiased direct estimates in which
we allow predictions to be made. The choice made in Section 3.4 for
the size of this interval may be too conservative in this simulation
study. This leads in effect to numerous repetitions in which domain
predictions are unnecessarily bias corrected. However for the models
which do not take the temporal structure into account we can see
that the bias correction has a beneficial effect on the prediction of
the outlying domains, both in terms of bias and consequently also
in terms of MSPE. For the non-outlying areas no additional gain is
discernible from this correction.

6.1.4 Discussion

The aim of this study has not been to promote the use of a specific
model in terms of a correlation structure but rather to focus on re-
vealing the differences between the robust and non-robust estimation
methods. The benefits of utilising temporal autocorrelation have been
demonstrated in different studies – see Rao and Yu, (1994) for the
temporal model and Marhuenda et al., (2013) for the spatio-temporal
model. The main findings of this Section are:

• Using an over-parameterised model may have a positive effect
in terms of RBIAS and RRMSPE in the presence of outliers. Al-
though not explicitly shown this can be true also for the non-
robust methods. This may be due to the ability of the fitting
process to approximate the mixture distribution.

• The proposed bias correction may prove to be useful especially
for outlying domains. However the choice of the width of the
interval in which predictions can be made should be handled
with care in practice.

• The robust methods have an expected positive effect in terms
of RRMSPE in the presence of outliers. Also they may be more
robust against the choice of the sampling variances – however
this claim needs further investigation.
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6.2 performance of mean squared prediction error es-
timators

In addition to the prediction of a target statistic we are also interested
in estimating the measure of uncertainty surrounding this quantity.
To this extent two MSPE estimators have been proposed in Section
3.5: an adaptation of the parametric bootstrap proposed by Sinha
and Rao, (2009) and an MSPE estimator based on the pseudolinear-
isation approach of Chambers, Chandra and Tzavidis, (2011). In what
follows these two MSPE estimators are compared in different simula-
tion settings.

In the previously conducted simulation study we saw that the sim-
ulation settings revealed both advantages and disadvantages of the
robust methods. With respect to the MSPE estimation the scenarios
are chosen to conform better to the underlying models. This means
that some of the simulation parameters have been changed to avoid
that the variance of the random effect is estimated to be close to zero.

However the computational effort involved in the bootstrap estim-
ator is relatively high; this made it necessary to restrict the number
of scenarios to a minimum. Thus for each model – the RFH, RSFH,
RTFH, and RSTFH – data is generated under the correct model and
only non-outlier are compared to outlier scenarios.

The results for the non-robust methods are omitted in order to
reduce the number of necessary comparisons. In principle a com-
parison with established methods like the MSPE estimator of Prasad
and Rao, (1990) can be useful. However the MSPE estimators associ-
ated with the non-robust predictors are too diverse and have on that
account been omitted from the discussion here. The corresponding
review of these methods is provided in Section 2.3.2.

In Section 6.2.1 below the simulation settings for each model are de-
scribed in detail. Section 6.2.2 describes which measures are utilised
to assess the performance of the MSPE estimators. A presentation
of the results can be found in Section 6.2.3 and this is followed by
a discussion of the results in the context of the existing literature in
Section 6.2.4.

6.2.1 Simulation Scenarios

In the simulation study each model is fitted on data generated using
the corresponding model which can be represented in general form
as:

yit = 100+ 5xi + z>itu + eit

with i = 1, . . . ,D and t = 1, . . . , T . The regressor is defined as be-
fore: xi = i

2D + 1; and the sampling error structure is the same for
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all scenarios: eit ∼ N(0,σ2ei) with σ2eit = σ2ei and σ2ei =
4(i−1)
D−1 + 2.

Furthermore a distinction is made between:

• RFH-(0) – denotes the non-outlier scenario used for evaluating
the MSPE estimators for predictions using the RFH method.
Here D = 40 and T = 1; z>itu = ui with ui ∼ N(0, 9).

• RSFH-(0): denotes the non-outlier scenario for the spatial FH
model. D = 40 and T = 1; z>itu = u1i with u1i ∼ SAR(1)

where ρ1 = 0.5 and σ21 = 9. Similar to before a rook proximity
matrix is used to generate the spatial structure (Bivand et al.,
2008, p. 250).

• RTFH-(0): denotes the non-outlier scenario under a TFH model.
Here D = 40 and T = 10; z>itu = u0i + u2it with u0i ∼ N(0, 9)
and u2it ∼ AR(1) where ρ2 = 0.5 and σ22 = 9.

• RSTFH-(0): denotes the non-outlier scenario under the spatio-
temporal FH model. Here D = 40 and T = 10; z>itu = u1i+u2it
with u1i ∼ SAR(1) where ρ1 = 0.5 and σ21 = 9 and u2it ∼ AR(1)
where ρ2 = 0.5 and σ22 = 9. Also a proximity matrix of type
rook is utilised to generate the spatial process.

Here (0) is used to denote the non-outlier scenario. For each of these
scenarios one outlier scenario is considered which is denoted by (u)
where we replace the random effect for the outlying domains:

• *-(u): z>itu = ui with ui ∼ N(9, 25) for all i ∈ {5, 15, 25, 35}. The
set of outlying domains is chosen such as to avoid an artificial
scenario in combination with the choice for σ2ei.

6.2.2 Quality Measures

In this study we are interested in the performance of the MSPE es-
timators. To assess the quality of these estimators the relative root
mean squared error (RRMSE) and RBIAS of the estimated root MSPE

(RMSPE) are compared with the true values. Let ̂RMSPEMir denote
the estimated RMSPE for area i in the rth Monte Carlo repetition us-
ing method M. M is either the parametric bootstrap referred to by
BOOT or the pseudolinearisation based approach which is referred
to by CCT. Similar to the previous study, predictions are made for
the current time period, which is again defined as t = T for the re-
spective scenario. This also means that we evaluate only the RMSPE
for these predictions. In the bootstrap 100 repetitions are conducted;
changing the number of repetitions did not change the results signi-
ficantly. Overall 500 repetitions are conducted. We can then define
the RRMSE as:

RRMSEMi =

√√√√√ 1

R

R∑
r=1

 ̂RMSPEMir − RMSPEMi
RMSPEMi

2
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where we define the true RMSPE as the Monte Carlo RMSPE over all
repetitions:

RMSPEMi =

√√√√ 1

R

R∑
r=1

( ̂RMSPEMir − RMSPEMi

)2
Furthermore we have the RBIAS of the MSPE estimator defined as:

RBIASMi =
1

R

R∑
r=1

̂RMSPEMir − RMSPEMi
RMSPEMi

These measures are computed for both MSPE estimators and for all
robust predictions; the respective predictors are referred to by RFH,
RSFH, RTFH, and RSTFH; and their bias-corrected counterparts by
RFH.BC, RSFH.BC, RTFH.BC, and RSTFH.BC. The tuning constant is
fixed at 1.345 for all models.

6.2.3 Results

The main results of the simulation study are given in Table 6.1. The
following observations need to be discussed:

1. The CCT has not a negative bias for all estimators.
2. The CCT has a high MSE for the bias corrected predictors.
3. The advantage of the CCT compared to BOOT is small for the

outlying domains.

The first observation is that the CCT has not a negative bias in all
cases. However as we disregard the uncertainty due to the estimation
of the variance parameters and assume independence between the
weights and the response in the pseudolinear form we should expect
an underestimation. This is observable for the RFH and RSFH in
the non-outlier scenario. Under the same scenario the RTFH and
RSTFH can have a positive bias since only the estimated MSPE for
the current time period is considered. In an analysis using all the
time periods the median RBIAS is indeed negative. The estimation for
regular domains under the outlier scenario can also have a positive
bias. This happens because the variation due to the random effect is
higher when outliers are present. Thus the variance parameters used
to compute the MSPE for the regular observations are slightly higher
resulting in a higher estimate for the MSPE.

The second observation is the higher MSE of the CCT for the predic-
tions with bias correction. The bias correction will bind the domain
prediction. The choice of the interval in which predictions can be
made leads – in this simulation – to the situation that more predic-
tions than necessary are bias corrected. Since the weights for the bias
correction – see Section 3.4 – are also used for estimating the MSPE



110 model based simulation studies

Predictor MSPE (0)-Regular (u)-Regular (u)-Outlier
Median RBIAS:
RFH CCT −7.59 −0.93 −36.65

BOOT −3.93 1.91 −36.66
RFH.BC CCT 0.88 1.80 −20.80

BOOT −3.73 1.09 −28.52
RSFH CCT −7.19 −1.09 −33.81

BOOT −3.34 2.10 −33.77
RSFH.BC CCT −2.00 0.51 −17.44

BOOT −3.14 1.22 −24.86
RTFH CCT 0.18 0.32 −41.60

BOOT 1.10 1.17 −41.95
RTFH.BC CCT 8.16 6.67 −3.84

BOOT 1.15 1.15 −21.52
RSTFH CCT 0.25 0.25 −16.43

BOOT 1.21 1.02 −16.71
RSTFH.BC CCT 2.04 2.66 −9.22

BOOT 1.15 0.90 −13.73
Median RRMSE:
RFH CCT 11.21 6.78 36.79

BOOT 11.59 9.42 37.04
RFH.BC CCT 21.54 12.56 25.09

BOOT 11.02 9.34 29.23
RSFH CCT 10.05 6.28 34.01

BOOT 10.34 9.14 34.25
RSFH.BC CCT 18.16 10.33 23.21

BOOT 10.11 9.09 25.67
RTFH CCT 4.40 3.88 41.69

BOOT 8.43 8.06 42.18
RTFH.BC CCT 28.91 26.52 27.57

BOOT 8.15 8.03 22.30
RSTFH CCT 2.32 3.32 16.50

BOOT 7.70 8.11 17.82
RSTFH.BC CCT 11.79 11.26 17.94

BOOT 7.64 8.04 15.23

Table 6.1: Performance of RMSPE Estimators in Model-Based Simulation.
Results are in %. Regular denotes non-outlier observations. (0)
is the model specific scenario without contamination; (u) is with
outlier contamination.
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more weight is given to the sampling variance. This leads to more
unstable results over all. This may be less relevant in an application
in which we can choose the width of the interval. Also this effect was
observed in the model based simulation in Section 6.1.

The third observation we can make is that the CCT only has a small
advantage in terms of bias and MSE for the outlying observations. In
general the results regarding the performance of the MSPE estimators
are very sensitive with respect to the choices made for the simulation
setting. Here the bias we can make in a prediction is relatively small
since the mean for outlying domains is shifted by 9 units compared to
an overall intercept of 100. In the design based study of Chapter 7 we
will observe outlying observations which are multiple times larger
than the main body of observations. Hence the benefit in terms of
bias depends largely on the magnitude of the intercept of the outlying
observations. Furthermore it must be noted that the MSPE predictor
will gain an advantage in terms of MSE due to the reduced bias in
the prediction.

(0) (u)
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Figure 6.3: Estimated Root Mean Squared Prediction Error for the Bias
Corrected Robust Spatial FH Model. Compared are the boot-
strap (BOOT.BC) and the pseudolinearisation-based estimator
(CCT.BC) with the Monte Carlo MSPE (MC.BC).

Figure 6.3 also illustrates the way the estimated RMSPE relates to
outliers. Note that observations 5, 15, 25, and 35 are outlying domains
and that the sampling variances increase with i. What we see here is
that the CCT for the bias corrected RSFH is able to follow the Monte
Carlo MSPE better when the sampling variances are large. Since there
is no information on the true variation in the outlier distribution we
observe a better fit the more relevant the sampling variance is. This
shows that these results depend largely on the scenario in which the
CCT method is applied. The bootstrap, in contrast, has no means of
mirroring the Monte Carlo MSPE for outlying observations regardless
of the scenario.
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6.2.4 Discussion

In general the performance of the MSPE estimators is promising.
However the concrete results strongly depend on the scenario set-
tings. In general the CCT for the bias correction suffers under re-
peated sampling when the prediction interval of the correction is too
conservative. For the same reason we observe a correlation between
the sampling variances and the bias. The bootstrap, in contrast, shows
very stable results – approximately 10 per cent in terms of RRMSE –
over a variety of different settings. However this method cannot cap-
ture the variation for outlying domains. In scenarios in which the
respective models repeatedly yield estimates close to zero variances
the bootstrap will underestimate the true variation since more weight
is given to the linear predictor; this can be seen in Chapter 7. This
setting has been avoided – in contrast to Section 6.1 – by choosing
larger values for the variance parameters in this study.

The settings in this study have been chosen to be close to the ap-
proach taken by Chambers, Chandra, Salvati et al., (2014). Although
a comparison is difficult to make because of the transition between
area level and unit level models, some similarities in the results can be
found. Most notably Chambers, Chandra, Salvati et al., (2014) report
values of the RRMSE for the bootstrap for the unit level REBLUP of
approximately 10 per cent in scenarios having area level outliers and
scenarios without contamination. This result is very close to what
we can observe in this study. In the specific scenario above the res-
ults for the CCT show similar performance in terms of RRMSE to the
bootstrap except for the bias corrected predictions. In the study con-
ducted by Chambers, Chandra, Salvati et al., (2014) the CCT method
does not show as good results as we can see here; however this can
possibly be attributed to the differences in the scenarios.

6.3 from unit to area level contamination

In this Section a different approach is taken in that a model based
simulation study is conducted beginning with a unit level popula-
tion. This is typical for unit level models; see for example Chambers,
Chandra, Salvati et al., (2014) and Sinha and Rao, (2009). However
results for robust area level models are often produced using area
level data – see for example Fabrizi and Trivisano, (2010) – or stud-
ies using survey data – see for example Bell and Huang, (2006) and
Xie et al., (2007). This area level perspective implicitly rules out any
impact of unit level outliers on area level models; and whether such
observations can influence predictions is the subject matter of this
Section.

This changed perspective enables a more thorough investigation
of the impact of unit level contamination in conjunction with area
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level models. Furthermore it is necessary to illuminate how we es-
timate the sampling variance of the direct estimator as this can also
have an impact on domain predictions; so far these quantities have
been assumed to be known. In the literature the estimation of the
sampling variances is often connected to the application of smooth-
ing techniques to stabilise these parameters – see Section 2.3.1.2 for a
review. Hence in this context several points require scrutiny:

• Under the FH model we specify an area level model with a het-
eroscedastic sampling distribution. The model does not explain
the source for this heteroscedasticity. In what follows two differ-
ent sources are induced: one is the sample size varying across
domains, and the other source are unit level outliers.

• When we begin from the unit level we may ask what the true
sampling variance is; under the model this quantity is assumed
to be known. In practice these values are estimated and are
themselves unreliable if the target is the population variance.
So it will be relevant to discuss how the FH estimator and the
robust extension perform when the direct variance estimator
instils an additional source of uncertainty. Also it is unclear
how smoothing techniques interact with unit level outliers.

• In the context of unit level outliers it may be intuitive to suggest
a robust direct estimator instead of the sample mean. Hence
different robust direct estimators are used as an alternative to
the domain specific sample mean.

This discussion has practical implications but is conceptually not
related to the question if we exploit the spatial and temporal correla-
tion structures present in the data. For this reason the following study
focuses on the FH model and excludes the spatial and temporal ex-
tensions. In principle these results should apply to these extensions
also; however this remains an avenue for further research.

The present study is structured as follows: Section 6.3.1 completes
the formal link between unit and area level. Essentially we need to
specify what assumptions have been made with respect to the unit
level population model in order to establish a coherent link between
the population level, the sampled level, and the area level. Based
on these results Section 6.3.2 presents the simulation settings, Section
6.3.3 the investigated estimation strategies; then in Section 6.3.4 the
results of the Monte Carlo Simulation are presented.

6.3.1 A Unit Level Population Model

In the following the unit level population model assumed for this
study is presented. Hence we begin with a liner mixed model for the
population of the form:

yij = x
>
i β+ ui + eij
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with i = 1, . . . ,D and j = 1, . . . ,Ni. Here xi is a vector of auxiliary
information and β the vector of regression coefficients; ui is an i.i.d.
random variable: ui ∼ N(0,σ2u); and eij is also an i.i.d. random
variable: eij ∼ N(0,σ2e). Given this simple unit level model consider
the case in which we draw samples with simple random sampling
without replacement (SRSWOR) in each domain. Only the case is
considered where units are observed for all domains. The domain
specific sample sizes are denoted by ni. When we use the sample
mean as a direct estimator we can derive the area level model as:

ȳi = x
>
i β+ ui︸ ︷︷ ︸
θi

+ēi

with i = 1, . . . ,D. Here ȳi denotes the direct estimator and θi the true
target statistic. The sampling errors, ēi, are i.i.d. with ēi ∼ N(0,σ2ei)

where σ2ei =
σ2e
ni

. In this simple setting xi and ui are the same for the
unit and area level since they are constant within domains. Also we
see in the definition of σ2ei that the only source for the heteroscedasti-
city are the sample sizes, ni. An additional source for heteroscedastic
sampling errors may also be induced by unit level outliers.

6.3.2 Simulation Scenarios

The model underlying the Monte Carlo study is given by:

yij = 100+ 5xi + ui + eij

• The regressor, xi, is a deterministic sequence defined as in the
model based scenarios before: xi = i

2D + 1.
• From this model a population is generated in each Monte Carlo

repetition. Each domain is of size Ni = 1000 and we consider
D = 40 as before.

• Samples are drawn with SRSWOR in each domain. The sample
sizes are defined as ni ∈ {5, . . . , 15}. They are sorted as ascend-
ing sequence in i. The sample sizes are chosen in correspond-
ence to the variance of the unit error in the non-outlier scenario
such that the sampling variances of the sample means are an
ascending sequence between 2 and 6.

With these settings several different choices for outlier contamina-
tion are investigated. Here we can now consider unit and area level
outliers:

• (0, 0) – no contamination. Here ui ∼ N(0, 2) and eij ∼ N(0, 32).
• (u, 0) – area level outliers. Similar to the generation before

the non-contaminated domains are generated from ui ∼ N(0, 2)
and eij ∼ N(0, 32). Outlying domains are domains with i ∈
{5, 15, 25, 35} and their respective random effect is given by ui ∼
N(9, 25).
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• (0, e) – unit level outliers. The random effect is drawn from
ui ∼ N(0, 2). Individual outliers are generated from a mixture of
two independent normals: eij ∼ δiN(0, 32) + (1− δi)N(20, 200)
where δ is a Bernoulli random variable with P(δ = 1) = 0.8 for
domains with i ∈ {4, 14, 24, 34} and set to one otherwise. I.e. 10

per cent of the areas have 20 per cent of unit level observations
which are generated from the outlier distribution.

• (0, e-sym) – symmetric unit level outliers. This scenario is the
same as (0, e) with the unit level outlier distribution replaced by
N(0, 200) – hence symmetric unit level outliers are imposed.

• (u, e) – unit and area level outliers. The area level contamination
is imposed as in (u, 0) and the unit level contamination as in (0,
e).

6.3.3 Quality Measures and Considered Methods

Two measures are utilised to assess the quality of predictions: the
RRMSPE and RBIAS. These quantities are computed according to
Section 6.1.2. The performance is studied for several methods; the
non-robust predictions under the FH model and robust prediction
referred to as RFH. For the robust predictions the tuning constant
is fixed at a value of 1.345. The following modelling strategies are
considered:

• SM – denotes the sample mean. Since we sample with SRSWOR
an unbiased direct estimator is the sample mean.

• RM – denotes a robust direct estimator. Here the sample me-
dian is used.

• FH.SM – is the non-robust prediction under the FH model. This
model is based on the sample mean and uses the direct variance

estimate as sampling variance for each domain: σ2ei :=
s2i
ni

.
• RFH.SM – is the robust prediction based on the sample mean.

The same setup as for FH.SM is used.
• FH.SM.GVF – is the non-robust prediction under the FH model

using a generalised variance function (GVF). In contrast to
FH.SM a generalised variance function is used as an estimator
for the sampling variance: σ2ei :=

s̃2

ni
with

s̃2 =
1

n−D

D∑
i=1

(ni − 1)s
2
i

where s2i denotes the sample variance for domain i and n =∑D
i=1 ni.

• RFH.SM.GVF – is the robust prediction using the generalised
variance function. This has the same setup as the FH.SM.GVF
using the robust prediction.
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• RFH.SM.BC – is the robust prediction with the sample mean as
direct estimator and direct variance estimates. The predictions
are bias corrected as described in Section 3.4.

• FH.RM – is the non-robust prediction based on the sample me-
dian. As sampling variance a robust estimator is used based on

the median absolute deviation (MAD): σ2ei :=
MAD2i
ni

.
• RFH.RM – is the robust prediction based on the sample median.

The sampling variances are estimated as for the FH.RM method.

6.3.4 Results

To summarise the results of this study consider Figure 6.4 and 6.5.
With these results the following observations can be made:

1. There is only a small advantage in using generalised variance
functions as an alternative to direct variance estimates.

2. The robust FH prediction has no additional effect under unit
level outliers.

3. A robust direct estimator has no advantage over the sample
mean.

The first observation to make is that the particular choice for the
generalised variance function does not show a significant gain in per-
formance. Wolter, (2007, pp. 272-273) points out that the main bene-
fits in using GVFs may be to reduce the computational effort, to ease
the communication of results, and achieve some gain in stability. He
argues that we can expect a gain in stability since instead of many
parameters – one for each domain – fewer and hence more stable
parameters can be estimated. However he also notes that there is
no theoretical underpinning for this claim. The discussion in Section
2.3.1.2 showed that despite this lack of theory the use of generalised
variance functions is often preferred in practical applications. Hence
it may well be that we tend to observe results which are specific to
this simulation setting.

Some differences when using GVFs can be observed with respect
to the RBIAS. In a scenario with non-symmetric unit level outliers
we can observe an increase of the RBIAS. What happens here is that
the overall variance is smoothed. Hence smaller sampling variances,
σ2ei, are assigned to the outlying domains making them appear to
be more reliable measurements. This results in a stronger impact of
the outlying domains on the predictions and thus in an increase in
bias. In Section 3.1.3 this effect is referred to as the creation of overly
influential observations.

In this simulation scenario the unit level outlier contamination does
not influence the estimation of the GVF. In a different setting with a
stronger contamination the GVF can be expected to overestimate the
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Figure 6.4: Relative Root Mean Squared Prediction Error for Domain Predic-
tions
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Figure 6.5: Relative Bias for Domain Predictions
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true sampling variances. In preliminary experiments this leads to a
loss in efficiency in terms of RRMSPE.

The second observation is that the robust prediction under an FH
model does not improve the predictions under unit level contamina-
tion. The results under symmetric unit level contamination show that
the FH model has a self adjusting effect as was described in Section
3.1.1. The prediction mechanism under the FH model gives more
weight to the linear predictor for the outlying domains since we ob-
serve a larger sampling variance for these type of outliers. This is
not an undesirable property as long as the linear prediction is a good
fit for these observations. When we compare these results with the
non-symmetric outlier scenario – (0, e) – we can see that the effect
of unit level contamination on the prediction is small overall. This
holds for all modelling strategies except when using GVFs for the
reasons outlined above. However in these situations we introduce a
bias for the outlying domains. In contrast to the bias correction for
unit level models – see Section 2.5.2 for a review – such a bias cannot
be corrected using area level data.

The use of the RFH model is limited when we consider unit level
contamination. The self adjusting effect of the FH model is in gen-
eral also present in the robust prediction. When we consider the use
of the GVF it can happen – particularly with more extreme outlier
contamination – that the RFH model becomes preferable. This is so
because we create overly influential observations which, from their
design, do not differ from area level outliers – at least from the area
level perspective.

The third observation is that a robust direct estimator, in this case
the median, has no additional advantage over the sample mean. Here
several points need to be mentioned. First, using a robust estimator
may be problematic when we consider small samples in that the me-
dian will itself have an even higher variance than the sample mean.
The additional gain with respect to the unit level contamination does
not seem to outweigh this shortcoming – at least in the scenarios con-
sidered. This is also true when we consider the same symmetric unit
level outlier setting in all domains. Second, the variance estimation of
a robust direct method is usually also problematic, again, because we
are considering small samples. In practice it may be desirable to use
a bootstrap for estimating the variance of the sample median. With
these small samples the results have been disappointing and have not
led to an improvement in the area level predictions. Hence the MAD
seems to provide a sensible alternative. Third, it may be argued that a
different robust method should be considered. An M-type estimator
for the sample mean, in conjunction with a robust variance estimator,
has also been considered. Compared to the median very similar res-
ults have been obtained in this case; consequently these results have
been omitted here.
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6.3.5 Discussion

There are two main reasons to consider a robust area level model.
First this helps to make the prediction robust against area level out-
liers. Second it facilitates to protect against the overly influential ob-
servations which may occur upon using GVFs to smooth the sampling
variances. However a more thorough investigation of the use of GVFs
may be necessary to come to a plausible recommendation since the
simulation setup has not shown a significant improvement in the over-
all predictions.

With respect to unit level outliers we can see a self adjusting ef-
fect in the robust and non-robust prediction under the FH model.
This adjustment replaces the predictions for outliers with the linear
predictor which constitutes an improvement in those cases in which
this predictor is suitable, i.e. unbiased. In principle we face the same
problem as for robust methods using unit level data in that again we
introduce a bias. However at present it is unclear how a bias correc-
tion can be developed for these situations when only area level data
is observed. The proposed bias correction can have a beneficial ef-
fect when we consider area level contamination; however it does not
provide any advantage with respect to unit level outliers.

The use of robust direct estimators has not proved to be encour-
aging. It may be that trying to solve an efficiency problem of the
sample mean by replacing it with an even less efficient estimator is
the main reason here. This effect can well be due to the small sample
sizes considered in SAE, particularly in this simulation setup. These
small sample sizes then lead to a less efficient estimate for the domain
specific mean and also its variance. Using an area level model has not
shown itself to outweigh this effect.
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D E S I G N B A S E D S I M U L AT I O N S T U D Y

Because the synthetic microdata looks just like replicated
actual microdata, you can use standard complete-data

software to draw inferences.

— Rubin, (1993)

7.1 outline

In this final Chapter I want to present a design based simulation
study in which the robust and non-robust predictions under the FH
model are compared. In contrast to the model based simulations
of Chapter 6 the following study is based on one synthetic popula-
tion. The data is generated and provided by Statistics Netherlands
(CBS) and is based on the Structural Business Survey (SBS). The tar-
get domains here are industry sectors and the target statistic is the an-
nual tax-turnover within the domains. Using this data we can study
several effects on the domain predictions in a more realistic setting.
In particular we will see how domain predictions are influenced by
outlying units and domains in combination with a sampling design.

More details on the data and aim of the study from a contextual
point of view are given in Section 7.2. Also here the sampling design
and setup for the simulation as well as details on the methods used
can be found. The results are then presented in Section 7.3 and a
discussion of the results in a broader context is provided in Section
7.4.

7.2 the synthetic population

The population data is a synthetic population generated using the
SBS. The SBS is an annual business survey in the Netherlands. Fur-
thermore the sampling scheme used in this study is similar to that
applied in the SBS and it is provided and used without any change.
The context of this study is the prediction of the total tax-turnover
for 20 industry domains. Possible predictor variables are the tax-
turnover in the previous year, the size class in terms of the number of
employees, and the actual number of employees.

The unit level population consists of 63981 observations spread
across 20 industry sectors. The target variable, tax-turnover in Euro,
has a median value in the population of 0.16 million, a mean of 0.42

million, and a maximum of 83 million Euros. Thus the distribution
is skewed and contains unit level outliers which are here assumed

121
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to be representative. The domain specific population means range
between 0.1 and 2.9 million Euro with a median of 0.42 and a mean
of 0.62. Only three domains have values larger than one million Euros
and may be suspected to be outlying areas.

A similar sampling design to the one used in the SBS has been used
to draw 500 samples from this population. It is stratified for the size
class within the domains. Within each stratum samples are drawn
with simple random sampling without replacement (SRSWOR). In ad-
dition larger firms are selected with a probability of one. The sample
always consists of 5074 units. The sample sizes between domains
vary between 6 and approximately 1050 observations; however they
have some variation over the 500 repetitions.

First results showed that for an area level model it is sufficient to
use only one predictor variable – the tax-turnover of the previous year
– which has the most predictive power in this setting. Furthermore on
the area level we have only 20 observations – the 20 industry sectors
– and even in a setting with one predictor we need to estimate three
parameters. Hence a simple regression model is estimated:

ȳi = β0 +β1ỹit−1 + ui + ei

which is here assumed to follow the FH model. Here i = 1, . . . , 20
and ui is assumed to follow a normal distribution with zero mean
and variance σ2u. The sampling error, ei, is also assumed to follow
a normal distribution with zero mean and variance σ2ei. The direct
estimator, ȳi, is a weighted mean using the inverse of the first order
inclusion probabilities as weights, i.e. the HT estimator (Horvitz and
Thompson, 1952). The standard error is computed using the approx-
imation based on the results of Hansen and Hurwitz, (1943) since
only the first order inclusion probabilities are known. These stand-
ard errors are then squared and used as the true sampling variances,
σ2ei, in the model. The regressor variable, ỹit−1, is the mean value of
the previous year. Here the population mean is used; since the tar-
get variable is tax-turnover it may be plausible that at some point the
true or realised values are known to the analyst. An investigation in
which also the lagged dependent variable was estimated using either
the HT estimator or the sample mean showed that using an area level
method only brings a small advantage over the direct estimator.

The assessment of the quality of the predictions follows along the
lines of Section 6.1.2 in that the RBIAS and RRMSPE over all repeti-
tions are computed. The true target statistic is the domain specific
population mean of tax-turnover and is constant over all repetitions.
Predictions are made under the FH model comparing the standard
model referred to by FH, the robust prediction (RFH), and the bias-
corrected robust prediction (RFH.BC).

Also the MSPE estimators are compared using the RBIAS and
RRMSE as they are defined in Section 6.2.2. The target here is again



7.3 results 123

Direct

FH

RFH

RFH.BC

-20 -10 0
RBIAS in %

0 20 40 60 80
RRMSPE in %

Figure 7.1: Performance of Domain Predictions – Estimated root mean
squared prediction error (RRMSPE) and relative bias (RBIAS).

the estimated root MSPE (RMSPE). The methods used are the pseudo-
linearisation based approach (CCT) and the parametric bootstrap
(BOOT); both are introduced in Section 3.5.

7.3 results

The performance of the predictions can be evaluated using Figure
7.1. The median values of the RBIAS and RRMSPE for the respective
method are also additionally given in Table 7.1. Here a main res-
ult is that the prediction can be vastly improved in terms of MSPE
using the robust and non-robust methods compared with the direct
estimation. This is so since we use a strong predictor variable which
is not incorporated into the direct domain estimation. However the
improvement in terms of MSPE has the price of an introduced bias
which can be observed for the area level models; the direct estimator
is design-unbiased as should be expected. We can also see that the
robust method can improve the prediction for approximately another
two percentage points in terms of RRMSPE. The bias correction can-
not add any advantage over the robust method and can even be a
draw back compared to the non-robust predictions. A possible ex-
planation is that in this setting we have a strong predictor and also
very small estimated variance parameters of the random effects. This
means that we favour the linear predictor and hence we are as far
away from the direct estimator as is possible using these methods.
Thus the bias-correction is applied more frequently.

Turning now towards the performance of the MSPE estimators the
main results can be found in Table 7.2 and Figure 7.2. What we
see here is that for predictions under the FH and RFH method the
CCT and parametric bootstrap methods show similar performance.
In both cases we have a strong negative bias. This negative bias stems
from the fact that the estimated variance parameter under both meth-
ods – FH and RFH – are close to zero. In terms of predictions this
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Predictor RBIAS RRMSPE
RFH.BC −5.50 10.85
RFH −5.42 7.54
FH −6.06 9.34
Direct −0.19 19.59

Table 7.1: Performance of the Domain Predictions in Design-Based Simula-
tion – Results are in %. Presented are the median values of 20

industry sectors.

means that we are relying strongly on the linear predictor – and as
discussed earlier we can see the overall improvement in the predic-
tions in terms of MSPE. However these small variance parameters
mean that the bootstrap samples have too small a variation; and also
the CCT estimator relies on this parameter; however neither the boot-
strap nor the CCT can account for the uncertainty related to these
parameter estimates. In terms of bias the CCT produces acceptable
results for the predictions using RFH.BC, i.e. the robust bias corrected
predictions. However compared to the bootstrap we observe a higher
RRMSE.

Predictor MSPE RBIAS RRMSE
FH CCT −31.70 55.50

BOOT −29.77 56.03
RFH CCT −36.91 48.06

BOOT −34.48 49.15
RFH.BC CCT 1.87 88.19

BOOT −20.28 47.11

Table 7.2: Performance of RMSPE Estimators in Design-Based Simulation.
Results are in %. Presented are the median values of 20 industry
sectors.

7.4 discussion

The results of this Chapter show the overall beneficial effect of small
area methods in terms of MSPE. However the point predictions also
reveal an introduced bias; here we observe the typical variance-bias
trade-off associated to mixed linear models and Empirical Bayes meth-
ods (Efron and Morris, 1972). Interestingly we do not see any im-
provement using the bias correction technique; especially in terms of
bias. However we do see an improvement by applying the robust
estimation technique in terms of MSPE.
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Figure 7.2: Performance of the Estimated Root Mean Squared Prediction Er-
ror – Compared are the root MSPE estimates using the methods
CCT and BOOT with the MSPE under the Monte Carlo simula-
tion. The left panel shows the RMSPE estimates for the robust
predictions; the right panel for the robust bias-corrected predic-
tions.

In this study we have both, unit and area level outliers. It remains
somewhat in-transparent if unit level outliers have an effect at all. In
this example we have a sampling design which is highly correlated
with the target variable. Hence we already address the heterogeneity
in the distribution of tax-turnover on the unit level since we incorpor-
ate the inclusion probabilities. One property of the direct estimator
– also in the presence of outliers – is that we expect it to be design-
unbiased. If this property is fulfilled then we should not expect to
have an impact of asymmetric unit level outliers. This may not be
plausible in scenarios in which the sampling design was chosen for a
different target statistic.

The results of the MSPE estimators – CCT and BOOT – reveal some
problems in a scenario in which we estimate the variance parameter
to be close to zero. Essentially we are here at the boundary of the
parameter space of the variance. At present it is not clear how to
address this issue. It may be helpful to incorporate the comparison
with the more established method by Prasad and Rao, (1990) which
at this point remains an avenue for further research.





8
C O N C L U S I O N

8.1 theory

In Chapter 2 the relevant advances in the SAE field have been re-
viewed. Two developments are central for this Thesis: First the exten-
sion of the FH model by the incorporation of spatial and temporal cor-
relation structures into the random effects part of the model. Second
the robust predictions under linear mixed models.

In particular the spatial extension of the FH model by Pratesi and
Salvati, (2008) is of interest. Here the random effects part of the model
is assumed to follow a simultaneous autoregressive process (SAR) of
order one. Under this model Pratesi and Salvati, (2008) derived a
spatial EBLUP (SEBLUP) which they have applied to the Survey on
Life Conditions in Tuscany, Italy. They aimed at predicting the mean
per capita income within municipalities. Furthermore they found that
incorporating the unobserved spatial correlation between domains –
the SAR process – into the prediction leads to an improvement in
terms of MSPE – here however measured in terms of the domain
specific coefficient of variation.

The reviewed temporal extension by Rao and Yu, (1994) involves
the splitting of the random effects into a random intercept and an
autocorrelated process (AR) of order one. The underlying data now
has repeated measurements for each domain. The variation within
domains and hence between the repeated measurements is addressed
using the AR(1) process; the variation between domains is captured
by inserting an additional random intercept. In this context they in-
troduced a temporal EBLUP (TEBLUP). Empirical results are here
based on a model based simulation study. Later Singh, Shukla et al.,
(2005) showed the advantage of incorporating temporal autocorrela-
tion into the analysis where they predict the per capita consumption
expenditure using an annual consumer survey in India.

Marhuenda et al., (2013) then introduced a combination of these
methods: they replaced the random intercept in the temporal model
of Rao and Yu, (1994) with a SAR(1) process. Using this model they
derived a spatio-temporal EBLUP (STEBLUP). They evaluate their
method using the Survey on Income and Living Conditions for Spain
and predict two poverty indicators. They show results for the spa-
tial, temporal, and their spatio-temporal extension to the FH model.
Their results suggest that especially the incorporation of the correla-
tion over time has a beneficial effect.
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Next to the different possibilities of incorporating correlated ran-
dom effects in Section 2.5 I reviewed the recent advances in outlier
robust predictions in the SAE field. The robust methodology used
in this Thesis are based on the results of Sinha and Rao, (2009) and
Richardson and Welsh, (1995). Here the idea is to robustify the score
functions of the maximum likelihood function for a given mixed lin-
ear model. Based on these robust estimation equations model para-
meters and domain predictions can be derived. To this extent the
residuals in the score function are bounded using an appropriate
influence function. In various model and design based simulation
studies the advantages of such methods have been demonstrated
where outliers are present in the data; see for example Sinha and
Rao, (2009), Chambers, Chandra, Salvati et al., (2014), Schmid and
Münnich, (2014), and Schmid, Tzavidis et al., (2016).

The main contribution of this Thesis is now the combination of the
robust estimation methodology and the spatial and temporal exten-
sions to the FH model. This connection is established in Chapter 3.
There I distinguished between three types of outlying observations:
unit level outliers, area level outliers, and overly influential observa-
tions. The first two types are common in the robust literature and
describe outlying units and outlying areas respectively. The third
type may be artificial in the context of area level models: they may
present a problem when we smooth direct variance estimators. In do-
ing this we may create observations which appear to be reliable but
are in fact heavily influenced by unit level outliers. Especially with
respect to area level outliers and overly influential observations the
robust extensions to the spatial and temporal FH models may present
themselves as being beneficial.

With regard to robust area level models four such models have
been under consideration: the standard FH model, the spatial exten-
sion by Pratesi and Salvati, (2008), the temporal extension by Rao
and Yu, (1994), and the spatio-temporal model by Marhuenda et al.,
(2013). These methods are extended to obtain (i) an area level robust
EBLUP (REBLUP) which is the direct result of applying the results
of Sinha and Rao, (2009); (ii) an area level spatial REBLUP (SREB-
LUP) which – to contrast it with Schmid, (2011) – is based on the
FH model instead of the BHF model; (iii) a temporal REBLUP (TREB-
LUP); and (iv) a spatio-temporal REBLUP (STREBLUP). Essentially I
present these models in a comprehensive framework of robust area
level models. This framework includes contributions to the existing
scheme of robust methodology as listed below:

• The robust score functions used by Sinha and Rao, (2009) have
been extended such that they can be used in the context of cor-
related random effects.

• The robust score functions have been combined with the res-
ults of Chambers, Chandra and Tzavidis, (2011) and Chambers,
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Chandra, Salvati et al., (2014) to derive the area level REBLUPs
– the area level SREBLUP, TREBLUP, and STREBLUP – in a
pseudolinear form. The results are presented in general nota-
tion to include the general class of mixed linear models.

• This pseudolinear representation has led to an IRWLS algorithm
for the regression coefficients. Furthermore an algorithm for the
optimisation of the random effects has been proposed which is
also derived from the pseudolinear form. Both solutions can
have the advantage that they reduce to the non robust BLUE es-
timator and EBLUP for the random effects when the influence
function is the identity function.

• Solutions for the variance parameters of the different models
are sought for using a fixed point algorithm based on the results
of Chatrchi, (2012). The solutions for these parameters need to
be tuned for each model.

• Furthermore a simple bias correction for the robust prediction
has been adapted based on the results of Efron and Morris,
(1972). This bias correction is simply the limited translation estim-
ator proposed by Efron and Morris, (1972) which may be useful
when we suspect asymmetric area level outliers.

• And finally the approach of Chambers, Chandra and Tzavidis,
(2011) to the estimation of the MSPE of domain predictions has
been extended for area level models with correlated random ef-
fects. The robust extension here is simply a special case defined
by its pseudolinear representation. In this regard also the para-
metric bootstrap method for the MSPE estimation of Sinha and
Rao, (2009) has been adapted: these results have been directly
applicable without any significant change as they are formu-
lated for the general case of linear mixed model.

These results may not only be useful for the specific models under
consideration but they also present a generic framework for robust
area level models which are based on the class of linear mixed mod-
els.

8.2 implementation

The outcome of this Thesis includes also software packages for the R-
language (R Core Team, 2015). saeRobust (Warnholz, 2016) provides
an implementation of the area level REBLUP, SREBLUP, TREBLUP,
and STREBLUP. In addition to the predictions for each model, three
types of diagnostic plots are provided: normal quantile-quantile plots
for the random effects and model residuals; mean-difference plots for
the predictions; and diagnostic plots for the estimated MSPE. Addi-
tionally predictions can be made using the proposed bias correction.
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For both versions of predictions the pseudolinearisation based MSPE
estimator and the parametric bootstrap are implemented.

In Chapter 4 the main features of this software implementation
have been reviewed where also the stability of the algorithms is in-
vestigated. To this end a model based simulation study is conducted
where the data is generated to represent a numerically challenging
situation. This is accomplished by inducing deterministic outliers of
relatively large magnitude and by using bad starting values.

In principle the results of the stability tests are promising since in
all scenarios acceptable solutions can be found when we set the num-
ber of iterations to a higher value. Acceptable here refers to a value
close to zero at the solution for the respective estimation equation.
This however presents a trade-off between the number of iterations,
stability, and computational demand, which can easily become relev-
ant with temporal data. The key to computationally less demanding
solutions is the choice of starting values or generally an algorithm
which proves to have a higher convergence rate.

In addition to the package saeRobust a software package for imple-
menting model and design based simulation studies in the context of
the SAE field is also provided: saeSim (Warnholz and Schmid, 2016).
This package has already been introduced in Warnholz and Schmid,
(2016); and Chapter 5 is an adaptation of this article to present this
package within the context of this Thesis.

The main design aspect making saeSim a useful tool is that simu-
lations can be composed by combining different components. Fur-
thermore it may provide a coherent framework for the definition of
such components within the R-language: as short single argument
functions which take a data.frame as input and return it modified.
In this regard one goal of this implementation is to propose a reas-
onable way of conducting simulation studies in the R-language. This
may contribute towards the reproducibility of such results within the
field since source code is easier to share and tools are tested to be
correct.

8.3 results

Empirical results can be found in model based simulations in Chapter
6 and a design based simulation study in Chapter 7. The aim of
the model based simulation studies has not been to investigate the
beneficial effect of correlated random effects on domain predictions.
Instead these studies show how the robust and non-robust methods
behave differently under varying settings. However especially in con-
nection with temporal models clear advantages can be observed in
the model based simulations when we make use of the additional
information presented by repeated measurements.
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Overall four simulation studies have been conducted. The study
in Section 6.1 aimed at explaining differences between robust and
non-robust domain predictions in scenarios with correlated random
effects and area level outliers. The effect of area level outliers on
the non-robust methods is that variance parameters of the random
effects are estimated too high. This sacrifices efficiency as the non-
robust predictions are closer to the direct estimator. In this context the
robust counterparts show good properties overall. The bias correction
in this setting appears to have a positive effect on the MSPE in that
this quantity is smaller for outlying domains. This is due to the fact
that the bias for outlying domains is indeed reduced. However the
results also indicate that its own tuning parameter needs to be chosen
with care in practical applications. In some simulation scenarios the
setting has been too conservative and showed a negative effect on the
overall domain predictions.

The study in Section 6.2 provides insights into the performance
of the MSPE estimators – the pseudolinear based approach and the
parametric bootstrap. Both methods provide good results for the ro-
bust predictions with two limitations: First, the parametric bootstrap
fails at approximating the MSPE for outlying domains. Second, the
pseudolinearisation based approach can capture this behaviour; how-
ever this depends on the relation between sampling variance and ac-
tual MSPE of a domain. This is especially problematic with respect
to the bias correction.

Then in a next step the model of simulation is changed in Section
6.3: instead of generating data on the area level we begin with a unit
level population model. This has the advantage that we can take dif-
ferent direct estimators into account as well as the variance estimation
for these direct estimators. However only the case of the standard FH
model has been considered. Here a robust direct method and a gen-
eralised variance function (GVF) have been utilised. We can see that
it is important to use the direct estimator with the smallest variance.
The use of robust direct estimators did not show any improvement
when such estimates were used in an area level model – even in the
presence of unit level outliers. Furthermore the use of a GVF may
prove to be problematic in the presence of unit level outliers. This
topic is commented on again below as the results cannot be regarded
as conclusive but are a first assessment of the issue.

In a design based simulation study presented in Chapter 7 the per-
formance of the non-robust and robust FH model are compared in
a more realistic setting. The target statistic in that study is the tax-
turnover in 20 industry sectors in the Netherlands. The basis of
this analysis is a synthetic population based on the Structural Busi-
ness Survey provided by Statistics Netherlands. Here we have the
combination of unit and area level outliers in combination with an
informative sampling design. The study shows an overall improve-
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ment achieved by using area level models. The robust domain predic-
tions yield an additional advantage in terms of MSPE; however the
bias corrected robust prediction appears to be less effective. Also the
MSPE estimators have been investigated: both methods – the para-
metric bootstrap as well as the pseudolinearisation based approach –
are problematic. A possible reason is that we are in an application
in which the variance parameter of the FH model is estimated to be
close to zero; neither method can handle this.

8.4 remarks and open research questions

In a final step of discussing the results of this Thesis I want to present
three claims. These in themselves may be ambitious but they show
the benefits and current limitations of the results overall:

1. We should favour a robust method for small area predictions.
2. Unit level outliers may or may not be present in a sample; how-

ever this issue cannot be tackled with area level information .
3. One should prefer an established design-unbiased direct estim-

ator when there is a choice.

Taking the results of the various model based simulation studies
we may be tempted to conclude that we should always use robust
estimation methodology. In this context results often suggest a clear
advantage of robust methods when outliers are present. On the other
hand they are never superior but may be considered equivalent when
there are no outliers. This can be seen in Section 6.1 and 6.3 as well
as in Chapter 7. A certain degree of deviation from the normal dis-
tribution may be assumed to be the rule and not an exception in real
world applications and here robust methods may present themselves
as useful.

However an essential point is that practical issues like measuring
the overall Goodness of Fit and variable selection have not been in-
vestigated yet. Hence in order to make the use of such methods
reliable further research is needed. A further limiting factor is the
estimation of the MSPE. The parametric bootstrap and pseudolinear-
isation based approach have proved to be useful in the model based
simulation; however in the design based study we saw the limitation
of these methods when the variance parameter of the FH model is
estimated to be close to zero. At this point it remains unclear how
an established method like the MSPE estimator of Prasad and Rao,
(1990) performs in this setting; a more thorough investigation may be
needed. In addition it may be useful to carefully investigate the pos-
sibility of utilising recent bootstrap methods of Jiongo and Nguimkeu,
(2014) and Mokhtarian and Chambers, (2013). The main problem here
may be the incorporation of correlated random effects.



8.4 remarks and open research questions 133

With respect to unit level outliers the discussion on the area level is
complex and the following is mostly based on the results of Section
6.3. When it is plausible to assume unbiased direct estimates as it
is under the FH model it may be irrelevant if unit level outliers are
considered to be asymmetric or not; on the area level this effect does
not exist anymore. In such a case the FH model is already robust
against unit level outliers since such observations are simply an addi-
tional source of heterogeneity and drive the sampling variances. Do-
mains with large sampling variances are already weighted down by
the standard FH model. Considerable improvement for such domains
can be expected independently of robust estimation techniques.

The effect of unit level outliers may be amplified when we consider
the use of generalised variance functions. The estimated sampling
variances of the domains containing outlying units may be framed as
outlying with respect to the GVF. This topic is discussed in Section
6.3 but this claim needs more investigation and support than offered
in this Thesis. The main problem is that the simulation conducted in
Section 6.3 may not present a case in which we make a fair compar-
ison since a significant benefit from the considered GVF cannot be
observed.

While conducting the model based simulation study of Section 6.3
and the design based study in Chapter 7 several robust direct estim-
ators have been applied. The main problems in using such methods
are – especially in the context of small domains – that these estim-
ators introduce a higher variance for domains which do not contain
outliers. Furthermore we not only need a good direct estimator but
also an estimator for its variance. In this regard the sample mean and
the HT estimator yield more reliable results. Even the problem of
unit level outliers in the context of an informative sampling design –
informative with respect to the target quantity – may be solved since
the inclusion probabilities provide sufficient information to account
for the variability in the data. The use of a robust method combined
with a GVF may still be open to discussion; however in this respect
the issues raised above should be addressed first.

It is perfectly proper to use both classical and
robust/resistant methods routinely, and only worry

when they differ enough to matter. But when they differ,
you should think hard.

— Tukey, (1979)





Part IV

A P P E N D I X





A
A B S T R A C T

The demand for reliable small area statistics from sample surveys
has grown substantially over the past decades due to their growing
use in public and private sectors. The field of Small Area Estimation
aims at producing such statistics. In this Thesis I consider several
spatial and temporal extensions to the Fay-Herriot (FH) Model to im-
prove the mean squared prediction error (MSPE) of predictions for
small domains. Such predictions can be influenced by single observa-
tions in the data; hence the estimation of the model parameters and
predictions is based on the estimation methodology around robust
empirical best linear unbiased predictions (REBLUPs).

With regard to robust area level models four such models are un-
der consideration: the FH model (Fay and Herriot, 1979), the spatial
extension by Pratesi and Salvati, (2008), the temporal extension by
Rao and Yu, (1994), and the spatio-temporal model by Marhuenda
et al., (2013). These methods are extended to obtain (i) an area level
robust EBLUP (REBLUP) which is the direct result of applying the
results of Sinha and Rao, (2009); (ii) an area level spatial REBLUP
(SREBLUP); (iii) a temporal REBLUP (TREBLUP); and (iv) a spatio-
temporal REBLUP (STREBLUP). I present these methods in a compre-
hensive framework of robust area level models. For the estimation of
the MSPE I adapt the parametric bootstrap method from Sinha and
Rao, (2009) as well as the analytical solution based on a pseudolinear
form of Chambers, Chandra and Tzavidis, (2011). In this context also
a bias correction based on the limited translation estimator of Efron and
Morris, (1972) is adapted to account for a potential bias associated to
robust methods.

In addition to the development of these robust methods their im-
plementation in the R-package saeRobust (Warnholz, 2016) is invest-
igated. The package provides an initial version for the application
of the developed methodology. In this regard some numerical stabil-
ity tests are performed and also basic features like diagnostic plots
for model residuals are reviewed. Also an outcome of this Thesis
is the package saeSim (Warnholz and Schmid, 2016) which provides
a framework for simulation studies within the R-language. It aims
at simplifying the configuration of such studies by providing tools
for data generation, sampling, and a link to the parallel computing
fascilities in the R-language.

The methods under consideration are then further investigated in
model and design based simulation studies. Here the performance
of the predictions and the MSPE estimators are studied when area
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level outliers are present. Furthermore I discuss how unit level out-
liers as well as area level outliers may effect domain predictions based
on area level models. This discussion is continued in the context of
a design based simulation. In this study a synthetic population is
utilised based on the Structural Business Survey in the Netherlands.
Here the tax-turnover in 20 industry sectors is targeted. This data in-
cludes unit level outliers, area level outliers, as well as an informative
sampling design.



B
Z U S A M M E N FA S S U N G

Die Nachfrage nach zuverlässigen Statistiken für kleine Gebiete hat
in den vergangenen Jahrzehnten stark zugenommen. Ein Grund da-
für ist der Bedarf solcher Statistiken in der amtlichen Statistik. Oft
basieren Ergebnisse auf Umfragedaten und die Hauptaufgabe des
Forschungsfeldes der Small Area Estimation ist es die Vorhersagewer-
te mit Bezug auf den mittleren quadratischen Vorhersagefehler (MS-
PE) zu optimieren – selbst wenn nur wenige Beobachtungen inner-
halb einzelner Gebiete zur Verfügung stehen. In dieser Arbeit werden
dazu räumliche und zeitliche Erweiterungen des Fay-Herriot (FH)
Models genutzt. Diese Modelle basieren stark auf Verteilungsannah-
men und in diesem Zusammenhang können die Ergebnisse leicht
durch einzelne Beobachtungen beeinflusst werden. Hierzu werden
deshalb räumliche und zeitliche Erweiterungen des FH-Modells mit
Ausreißer-robuster Schätzmethodik kombiniert.

Die Modelle die hierbei genutzt werden sind das FH Modell (Fay
und Herriot, 1979), die räumliche Erweiterung von Pratesi und Sal-
vati, (2008), die zeitliche Erweiterung von Rao und Yu, (1994) und
die räumlich-zeitliche Erweiterung von Marhuenda u. a., (2013). Ba-
sierend auf diesen Modellen werden robuste Alternativen vorgestellt.
Diese sind eingebettet in die Klasse der gemischten linearen Mo-
delle. In der Kombination ergeben sich damit robuste empirische
beste lineare unverzerrte Prediktoren (REBLUPs). Das sind (1) der
REBLUP basierend auf den Ergebnissen von Sinha und Rao, (2009),
(2) ein räumlicher REBLUP (SREBLUP), (3) ein zeitlicher REBLUP
(TREBLUP), und (4) ein räumlich-zeitlicher REBLUP (STREBLUP).
Diese verschiedenen Erweiterungen werden in einem gemeinsamen
Rahmen von robusten Area-Level-Modellen dargestellt, wobei dieser
auf gemischten linearen Modellen aufsetzt. Zur Schätzung des MSPE
werden ein parametrisches Bootstrap-Verfahren nach Sinha und Rao,
(2009) verwendet und die Ergebnisse von Chambers, Chandra und
Tzavidis, (2011) für Area-Level-Modelle erweitert. Zudem wird eine
einfache Korrektur des Vorhersagefehlers – der bei der Verwendung
robuster Verfahren auftreten kann – vorgeschlagen. Diese Korrektur
basiert auf dem limited translation estimator von Efron und Morris,
(1972).

Zusätzlich zu der methodischen Erweiterung der robusten gemisch-
ten linearen Modelle werden auch die entsprechenden Implementie-
rungen in Form von Software Paketen vorgestellt. Das R-Paket
saeRobust (Warnholz, 2016) beinhaltet Funktionen, um alle einge-
führten Verfahren in der Praxis anzuwenden. Zudem werden eini-
ge numerische Eigenschaften der Implementierung dargelegt sowie
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typische Grafiken, um die Güte von Ergebnissen beurteilen zu kön-
nen. Außerdem wird das Paket saeSim (Warnholz und Schmid, 2016)
vorgestellt. Hierbei handelt es sich um ein R-Paket welches das Auf-
setzen von Simulationsstudien vereinfacht. Dabei werden Werkzeuge
zur Datengenerierung, Stichprobenziehung und die Möglichkeit des
parallelen Rechnens gegeben.

Die eingeführten Methoden werden außerdem in model- und desi-
gnbasierten Simulationsstudien untersucht. Dabei werden die statis-
tischen Eigenschaften der Punktschätzungen und auch die der MSPE
Schätzung dargelegt. Diese Untersuchungen basieren auf Daten, die
direkt auf der Gebietsebene generiert werden. Um sowohl einzelne
Beobachtungen als auch gesamte Gebiete als Ausreißer untersuchen
zu können, werden in einer weiteren Simulation Beobachtungen einer
Population simuliert. Der Vorteil dabei ist, dass der gesamte Prozess
der Datengenerierung bis hin zu der Anwendung von Area-Level-
Methoden abgebildet werden kann. In einer designbasierten Studie
werden dann die Steuereinnahmen in 20 Industriesektoren vorherge-
sagt. Diese Studie nutzt eine synthetischen Population, welche auf
dem Structural Business Survey in den Niederlanden basiert. Diese
Untersuchung kombiniert eine informative Stichprobenziehung mit
dem Vorkommen von Ausreißern auf Individual- und Gebietsebene.



C
P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publication:

Warnholz, S. and T. Schmid (2016). “Simulation Tools for Small Area
Estimation: Introducing the R-package saeSim”. In: Austrian Journal
of Statistics 45.1, pp. 55–69.

The results of this Article are the subject matter of Chapter 5. There
I state, again, explicitly that these results have been previously pub-
lished and how I intend to use them in the context of this Thesis.
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