Aus dem Institut für Pathologie der Eberhardt-Karls-Universität Tübingen Abteilung für Molekulare Pathologie Ärztlicher Direktor Prof. Dr. med. Reinhard Kandolf

Eingereicht über das Institut für Virologie des Fachbereiches Veterinärmedizin der Freien Universität Berlin Leiter Prof. Dr. med. vet. Hanns Ludwig

DIE BEDEUTUNG DER ZYTOTOXISCHEN CD8⁺ T – LYMPHOZYTEN IM VERLAUF DER COXSACKIEVIRUS B3 – INDUZIERTEN MYOKARDITIS IM MAUSMODELL

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der Freien Universität Berlin

vorgelegt von
Martina Sauter
Tierärztin aus Stuttgart

Berlin 2003

Journal-Nr. 2703

Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. Leo Brunnberg
Erster Gutachter: Univ.-Prof. Dr. Hanns Ludwig
Zweiter Gutachter: Univ.-Prof. Dr. Reinhard Kandolf
Dritter Gutachter: Univ.-Prof. Dr. Volker Bergmann

Deskriptoren (CAB): Coxsackieviruses, myocarditis, CD8+ lymphocytes, mice

Tag der Promotion: 03. Juni 2003

ABKÜRZUNGEN	5
1. EINLEITUNG	7
1.1. TAXONOMIE	8
1.1.1. Morphologie der Picornaviren	9
1.1.2. Genomstruktur und Replikationszyklus	9
1.2. HUMANPATHOGENE ENTEROVIREN	12
1.2.1. Wirtsspektrum der Coxsackieviren	12
1.2.2. Zellkulturspektrum der Coxsackie B Viren	13
1.2.3. Differenzierung der Serotypen	14
1.2.4. Pathogenese der Coxsackievirus - Infektion	14
1.3. Aspekte der zellulären Zytotoxizität	15
1.3.1. Effektorzellen der zellulären Zytotoxizität	15
1.3.2. Mechanismen der T-Zell-vermittelten Zytotoxizität	17
1.4. CVB3 - MYOKARDITIS IM MAUSMODELL	19
1.4.1. Abhängigkeit des Verlaufs der CVB3-Myokarditis	
von der Genetik des Mausstammes	19
1.4.2. Pathogenese der CVB3-induzierten Myokarditis im Mausmodell	20
1.4.3. Die Rolle von T- und B-Lymphozyten bei der CVB3-Myokarditis	21
2. ZIELSETZUNG	24
3. MATERIAL UND METHODEN	25
3.1. MATERIAL	25
3.1.1. Chemikalien	25
3.1.2. Zellkulturmedien und Zusätze	26
3.1.2. Enzyme	26
3.1.3. Nukleotide und Nukleinsäuren	27
3.1.4. Plasmide	27
3.1.5. Bakterienstämme	27
3.1.6. Antikörper	27
3.1.7. Sonstiges	28
3.1.8. Viren	28
3.1.9. Versuchstiere - ingezüchtete Mausstämme	28
3.2. METHODEN	29
3.2.1. Zellkultur	29
3.2.1.1. Medien und Puffer für die Zellkultur	29
3.2.1.2. Kultivierung von Verozellen	29

3.2.2. Virole	ogische Methoden	30
3.2.2.1.	Virusvermehrung	30
3.2.2.2.	Medien und Lösungen für die Virustitration	30
3.2.2.3.	Virustitration	31
3.2.3. Tierv	rersuch	31
3.2.3.1.	Tierhaltung	32
3.2.3.2.	Infektion und Tötung der Versuchstiere	32
3.2.3.3.	Serumgewinnung und Organentnahme	32
3.2.3.4.	Fixierung der entnommenen Organe	32
3.2.4. Anfe	rtigung von Gewebeschnitten	33
3.2.4.1.	Vorbehandlung der Objektträger	33
3.2.4.2.	Anfertigung von Kryo- und Paraffinschnitten	33
3.2.5. Präp	aration von rekombinanten Plasmiden	34
3.2.5.1.	Puffer und Lösungen für die Plasmidpräparation	34
3.2.5.2.	Plasmidpräparation	35
3.2.5.3.	Linearisierung des Plasmids pCVB3-R1	35
3.2.5.4.	Phenolextraktion	36
3.2.5.5.	Ethanolfällung	36
3.2.5.6.	Konzentrationsbestimmung von Nukleinsäuren	36
3.2.6. Hers	tellung der RNA-Hybridisierungssonden	37
3.2.6.1.	Radioaktive Markierung der RNA-Sonden	37
3.2.6.2.	Sephadex G50 Säulenzentrifugation	38
3.2.6.3.	Limitierte alkalische Hydrolyse der radioaktiv markierten RNA	39
3.2.6.4.	Nichtdenaturierende Agarosegelelektrophorese	39
3.2.7. RNA	/RNA <i>in situ</i> Hybridisierung	39
3.2.7.1.	Allgemeine Vorbereitungsarbeiten zur in situ Hybridisierung	39
3.2.7.2.	Vorbehandlung der Deckgläschen	40
3.2.7.3.	Puffer und Lösungen für die in situ Hybridisierung	40
3.2.7.4.	Vorbereitung der Paraffinschnitte für die in situ Hybridisierung	40
3.2.7.5.	Methode der in situ Hybridisierung	41
3.2.7.6.	Permeabilisierung der Gewebeschnitte	41
3.2.7.7.	Hybridisierung der Gewebeschnitte	41
3.2.7.8.	Posthybridisierung	42
3.2.7.9.	Autoradiographie	43
3.2.7.10.	Entwicklung	43

3.2.7.11.	Hämatoxilin - Eosin - Färbung	44
3.2.8. Isolie	erung enteroviraler RNA aus Myokardgewebe	44
3.2.8.1.	Puffer und Lösungen für die Isolierung enteroviraler RNA	44
3.2.8.2.	Isolierung enteroviraler RNA aus nativem Myokardgewebe	45
3.2.9. Nest	ed RT-PCR und Gelelektrophorese zum Nachweis enteroviraler RNA .	46
3.2.9.1.	Puffer für die nested RT-PCR und Gelelektrophorese	46
3.2.9.2.	Reverse Transkription von RNA und Polymerasekettenreaktion	47
3.2.9.3.	DNA-Agarosegelelektrophorese	49
3.2.10.lmm	unhistochemische Methoden	50
3.2.10.1.	Puffer und Lösungen für die immunhistochemische Markierung	50
3.2.10.2.	Nachweis spezifischer Oberflächenmarker mittels	
	indirekter Immunhistochemie	50
3.2.10.3.	Immunhistochemische Markierung	51
3.2.11.TUN	EL-Assay zum <i>in situ</i> -Nachweis apoptotischer Zellen	52
3.2.12. Verg	gleichende morphometrische und statistische Untersuchungen	
im	Myokard CVB3-infizierter C57BL/6J Mäuse, Perforin knock	
ou	t Mäuse und $ m f R_2$ Mikroglobulin knock out Mäuse	53
3.2.12.1.	Quantifizierung der autoradiographischen Signale	53
3.2.12.2.	Quantifizierung der immunhistochemisch gefärbten Zellen	53
3.2.12.3.	Morphometrische Analyse des myokardialen Gewebeschadens	54
3.2.12.4.	Statistische Untersuchungen	54
4. ERGEBNISSI	E: Vergleichende Untersuchungen zum Verlauf der CVB3-Infektion	
	in C57BL/6J Mäusen, Perforin knock out Mäusen und	
	$oldsymbol{eta}_2$ Mikroglobulin knock out Mäusen	55
4.1. Ergebn	isse der Virustitration	55
4.2. Tierver	suchsplan	56
4.3. Klinisch	ne Beobachtungen und Mortalität	56
4.4. Verglei	ch der histopathologischen Myokardbefunde	
bei CV	B3-infizierten Mäusen	57
4.5. Nachw	eis enteroviraler RNA im Myokard CVB3-infizierter Mäuse mittels	
radioak	tiver RNA-RNA <i>in situ</i> Hybridisierung und RT-PCR	60
4.5.1. Gene	erierung der CVB3-spezifischen Sonde für die <i>in situ</i> Hybridisierung	60
4.5.2. Verg	leich der myokardialen Infektionsmuster in CVB3-infizierten	
Mäus	sen mittels radioaktiver RNA-RNA <i>in situ</i> Hybridisierung	61

	4.5	.3.	Nachweis enteroviraler RNA im Myokard CVB3-infizierter	
			Mäusen mittels RT-PCR	64
4	.6.	Q	ualitative und quantitative Differenzierung der Entzündungszellinfiltrate	
		in	n Myokard CVB3-infizierter Mäuse	66
	4.6	.1.	Differenzierung der mononukleären Entzündungszellinfiltrate	66
	4.6	.2.	Qualitative Analyse der Infiltratzellen im Myokard CVB3-infizierter Mäuse	67
	4.6	.3.	Quantifizierung der Infiltratzellen im Myokard CVB3-infizierter Mäuse	69
4	.7.	Ν	achweis apoptotischer Zellen im Myokard CVB3-infizierter Mäuse	71
4	.8.	V	erlauf der CVB3-Infektion in den verschiedenen Organen infizierter Mäuse	72
	4.8	.1.	Histologische Untersuchung verschiedener Organe infizierter Mäuse	
			während der akuten und chronischen Phase der CVB3-Myokarditis	73
	4.8	.2.	Nachweis viraler RNA in verschiedenen Organen CVB3-infizierter Mäuse	
			mittels in situ Hybridisierung	74
5.	DIS	SKL	JSSION	77
6.	ZU	SA	MENFASSUNG	89
7.	SU	ΜN	//ARY	90
8.	LIT	ER	ATURVERZEICHNIS	91
DA	NKS	AG	SUNG1	106
LEI	BEN	SLA	AUF 1	107
SF	I RS	TS	TÄNDIGKEITSERKI ÄRUNG	108

ABKÜRZUNGEN

Abb. Abbildung

AP Alkalische Phosphatase
APC antigen presenting cell

bp Basenpaare

BSA Bovines Serumalbumin
CD cluster of differentiation

cpm counts per minute
CVB3 Coxsackievirus B3
depc Diethylpyrocarbonat
DNA Deoxyribonucleicacid

HIV Human Immunodeficiency Virus

HSV Herpes simplex Virus
IgG Immunglobulin G
IgM Immunglobulin M

LB Medium Luria Bertani Medium

LCMV Lymphozytäres Choriomeningitis Virus
MIP macrophage inflammatory peptide
MOPS Morpholinopropansulfonsäure

PCR polymerase chain reaction/Polymerasekettenreaktion

pfu plaque-forming unit p.i. post infectionem

PBS phosphate buffered saline

OD Optische Dichte

RANTES regulated upon activation, normal T cell expressed

and secreted

RNA Ribonucleicacid
RNAguard RNase-Inhibitor
rpm rounds per minute
RT Reverse Transkription

rTth-Polymerase reverse Thermus thermophilus DNA-Polymerase

SDS Natriumdodecylsulfat
SSC standard saline citrate

Tag-Polymerase Thermus aquaticus DNA-Polymerase

Abkürzungen

UV ultraviolett

TCR T-cell receptor

DANKSAGUNG

Die vorliegende Arbeit wurde am Pathologischen Institut der Eberhard-Karls-Universität Tübingen in der Abteilung für Molekulare Pathologie, Ärztlicher Direktor Prof. Dr. R. Kandolf, durchgeführt.

Herrn Prof. Dr. R. Kandolf danke ich für den Arbeitsplatz, Mittel und Unterstützung der Arbeit.

Herrn Prof. Dr. H. Ludwig danke ich für die Vertretung der Arbeit vor dem Fachbereich Veterinärmedizin der Freien Universität Berlin.

Mein besonderer Dank gilt Frau Dr. Karin Klingel für die ausdauernde Betreuung, intensive Unterstützung und freundschaftliche Zusammenarbeit bei der Durchführung dieser Arbeit.

Ferner bedanke ich mich bei allen Mitgliedern der Abteilung für Molekulare Pathologie für die freundschaftliche Arbeitsatmosphäre und die zahllosen, hilfreichen Ratschläge – vor allem Carmen Ruoff und Sandra Bundschuh möchte ich für ihre Unterstützung beim Anfertigen von unzähligen Gewebeschnitten danken.

Außerdem ein herzliches Dankeschön an meine Familie, die mich bei allen meinen Vorhaben stets unterstützt hat.

Mein ganz spezieller Dank geht an Heinrich Heller, der mir in einer entscheidenden Phase die nötigen Impulse zur Fertigstellung der vorliegenden Arbeit gegeben hat.

LEBENSLAUF

Geboren am 22. Januar 1966 in Stuttgart.

Eltern:

Dipl. Ing. (FH) Werner Sauter, Jahrgang 1925, Unternehmer im Ruhestand Annemarie Sauter geb. Guth, Jahrgang 1927, Buchhalterin im Ruhestand

Schulbildung:

1972-1976 Römergrundschule in Stuttgart

1976-1985 Gymnasium Königin-Olga-Stift in Stuttgart; Erlangung der allgemeinen

Hochschulreife

Studium:

1987 Beginn des Studiums der Veterinärmedizin an der Freien Universität

Berlin

1993 Beendigung des Studiums mit Ablegung des 3. Staatsexamens

18. Januar 1994 Erlangung der Approbation als Tierärztin

Seit September 1994 beschäftigt in der Abteilung für Molekulare Pathologie, Ärztlicher Direktor Prof. Dr. R. Kandolf, Universitätsklinikum Tübingen. Von 1998-2002 Dissertation mit dem Thema "Die Bedeutung der zytotoxischen CD8⁺ T-Lymphozyten im Verlauf der CVB3-induzierten Myokarditis im Mausmodell".

SELBSTSTÄNDIGKEITSERKLÄRUNG

Hiermit bestätige ich, daß ich die vorliegende Arbeit selbstständig angefertigt habe. Ich versichere, daß ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Tübingen 2003

Martina Sauter