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1 Introduction

1.1 Motivation

A main objective of numerical analysis and modeling is the simulation of
complex technological problems, arising in engineering and natural sciences.
Numerical simulations help to understand, design and optimize, or control
and characterize systems or components.

Usually the behaviour of a system is described by physical quantities like
temperature, stress, or electromagnetic fields. These fields are solutions to
partial differential equations (PDEs), which are stated on the domain of in-
terest with appropriate boundary conditions. Since in general the analytical
solution to a PDE is unavailable, a discretization procedure [70] such as finite
element [51, 37], finite difference [105], discontinuous Galerkin [28], or finite
volume method [43, 101] has to be applied. The discretized system is then
solved numerically. For real world problems the numerical solution is usually
expensive, regarding computational resources and time. Computational times
can be of the order of seconds, up to hours and days, and even many problems
can not be solved at all with reasonable effort due to their complexity.

In engineering applications like optimization or parameter estimation the
discretized models have to be solved multiply for different configurations of the
system under consideration, for example, regarding geometrical or material
parameters. Hence, a large number of solutions for different parameters are
required in reasonable time (many-query context), or a single solution has to
be computed very fast (real-time context). Even for moderate problems these
requirements can often not be met with above discretization methods.

In applications usually the output of interest is not the solution of the PDE
itself, but some derived quantities. Hence, a method for fast and reliable eval-
uation of input-output relationships is desirable. The input are, for example,
geometrical or material parameters of the system under consideration. The
output is given implicitly as a functional of the field variable, which is the
solution to the input parameter dependent PDE.

The reduced basis method offers a way to construct approximations to such
input-output relationships, which can be evaluated very fast. The key is an
online-offline decomposition. In a so-called offline phase the reduced model is
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1 Introduction

built self-adaptively. In an actual application (online phase) only the reduced
model is solved. Rigorous error estimation techniques allow to control and
quantify the accuracy of the approximative reduced model, such that reduced
basis solutions are reliable.

1.2 Earlier work

In the 1970s and 1980s the basic idea of using a small number of global shape
functions [21] as a reduced basis was first applied to finite element problems
in the field of linear and nonlinear structural analysis [57]. The method was
further analyzed in [4, 19, 68, 75], including the field of error estimation. First
extensions of the reduced basis method began into the field of fluid dynamics
[24, 34, 61]. The drawback of these earlier works was that the operation count
for a reduced basis computation still depended on the number of finite element
degrees of freedom. In [69, 48, 99, 100] efficient online-offline decomposition
strategies for affinely parametrized problems were developed together with a
posteriori error estimation concepts. For non-affine parameter dependencies
the empirical interpolation method [7] was introduced.

An overview of state-of-the-art reduced basis techniques for affinely pa-
rametrized linear coercive elliptic problems is given in [82, 59]. Results on
parabolic and hyperbolic problems can be found in [76, 77, 22] and [42] re-
spectively, and [55] covers non-affine parametrizations.

Application areas range from mechanics [82, 54, 50], fluid dynamics [72,
83, 81, 38], medicine [78, 71], heat and mass transfer [58, 22, 96] to acous-
tics [92], or quantum mechanics [15, 49]. Only little work has been done in
the field of electromagnetics. In [16] a 2D electromagnetic cavity problem
with parametrized material properties is considered as an example. In [107]
the reduced basis method is used for fast computation of geometrically pa-
rametrized 2D electromagnetic scattering problems, however, only structured
rectangular grids are used, and the field of error estimation is not covered.

The reduced basis method has further been applied to real-time and many-
query applications like inverse problems [54], parameter estimation [45, 46],
shape optimization [78, 79, 80], and optimal control [73].

Application of the reduced basis method to finite volume schemes can be
found in [26, 27].

10



1.3 Thesis contribution

1.3 Thesis contribution

The online and offline costs of state-of-the-art reduced basis methods mainly
depend on two quantities: first the dimension of the reduced basis space N
and second the number of terms Q in the affine expansion of the system bi-
linear form. Strategies for the case of high values for Q are not addressed
in current research. In [82] the problem of poor online and offline perfor-
mance is mentioned together with the necessity of efficient “reduced basis
triangulations” for geometrically parametrized problems. However, for com-
plicated geometries such efficient triangulations are not always possible, or
even efficient reduced basis triangulations lead to affine expansions with high
Q. Especially error estimation then becomes extremely expensive and often
infeasible. For some of our application examples, well-established techniques
would lead to memory requirements of the order of Terabytes, making the re-
duced basis method non-applicable. Therefore, we develop a novel method for
estimation of the residuum in the reduced basis context, which is a key ingre-
dient for a posteriori error estimation concepts. The novel estimator is orders
of magnitude faster than current techniques, leads to substantial memory sav-
ings, and enables application of the reduced basis method to a wider class of
problems. Since the developed error estimator only contains an estimate to
the exact norm of the residuum, the error bounds are not rigorous anymore.
In numerical experiments, however, we will demonstrate, that the residuum
estimate provides a very accurate approximation to the true residuum.

Especially problems in 3D lead to affine expansions with high number of
terms and are, to our knowledge, not addressed in actual research. The ap-
plication of the reduced basis method to geometrically parametrized finite
element problems in three spatial dimensions, therefore, also lies in the focus
of our work. The problem class of Maxwell scattering problems on unbounded
domains, which is considered in the thesis, also has not been addressed so far.

Furthermore, we develop a new technique for efficient reduced basis compu-
tation of outputs of interest for systems subject to a large number of different
sources. Usually, the online costs computing outputs of interest scales linearly
with the number of sources. With our technique the costs become basically
independent on the number of sources. In nano-optical applications multiple
sources are a common situation, e.g., arising when a system is illuminated
by a complex light source, which is modeled by a large number of different
incoming fields.

11



1 Introduction

1.4 Thesis outline

The thesis is structured as follows. In Chapter 2 we set the mathematical
and physical background for investigation of the reduced basis method and
its application to electromagnetic scattering problems. Besides recapitulating
important results from functional analysis and exterior calculus, we review
Maxwell’s equations.

In Chapter 3 the mathematical formulation of electromagnetic scattering
problems on unbounded domains is given. As an important aspect we give
different concepts of transparent boundary conditions.

Since the reduced basis method gives approximative solutions to a given
problem, error estimation is an important topic. This is subject of section
4. We derive a posteriori error bounds for non-coercive elliptic variational
problems, which will be used estimating errors of reduced basis solutions.

Chapter 5 contains our main work on the reduced basis method. We develop
our contributions and give state-of-the art results for efficient online-offline
decomposition, error estimation, and construction of reduced basis spaces.

In Chapter 6 we finally apply the developed reduced basis techniques to
a number of challenging nano-optical problems. These include a real world
inverse scatterometry problem and shape optimization of nano-optical systems
in the field of computational lithography.

12



2 Preliminaries

In the following we summarize theoretical background, necessary for mathe-
matical formulation of our problem setup and analysis of the reduced basis
method. We start with a review of important definitions and results from
functional analysis. Then we cover important concepts of exterior calculus,
which are used for formulation of the electromagnetic scattering problem and
derivation of its affine parametrization.

Secondly we review Maxwell’s equations, which serve as the fundamental
equations, modeling electromagnetic scattering problems.

2.1 Mathematical background

2.1.1 Functional analysis

Tools from functional analysis will be used extensively in the analysis of the
reduced basis method. Therefore, we review important results and definitions
in the following, also introducing our notation. We will mostly follow [74, 102,
18], where omitted proofs can be found.

Hilbert space

Electromagnetic fields, which are computed numerically, are elements of cer-
tain Hilbert spaces. We start with the following definition:

Definition 1. Let X be a real (complex) vector space. A function ||·||X from
X to R is called a norm if it satisfies the following conditions for all x, y ∈ X
and α ∈ R(C):

(i) ||x||X ≥ 0 ∀x ∈ X,

(ii) ||x||X = 0 ⇔ x = 0,

(iii) ||αx||X = |α| ||x||X ,

(iv) ||x + y||X ≤ ||x||X + ||y||X .

The pair (X, ||·||X) is called normed linear space.

13



2 Preliminaries

A second ingredient to a Hilbert space is a scalar product. We restrict us to
complex vector spaces in the following:

Definition 2. Let X be a complex vector space. A function (·, ·)X on X ×
X is called scalar product or inner product if it satisfies the following
conditions for all x, y, z ∈ X and α ∈ C:

(i) (x, x)X ≥ 0 and (x, x)X = 0 ⇔ x = 0,

(ii) (x, y + z)X = (x, y)X + (x, z)X ,

(iii) (x, αy)X = α (x, y)X ,

(iv) (x, y)X = (y, x)X ,

where the bar denotes complex conjugation. The pair (X, (·, ·)X) is called
inner product space.

Two elements x, y of an inner product space are said to be orthogonal if
(x, y)X = 0. For each inner product space one can define the norm ||x||X =
√

(x, x)X . Having a norm at hand, completeness of a normed space is defined
as follows:

Definition 3. A normed space in which all Cauchy sequences converge is
called complete.

Now we have everything together for the definition of a Hilbert space:

Definition 4. A complete inner product space is called Hilbert space.

The dual space of a Hilbert space is defined as follows:

Definition 5. Let X be a Hilbert space. The space of all linear mappings
form X to C is called dual space of X and is denoted by X ′. The elements
of X ′ are called continuous linear functionals. For R, S ∈ X ′, x ∈ X and
α ∈ C we define

(αR)(x) = α R(x),

(R + S)(x) = R(x) + S(x),

14



2.1 Mathematical background

which makes X ′ a linear space. Furthermore, we can define a norm ||·||X′ on
X ′, called dual norm:

||S||X′ = sup
x 6=0

||S(x)||X
||x||X

,

which makes X ′ a normed linear space. Instead of S(x), we will often write
Sx.

Now an important theorem can be stated, which establishes a connection
between the elements of a Hilbert space and its dual space:

Theorem 1 (Riesz representation theorem). Let X be a Hilbert space with
dual X ′. For each S ∈ X ′, there is a unique yS ∈ X such that S(x) = (x, yS)X

for all x ∈ X. Furthermore, we have ||yS||X = ||S||X′ . We call yS the Riesz
representation of S.

Proof. Here we only proof the equality of the norm of S with the norm of its
Riesz representation. We start with the definition of the dual norm and use
the Riesz representation of S:

||S||X′ = sup
x 6=0

||S(x)||X
||x||X

= sup
x 6=0

|(x, yS)X |
||x||X

.

Using the Cauchy-Schwarz inequality we get:

||S||X′ ≤ sup
x 6=0

||x||X ||yS||X
||x||X

= ||yS||X .

Since yS ∈ X, we also have:

||S||X′ = sup
x 6=0

|(x, yS)X |
||x||X

≥ |(yS, yS)X |
||yS||X

= ||yS||X ,

which concludes the proof.
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2 Preliminaries

Bilinear forms

For application of the finite element method, PDEs are stated in weak form.
This formulation involves bilinear forms:

Definition 6. Let X be a Hilbert space. A mapping

a : X × X → R (C)

(x, y) 7→ a(x, y),

is called a bilinear (sesquilinear) form if for each α, β ∈ R (C) and x, y, z ∈
X the following relations hold:

(i) a(αx + βy, z) = α a(x, z) + β a(y, z),

(ii) a(x, αy + βz) = α a(x, y) + β a(y, z).

For notational convenience, and since Maxwell’s equations are stated on com-
plex Hilbert spaces, we will give the following results only for sesquilinear
forms. The Riesz representation theorem has an important corollary.

Corollary 1. Let a(·, ·) be a sesquilinear form which satisfies:

|a(x, y)| ≤ C ||x||X ||y||X , (2.1)

for all x, y ∈ X. Then there exists a unique bounded linear transformation T
from X to X such that:

a(x, y) = (y, Tx)X .

The norm of T is the smallest constant C satisfying (2.1).

Sesquilinear forms can have the following important properties [10]:

Definition 7. A sesquilinear form a on a normed linear space X is:

(i) bounded or (continuous) if there is a constant R ∋ γ < ∞ such that:

|a(x, y)| ≤ γ ||x||X ||y||X , ∀x, y ∈ X. (2.2)

The smallest γ such that (2.2) holds is called the continuity constant
of a.
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2.1 Mathematical background

(ii) coercive if there is a constant R ∋ α > 0 such that:

|a(x, x)| ≥ α ||x||2X , ∀x ∈ X. (2.3)

The largest α such that (2.3) holds is called the coercivity constant
of a.

(iii) hermitian or symmetric if:

a(x, y) = a(y, x) , ∀x, y ∈ X.

For non-coercive sesquilinear forms the coercivity property can be generalized:

Definition 8. Let a be a sesquilinear form on a normed linear space X. The
inf-sup constant of a is defined as:

β = inf
x∈X

sup
y∈X

|a(x, y)|
||x||X ||y||X

. (2.4)

A sesquilinear form is said to satisfy the Babuska-Brezzi condition if β > 0.

Solvability of variational problems

We look at the following variational problem:

Problem 1. Let a be a sesquilinear form on X and f ∈ X ′.
Find x ∈ X such that:

a(x, y) = f(y) , ∀y ∈ X. (2.5)

The following lemma states existence and uniqueness of a solution x for coer-
cive sesquilinear forms [10]:

Lemma 1 (Lax-Milgram). Suppose a is a bounded coercive sesquilinear form.
Then for each f ∈ X ′ there exists a unique solution x ∈ X to (2.5) with

||x||X ≤ γ

α
||f ||X′ ,

where γ and α are the continuity and coercivity constant of a.

17



2 Preliminaries

For the non-coercive case the lemma can be generalized [51]:

Lemma 2. Suppose a is a bounded sesquilinear form, which satisfies the
Babuska-Brezzi condition. Then for each f ∈ X ′ there exists a unique solution
x ∈ X to (2.5) with

||x||X ≤ γ

β
||f ||X′ ,

where γ and β are the continuity and inf-sup constant of a.

Lp spaces

We now introduce important classes of Hilbert spaces. These are specific
function spaces, which are used when stating PDEs weakly.

The integrals in the following are defined in the Lebesgue sense. Further-
more, in the following we assume that all functions are measurable. We say
that some property holds almost everywhere (a.e.), if it holds on a set with
Lebesgue measure zero.

From now on let Ω ⊂ Rn. We start with the definition of following spaces:

Lp(Ω) :=

{

f : Ω → C :

ˆ

Ω

|f |p < ∞
}

, 1 ≤ p < ∞,

||f ||∗Lp(Ω) :=

(
ˆ

Ω

|f |p
)1/p

.

These are spaces of p-integrable functions. For the case p = ∞ we have to
define the essential supremum:

Definition 9. Let f be a real-valued, measurable function. The essential
supremum of f is defined by:

ess sup f = inf {c ∈ R : |f | < c (a.e.)} .

Then we can define:

L∞(Ω) := {f : Ω → C : ess sup f < ∞} ,

||f ||∗L∞(Ω) := ess sup f.

The problem with above spaces is that ||·||∗Lp(Ω) only defines a semi-norm on
Lp(Ω), since all functions which are zero a.e. have zero norm. Let us denote
the kernel of the semi-norm by:

Np := {f : f = 0 (a.e.)}.

18



2.1 Mathematical background

This kernel is used to define an equivalence relationship ∼Np
:

f ∼Np
g ⇔ f − g = 0 (a.e.).

The space Lp(Ω) is then defined as the following quotient space:

Lp(Ω) := Lp(Ω)/ ∼Np
.

Although the members of Lp are equivalence classes [f ] of functions, a single
representation f can be used, whenever the result does not depend on the
specific representation. In the following we will mostly use the space L2(Ω),
i.e., the set of quadratically integrable functions. On L2(Ω) we can define the
following scalar product:

(u, v)L2(Ω) :=

ˆ

Ω

u v, (2.6)

and the associated norm:

||u||L2(Ω) :=

(
ˆ

Ω

uu

)1/2

,

which makes it a Hilbert space.

Sobolev spaces

For the definition of Sobolev spaces we need the concept of weak derivatives,
which are defined, utilizing test functions.

Definition 10. Let C∞
c (Ω) denote the space of infinitely differentiable func-

tions φ : Ω → R, with compact support in Ω. The members of C∞
c (Ω) will be

called test functions.

Now let Lp
loc(Ω) be the set of locally integrable functions:

Lp
loc(Ω) := {f : f ∈ Lp(U) for all compact sub-domains U ⊂ Ω} .

Then we define:

Definition 11. Suppose u ∈ L1
loc(Ω), and α is a multi-index α = (α1, . . . , αn).

Suppose there exists a function v ∈ L1
loc(Ω) such that:

ˆ

Ω

u∂αφ = (−1)|α|
ˆ

Ω

vφ, ∀φ ∈ C∞
c (Ω),

with ∂α = ∂α1
· · ·∂αn

and |α| =
∑n

i=1 αi. Then we call v the αth-weak
partial derivative of u and formally write ∂αu = v. If no such v exists, we
say that u does not possess a weak αth-weak partial derivative.
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2 Preliminaries

If it exists, the weak derivative of a function is unique [18]. Now Sobolev
spaces can be defined:

Definition 12. The Sobolev space is defined by

W k,p(Ω) =
{
u ∈ L1

loc(Ω) : ∀α with 0 ≤ |α| ≤ k, ∂αu exists, and ∂αu ∈ Lp(Ω)
}

.

For the important case p = 2, one writes Hk(Ω) = W k,2(Ω). On the Sobolev
space Hk(Ω) a scalar product:

(u, v)Hk(Ω) =
∑

|α|≤k

ˆ

Ω

∂αu∂αv,

and associated norm:

||u||Hk(Ω) =




∑

|α|≤k

ˆ

Ω

∂αu∂αu





1/2

,

can be defined, which makes it a Hilbert space.

H(curl) spaces

We already introduced the concept of weak partial derivatives, acting on
scalar functions. The solution to Maxwell’s equations, however, are vec-
torial functions in R3. In the following we will introduce the appropriate
Sobolev space [51]. The definition of the L2 scalar product (2.6) can trivially
be extended to vectorial functions. With u = (u1, u2, u3) ∈ (L2(Ω))

3
and

v = (v1, v2, v3) ∈ (L2(Ω))
3

we define the (L2(Ω))
3

inner product and norm
according to:

(u,v)(L2(Ω))3 =

ˆ

Ω

3∑

j=1

ui vi,

||u||(L2(Ω))3 =
√

(u,u)(L2(Ω))3 .

In Maxwell’s equations the curl-operator appears as differential operator and
has to be generalized for functions in (L2(Ω))

3
, i.e., in the weak sense. Since

the curl-operator only involves partial derivatives, this offers no principle
difficulties:

curl u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1, ) .

All derivatives are understood in the weak sense.
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The variational formulation of Maxwell’s equations is stated on the following
Sobolev space:

Definition 13. The space of three dimensional vectorial functions u in (L2(Ω))
3

with curl in (L2(Ω))
3

is defined as:

H (curl, Ω) =
{

u ∈
(
L2(Ω)

)3
: curl u ∈

(
L2(Ω)

)3
}

. (2.7)

The norm in the space H (curl, Ω) is defined by:

||u||H(curl,Ω) =
(

||u||2(L2(Ω))3 + ||curl u||2(L2(Ω))3

)1/2

.

Boundary conditions

For the solutions of PDEs an important class of boundary conditions are
Dirichlet boundary conditions, i.e., the value of a function is fixed on the
boundary of the domain of interest Ω. For simplicity we will consider zero or
essential Dirichlet boundary conditions in the following. Since the boundary
Γ = ∂Ω has measure zero, a straightforward definition like “f |Γ = 0” makes
no sense for functions in L2(Ω) or H (curl, Ω). Instead we have the following
definition:

Definition 14. The space of functions in H (curl, Ω) satisfying essential
Dirichlet boundary conditions is defined by:

H0 (curl, Ω) = closure of (C∞
0 (Ω))3 in the H (curl, Ω)-norm, (2.8)

where C∞
0 (Ω) is the set of infinitely differentiable functions vanishing on ∂Ω.

For motivation of above definition we first give the following theorem, which
also serves as an alternative definition of the space H (curl, Ω):

Theorem 2. Suppose Ω is a bounded Lipschitz domain in R3. Then the

closure of
(
C∞(Ω)

)3
in the H (curl, Ω)-norm is H (curl, Ω).

The proof can be found in [51]. The theorem shows that each function in

H (curl, Ω) is a limit of functions in
(
C∞(Ω)

)3
in the H (curl, Ω)-norm. The

definition of essential Dirichlet boundary conditions for H0 (curl, Ω) (2.8) is
realized by taking the closure in the same norm but of, the function space
(C∞

0 (Ω))3, whose elements satisfy the boundary condition.
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2.1.2 Exterior Calculus

In this Section we summerize results about differential forms, which are used
for formulation of Maxwell’s equations in coordinate-independent form. In
our presentation we mainly follow [36, 20].

Our goal is to describe the following integrals:

ˆ

L

Adx + Bdy + Cdz,
¨

S

Ddydz + Edzdx + Fdxdy,
˚

V

Gdxdydz,

where L, S, V is a line, surface, and volume in R3. Differential geometry and
the so-called exterior calculus allow an elegant description of these expressions.
L, S, V are manifolds and the integrands are exterior differential forms, which
will be defined in the following Sections.

Manifolds

For the present work it is sufficient to consider manifolds as subsets of Rn.
In this Section we will use the terms diffeomorph, differentiable, etc. in the
C∞-sense.

Definition 15. A subset M ⊂ Rn is called a k-dimensional sub-manifold
of R

n, if for each p ∈ M there is an open neighbourhood W of p in R
n and a

diffeomorphism H : W
∼=→ W ′ onto an open subset W ′ ⊂ R

n such that:

H(M ∩ W ) = (Rk × 0n−k) ∩ W ′.

The mapping H is called exterior chart.

This means, for each point p of a k-dimensional sub-manifold M , we can find
an open neighbourhood W in R

n such that M ∩ W is diffeomorph to R
k.

Examples are smooth curves in R3, which are 1-dimensional sub-manifolds,
or the boundary of a torus, which is a two dimensional sub-manifolds of R3.

Considering sub-manifolds of Rn, the mapping H is called exterior chart,
since its domain includes points which are not in M . Taking the intersection
of W and M we get the (interior) chart:
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2.1 Mathematical background

Definition 16. Let M be a k-dimensional sub-manifold of R
n and H : W →

W ′ an exterior chart. The chart h is defined by the restriction of H as follows:

h : U
∼=→ U ′, (2.9)

with chart domain U = M ∩ W and U ′ × 0n−k = (Rk × 0n−k) ∩ W ′. The
inverse mapping is called a local parametrization of M :

ϕ := h−1 : U ′ → U. (2.10)

Next we have to construct tangent spaces of sub-manifolds. We start with
the following definition.

Definition 17. Let M be a k-dimensional sub-manifold of Rn and p ∈ M .
Suppose α : (−ǫ, ǫ) → M is a differentiable curve with α(0) = p, then α̇(0) ∈
Rn is called tangential vector of M at point p.

Tangential vectors can be defined in several alternative ways [36, 20], however,
the above definition is probably most illustrative.

Definition 18. Let M be a k-dimensional sub-manifold of Rn and p ∈ M .
The set of all tangential vectors at p is called tangential space of M at point
p and is denoted by TpM .

At each p ∈ M the tangential space TpM is a k-dimensional vector space.
Furthermore, we can collect all tangential spaces of a manifold and get:

Definition 19. The tangential bundle of a manifold M is defined by.

TM =
⋃

p

(p, TpM) .

Alternating r-Forms

Next we define objects which operate on r-dimensional vector spaces.

Definition 20. Let V be a k-dimensional vector space. We call

ω : V × · · · × V
︸ ︷︷ ︸

r-times

→ R

an alternating r-form on V if it is multi-linear and alternating, i.e., for
vi, vj ∈ V :

ω(· · · vi · · · vj · · · ) = −ω(· · · vj · · · vi · · · ).
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In order to motivate this definition, we look at a special alternating 3-form on
the vector space R3. Let v1, v2, v3 ∈ R3. Then the determinant det ([v1, v2, v3])
of the matrix, whose i-th column is vi, is an alternating 3-form, which mea-
sures the volume spanned by the parallel-epiped (v1, v2, v3). Loosely spoken
we can say that alternating r-forms measure r-dimensional volumes. Differ-
ent alternating r-forms, acting on the same vector space, can be added and
multiplied by real numbers, which gives rise to the following definition.

Definition 21. The vector space of alternating r-forms on V is denoted by
Altr V . Its dimension is dim Altr V =

(
k
r

)
, where k = dim V . We define

Alt0 V = R

We can define the product of an alternating r-form ω and s-form η. A straight-
forward definition like ω(v1, . . . , vr)η(vr+1, . . . , vr+s), however, would give a
non-alternating form. Therefore, the product has to be anti-symmetrized,
which is done defining the wedge product.

Definition 22. Let ω ∈ Altr V and η ∈ Alts V . Then the wedge product
∧ : Altr V × Alts V → Altr+s V is defined by:

(ω ∧ η) (v1, ..., vr+s) =
1

r!s!

∑

τ∈Sr+s

sgn τ ω
(
vτ(1), ..., vτ(r)

)
η
(
vτ(r+1), ..., vτ(r+s)

)
,

where Sr+s is the set of all permutations of (1, . . . , r + s). The wedge product
has the following important properties. It is:

(i) bilinear,

(ii) associative (η ∧ ρ) ∧ φ = η ∧ (ρ ∧ φ),

(iii) anti-commutative η ∧ ρ = (−1)rsρ ∧ η,

(iv) η ∧ 1 = η for 1 ∈ Alt0 V = R.

We notice that alternating 1-forms are linear mappings from V to the real
numbers, i.e., Alt0 V ∼= V ′. The basis vectors of Alt0 V are often denoted by
dxi. Using the wedge product, the basis vectors of Altr can be given as:

dxµ1 ∧ · · · ∧ dxµr , with µ1 < µ2 < · · · < µr. (2.11)

If the basis is given in non ascending order, it can be brought to above form,
using property (iii) of Definition 22 of the wedge product.
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Differential r-Forms

In order to use alternating r-forms on the tangent spaces of a manifold M ,
we have to assign each p ∈ M its own alternating r-form.

Definition 23. Let M be a k-dimensional sub-manifold of Rn. We define a
differential r-form (or shortly r-form) as a mapping:

ω : M → Altr TM =
⋃

p

Altr TpM

p 7→ ωp,

with ωp ∈ Altr TpM :

ωp : TpM × · · · × TpM
︸ ︷︷ ︸

r-times

→ R.

The vector space of r-forms on a manifold M is denoted by ΩrM . We define
Ω0M = C∞(M, R) as the set of smooth functions on M .

Using the representation of the basis of Altr TpM (2.11), each differential
form can be given as follows:

Corollary 2. Let M be a k-dimensional sub-manifold of Rn and U a chart
domain of M . Then ω ∈ ΩrU can be given by its component functions:

ω =
∑

µ1<···<µr

ωµ1...µr
duµ1 ∧ · · · ∧ duµr . (2.12)

with ωµ1...µr
= ωµ1...µr

(p).

The wedge product of alternating r-forms is transferred pointwise to differen-
tial r-forms:

Definition 24. Let M be a k-dimensional sub-manifold of R
n. The wedge

product ∧ : ΩrM × ΩsM → Ωr+sM is defined by:

(ω ∧ η)p = ωp ∧ ηp ∈ Altr+s TpM , ∀p ∈ M.

We will see later that the wedge product of differential forms on sub-manifolds
in R3 can be interpreted as well-known scalar or vector products of vector
fields. As an important concept next we introduce the exterior derivative,
which translates the differential operators grad, curl, and div to the language
of differential forms. The exterior derivative d is a mapping from ΩrM →
Ωr+1M . It is defined by the following definition and theorem:

25



2 Preliminaries

Definition 25. Let M be a k-dimensional sub-manifold of R
n. There exists

a unique sequence

Ω0M
d−→ Ω1M

d−→ Ω2M
d−→ . . .

of linear mappings which fulfills:

(i) for f ∈ Ω0M , df ∈ Ω1M is the usual differential of f ,

(ii) d ◦ d = 0,

(iii) product rule: for ω ∈ ΩrM : d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

dω is called the exterior derivative of ω.

The component representation of the 1-form df on a chart domain U is anal-
ogously to (2.12) given by:

df =
k∑

µ=1

∂µfduµ. (2.13)

It can be shown that the coordinate representation of the r + 1-form dω is
given by:

dω =
∑

µ1<···<µr

d(ωµ1...µr
) ∧ duµ1 ∧ · · · ∧ duµr , (2.14)

where d(ωµ1...µr
) is the differential of the component function ωµ1...µr

(p) ∈
Ω0M defined in (2.13). The coordinate representation (2.14) of the exterior
derivative will be used to translate d to the differential operators grad, curl,
and div of classical vector analysis.

Stokes theorem

Now we are ready to integrate differential forms. For definition of the integral
of a differential form, the coordinate representation (2.12) is utilized. For
simplicity we look at differential forms whose support is restricted to a single
chart domain.

Definition 26. Let M be a k-dimensional oriented [36] sub-manifold of Rn,
ω ∈ ΩkM , and U a chart domain of M . Let supp ω ⊂ U and ϕ : U ′ → U a
parametrization of U . If the k-dimensional Riemann integral

ˆ

U ′

ωϕ(u′)d
ku′ =:

ˆ

M

ω

exists, then it does not depend on the choice of the chart and is called integral
of ω over M .
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2.1 Mathematical background

We notice that k-forms are integrated over k-dimensional manifolds, hence
1-forms are integrated along lines, 2-forms over surfaces, and 3-forms over
volumes. Using the exterior derivative, the classical Stokes and Gauß integral
theorems can be given in a uniform way:

Theorem 3 (Stokes theorem). Let M be a k-dimensional oriented sub-
manifold with boundary ∂M [36] and ω ∈ Ωk−1M with compact support.
Then the following identity holds:

ˆ

M

dω =

ˆ

∂M

ω. (2.15)

Translation to classical vector analysis

Differential forms and the exterior derivative can be interpreted as objects
from classical vector analysis. In this Section we give the translation isomor-
phisms, starting with differential forms.

Differential forms In Definition 21 of alternating r-forms we had the result
that dim Altr V =

(
k
r

)
, where k is the dimension of the vector space V . Since

later we consider Maxwell’s equations in three dimensions we compute:

dim Alt0
R

3 = 1,

dim Alt1
R

3 = 3,

dim Alt2
R

3 = 3,

dim Alt3
R

3 = 1.

This motivates the following isomorphism. Let M ⊂ R3, and define F(M) :=
C∞(M, R3) as the set of smooth scalar functions and V(M) := (C∞(M, R3))

3

as the set of smooth vectorial functions in R3. In the definition of differential
forms 23 we already established the connection Ω0M = F(M). Furthermore,
we have:

Ω1M ∼= V(M),

Ω2M ∼= V(M),

Ω3M ∼= F(M).

How do the elements of Ωr(M) act on elements of their domain?
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First let a ∈ Ω1M be a 1-form given in component representation:

a = a1dx1 + a2dx2 + a3dx3,

where {dx1, dx2, dx3} is the dual basis to the standard basis in R
3. Then if

~v ∈ R3 we have:

a(~v) = a1dx1(~v) + a2dx2(~v) + a3dx3(~v)

= a1v1 + a2v2 + a3v3,

where v1, v2, v3 are the components of ~v in the standard basis of R3. Hence,
the isomorphism Ω1M ∼= V(M) of a 1-form a is given by:

a
∼=7−→ (~a, ·)

R3 , with

~a = (a1, a2, a3) .
(2.16)

Now we consider a differential 2-form b ∈ Ω2M :

b = b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2,

and calculate how it acts on two input vectors ~v, ~w:

b(~v, ~w) = b1dx2 ∧ dx3(~v, ~w) + b2dx3 ∧ dx1(~v, ~w) + b3dx1 ∧ dx2(~v, ~w)

= b1 (v2w3 − v3w2) + b2 (v3w1 − v1w3) + b3 (v1w2 − v2w1) .

This is the Laplace expansion of the determinant det
([

~b, ~v, ~w
])

, with ~b =

(b1, b2, b3). The isomorphism Ω2M ∼= V(M) of a 2-form b is, therefore, given
by:

b
∼=7−→ det

(

~b, · , ·
)

, with

~b = (b1, b2, b3) .
(2.17)

Finally we look at a 3-form c ∈ Ω3M :

c = ρ dx1 ∧ dx2 ∧ dx3,

and calculate how it acts on three input vectors ~u,~v, ~w:

c(~u,~v, ~w) = ρ dx1 ∧ dx2 ∧ dx3(~u,~v, ~w)

= ρ det(~u,~v, ~w).
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The corresponding isomorphism Ω3M ∼= F(M) therefore is:

c
∼=7−→ ρ det (· , · , ·) . (2.18)

In summary we can interpret 0- and 3-forms as scalar fields and 1- and 2-forms
as vector fields. The corresponding isomorphisms are thereby very illustrative.
The answer of a 1-form vector field to a tangential vector of a curve, is the
projected component of the vector field in this tangential direction. The
answer of a 2-form vector field to two vectors, spanning an area, is the flux of
the vector field through this area. And the answer of a 3-form scalar field to
three vectors, defining a volume, is a scalar density times this volume. This
illustrates the connection to the integration of differential forms.

Exterior derivative Next we analyze, how the exterior derivative acting on
differential forms can be interpreted as classical differential operators grad,
curl, and div, acting on their isomorphic scalar and vector fields. We start
with a differential 0-form f . By definition the exterior derivative d acting on
f is simply the differential of f :

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3.

Hence, the components of the vector field corresponding to the 1-form df are

~v =
(

∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

)

, and we have:

df
∼=7−→ grad f. (2.19)

Now let a be a 1-form. We compute:

da = d

(
3∑

i=1

aidxi

)

=
3∑

i=1

(dai) ∧ dxi

=
3∑

i=1

(
3∑

j=1

∂ai

∂xj
dxj

)

∧ dxi

=

(
∂a2

∂x3
− ∂a3

∂x2

)

dx2 ∧ dx3

+

(
∂a3

∂x1

− ∂a1

∂x3

)

dx3 ∧ dx1 +

(
∂a1

∂x2

− ∂a2

∂x1

)

dx1 ∧ dx2.
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This gives the isomorphism for the exterior derivative acting on a 1-form a:

da
∼=7−→ curl ~a. (2.20)

Finally let b be a 2-form:

db = d
(
b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2

)

db =

3∑

i=1

∂b1

∂xi
dxi ∧ dx2 ∧ dx3 +

3∑

i=1

∂b2

∂xi
dxi ∧ dx3 ∧ dx1 +

3∑

i=1

∂b3

∂xi
dxi ∧ dx1 ∧ dx2

=
∂b1

∂x1
dx1 ∧ dx2 ∧ dx3 +

∂b2

∂x2
dx2 ∧ dx3 ∧ dx1 +

∂b3

∂x3
dx3 ∧ dx1 ∧ dx2

=

(
∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3

)

dx1 ∧ dx2 ∧ dx3,

where we used dxi ∧ dxi = 0. This gives the isomorphism for db:

db
∼=7−→ div ~b. (2.21)

Wedge product The wedge product of differential forms also has analogons
to classical vector products. Again, let f be a 0-form, a and a2 1-forms, b a 2-
form, and c a 3-form. Then the wedge product has the following isomorphisms:

f ∧ a
∼=7−→ f~a,

f ∧ b
∼=7−→ f~b,

f ∧ c
∼=7−→ f~ρ,

a ∧ a2

∼=7−→ ~a × ~a2,

a ∧ b
∼=7−→ ~a ·~b.

(2.22)
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2.2 Maxwell’s equations

2.2 Maxwell’s equations

In this Section we review Maxwell’s equations, which describe the dynamics
of electromagnetic fields. In our presentation we follow [35, 56].

2.2.1 Maxwell’s equations in differential form

Maxwell’s equations can be given in different formulations. We start with
their differential form:

Coulombs law: div D = ρ, (2.23a)

Ampères law: curl H − ∂D

∂t
= J, (2.23b)

Faraday’s law of induction: curl E +
∂B

∂t
= 0, (2.23c)

absence of magnetic monopoles: div B = 0. (2.23d)

All of above fields depend on the spatial variable x and time t. E and H are
the electric and magnetic field strength, D is the electric displacement, and
B the magnetic flux density. ρ is the macroscopic charge density and J is
the macroscopic electric current density. The time derivative of the electric
displacement in Ampères law was added by Maxwell and named displacement
current. Since Maxwell was the first to state the above equations in the correct
form, they were named after him.

Taking the time derivative of (2.23a) and adding the divergence of (2.23b),
gives the continuity equation for the electric charge:

∂ρ

∂t
+ div J = 0,

where we used div curl = 0.

Maxwell’s equations are under-determined. We have 8 equations for 12 field
components of E, B, D, and H. Furthermore, E and B are not independent.
Due to (2.23d) we can introduce the vector potential A such that:

B = curl A.

Using this relation in (2.23c) we get

curl

(

E +
∂A

∂t

)

= 0.
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Since the curl of above expression vanishes, it can be represented as the gra-
dient of a scalar potential φ:

−grad φ = E +
∂A

∂t
.

Hence, we have 4 independent quantities, fixing E and B. This means, we
need six equations in addition to Maxwell’s equations, in order to get unique
solutions to the system. These are so-called constitutive relations, which
describe the dependence of the electric displacement and magnetic field on
the electric field and magnetic flux density:

D = D(E,B), (2.24a)

H = H(E,B). (2.24b)

Above relations are used to describe the behaviour of matter in the presence
of electric and magnetic fields.

2.2.2 Maxwell’s equations in integral form

Now we give the integral representation of Maxwell’s equations. Let V be a
volume with boundary ∂V and A a surface with boundary ∂A in R3:

Coulombs law:

‹

∂V

D · df =

˚

V

ρdV, (2.25a)

Ampères law:

¨

A

(
∂

∂t
D + J

)

· df =

˛

∂A

H · dr,
(2.25b)

Faraday’s law of induction: − ∂

∂t

¨

A

B · df =

˛

∂A

E · dr, (2.25c)

absence of magnetic monopoles:

‹

∂V

B · df = 0. (2.25d)

We notice that the electric and magnetic field E and H are integrated along
one dimensional lines. They can be interpreted as differential 1-forms, which
were introduced in Section 2.1.2. The electric displacement D, magnetic flux
density B, and macroscopic electric current density J are integrated over
surfaces and are differential 2-forms. Finally the charge density ρ is integrated
over a volume and can be interpreted as a differential 3-form.

The integral representation of Maxwell’s equations allows to analyze how
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the electromagnetic field behaves at a material interface S [56]:

n · [D] = ρS, (2.26a)

n× [H] = 0, (2.26b)

n × [E] = 0, (2.26c)

n · [B] = 0, (2.26d)

where [·] denotes the jump of the field across S, n is the normal vector of S,
and ρS the surface charge density. Hence, the tangential component of E and
H, and the normal component of D (in the absence of a surface charge) and
B are continuous across surfaces.

2.2.3 Time-harmonic Maxwell’s equations

For stationary electromagnetic problems, which are in the focus of this work,
the time dependence in Maxwell’s equations can be separated making a time-
harmonic ansatz. Choosing:

E(x, t) = Ê(x, ω)e−iωt, (2.27)

with frequency ω, the time derivative becomes ∂
∂t

→ −iω. Making the same
ansatz for D, H, B, J, and ρ, Maxwell’s equations read:

div D̂ = ρ̂, (2.28a)

curl Ĥ + iωD̂ = Ĵ, (2.28b)

curl Ê − iωB̂ = 0, (2.28c)

div B̂ = 0. (2.28d)

Physical fields are always real-valued, whereas the solutions to time-harmonic
Maxwell’s equations are now complex-valued, containing phase information.

Taking the real part of a solution ℜ
(

Ê
)

, one recovers the real-valued field at

a specific time t.
The continuity equation in the time-harmonic case reads:

div Ĵ − iωρ̂ = 0 (2.29)

In the following we will only consider time-harmonic fields and drop the hats
of the complex-valued, so-called phasors.

Furthermore, we only consider linear material relationships (2.24a), (2.24b).
The constitutive relationships can then be stated as:

D = ǫE, (2.30a)

B = µH, (2.30b)
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where ǫ and µ is the permittivity and permeability tensor respectively. Finally,
we assume that the macroscopic electric current density can be separated into
a part which depends linearly on the electric field via a conductivity (charge
carriers in material) and an impressed part originating from external sources:

J = σE + Ji, (2.31)

where σ is the conductivity tensor. We want to reduce the full coupled system
of Maxwell’s equations to a single equation for the electric field E. Therefore,
we use the linear constitutive relationships (2.30a) and (2.30b) and Maxwell’s
equations (2.28b) and (2.28c):

curl E− iωB = 0 ⇔
µ−1curl E− iωH = 0 ⇔

curl µ−1curl E − iω curl H = 0 ⇔
curl µ−1curl E− iω (J − iωD) = 0 ⇔

curl µ−1curl E − iω (σ − iωǫ)E = iωJi ⇔
curl µ−1curl E − ω2εE = iωJi,

with the complex permittivity tensor ε = ǫ + i
ω
σ. Because of its importance,

we state the final equation again:

curl µ−1curl E − ω2εE = iωJi. (2.32)

This will be the formulation of Maxwell’s equations used throughout the the-
sis.

2.2.4 Maxwell’s equations with exterior calculus

Finally we state Maxwell’s equations with differential forms. The integral
formulation (2.25a)-(2.25d) showed that E and H can be interpreted as 1-
forms, D, J, and B as 2-forms, and ρ as a 3-form. Since D and B are
2-forms, dD and dB correspond to div D and div B. The exterior derivative
acting on the 1-forms E and H corresponds to the curl operator, c.f., (2.23b)
and (2.23c). Using the exterior derivative, Maxwell’s equations can then be
stated as follows:

dD = ρ,

dH − ∂D

∂t
= J,

dE +
∂B

∂t
= 0,

dB = 0.

(2.33)
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The constitutive relationships (2.30a) and (2.30b) connect 1- and 2-forms, and
involve the Hodge operator [20]:

D = ∗εE,

B = ∗µH.
(2.34)

Using these relationships, the curl-curl equation for the electric field (2.32)
can be given as:

d ∗−1
µ dE − ω2 ∗ε E = iωJi. (2.35)

Coordinate transformation

For application of the reduced basis method to geometrically parametrized
PDEs, we have to know how Maxwell’s equations behave under a coordinate
transformation. The curl-curl equation for the electric field (2.35) is stated
covariantly. It holds in each coordinate system. However, since we have to
use a coordinate representation, when we solve Maxwell’s equations, we have
to investigate, how the components of differential forms transform. Let us
consider a coordinate transformation G form Ω to Ω:

G : Ω → Ω

xi = Gi(xj).

The Jacobian of G is defined as:

Jij =
∂Gi

∂xj
,

|J | = det (J) .

The coordinate differentials then transform according to:

dxi =
∂Gi

∂xj

dxj = Jijdxj.

In this Section we make use of the summation convention, which states that a
summation has to be carried out over indices, which appear twice in a single
expression. We first consider a 1-form a and express it in the original and
transformed coordinate system:

a = aidxi

= aidxj

= ajJ
−1
ji dxi.
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2 Preliminaries

It follows that the components of a 1-form transform according to

~a = J−T ~a. (2.36)

Now we consider a 2-form b:

b = b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2 (2.37)

= b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2

= b1 J−1
2mdxm ∧ J−1

3n dxn + b2 J−1
3mdxm ∧ J−1

1n dxn + b3 J−1
1mdxm ∧ J−1

2n dxn

(2.38)

Let us look at the factor of b1 as an example:

J−1
2mdxm ∧ J−1

3n dxn =
(
J−1

22 J−1
33 − J−1

23 J−1
32

)
dx2 ∧ dx3

+
(
J−1

23 J−1
31 − J−1

21 J−1
33

)
dx3 ∧ dx1

+
(
J−1

21 J−1
32 − J−1

22 J−1
31

)
dx1 ∧ dx2

=
(
J−1

)adj

11
dx2 ∧ dx3 +

(
J−1
)adj

12
dx3 ∧ dx1 +

(
J−1

)adj

13
dx1 ∧ dx2,

where Aadj is the adjunct of matrix A. With:

A−1 =
1

|A|
(
Aadj

)T
and

|A| =
1

|A−1| ,

we can rewrite the last equation and get:

J−1
2mdxm ∧ J−1

3n dxn =
1

|J |
(
JT

11dx2 ∧ dx3 + JT
12dx3 ∧ dx1 + JT

13dx1 ∧ dx2
)
.

The factors of b2 and b3 in (2.38) give corresponding expressions, such that
(2.38) can be written as:

b =
1

|J |
(
b1J

T
11 + b2J

T
21 + b3J

T
31

)
dx2 ∧ dx3

+
1

|J |
(
b1J

T
12 + b2J

T
22 + b3J

T
32

)
dx3 ∧ dx1

+
1

|J |
(
b1J

T
13 + b2J

T
23 + b3J

T
33

)
dx1 ∧ dx2.

A comparison with (2.37) gives the transformation rule for the components
of a 2-form:

~b =
1

|J |J
~b. (2.39)
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2.2 Maxwell’s equations

Finally we consider a 3-form:

c = ρ dx1 ∧ dx2 ∧ dx3

= ρ dx1 ∧ dx2 ∧ dx3

= ρ J−1
1l J−1

2mJ−1
3n dxl ∧ dxm ∧ dxn

= ρ |J−1|dx1 ∧ dx2 ∧ dx3

=
1

|J |ρ dx1 ∧ dx2 ∧ dx3.

This gives the transformation rule for a 3-form:

ρ =
1

|J |ρ. (2.40)

Now we analyze how the components of the permittivity and permeability
tensors in Maxwell’s Equations transform:

d ∗−1
µ dE − ω2 ∗ε E = iωJi.

We start with the permittivity tensor, and use transformation rule (2.39) of
a 2-form. Remembering that ∗εE is a 2-form gives:

∗εE =
1

|J |J ∗εE.

Now we use:

∗εE = ∗ε E,

and transformation rule (2.36) for 1-forms, to transform E:

∗εE =
1

|J |J ∗εE

=
1

|J |J ∗ε E

=
1

|J |J ∗εJ
T E.

This gives the following transformation rule for the components of the per-
mittivity tensor:

∗ε = |J |J−1 ∗ε J−T . (2.41)
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For the permeability tensor we first use transformation rule (2.36) and respect
that ∗−1

µ dE is a 1-form:

∗−1
µ dE = J−T ∗−1

µ dE.

Again we make use of:

∗−1
µ dE = ∗−1

µ dE,

and apply transformation rule (2.39) to the 2-form dE:

∗−1
µ dE = J−T ∗−1

µ dE

= J−T ∗−1
µ |J |J−1dE.

This gives the transformation rule for the components of the inverse perme-
ability tensor:

∗−1
µ =

1

|J |J
T ∗−1

µ J. (2.42)
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3 Electromagnetic scattering

problem

Having set up the mathematical background and Maxwell’s equations, we
now derive the formulation of an electromagnetic scattering problem, which
is suited for discretization with finite elements. Since scattering problems are
per se stated on unbounded domains, we thereby also comment on transparent
boundary conditions. In particular we focus on the perfectly matched layer
(PML) method [8], which we use in numerical simulations.

3.1 Strong formulation of the scattering problem

The setup for a scattering problem is depicted in Fig. 3.1. The unbounded
domain R3 is divided into an interior domain Ωint with boundary Γ and an
exterior domain R3 \Ωint. We assume that Γ is a polygon with outward point-
ing normal vector n. The incoming electric source field Ein is a solution to
Maxwell’s equations in the exterior. It enters the domain Ωint and is scattered
by an obstacle S. The scattered field Esc leaves the interior domain and is,
therefore, strictly outward radiating. The field within the interior domain Ωint

is denoted by E.
The strong formulation for the scattering problem is given by:

Problem 2. Find E such that:

(i) The electric field E fulfills Maxwell’s equations in the interior domain:

d ∗−1
µ dE − ω2 ∗ε E = 0 in Ωint. (3.1)

(ii) The scattered field Esc fulfills Maxwell’s equations in the exterior do-
main:

d ∗−1
µ dEsc − ω2 ∗ε Esc = 0 in R3 \ Ωint.

(iii) Boundary condition at Γ: the tangential component of the electric field
is continuous:

n× (Ein + Esc − E)|Γ = 0,
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3 Electromagnetic scattering problem

Ωint

Γ = ∂Ωint

S

Ein

Esc

E

R
n \ Ωint

n

µext

εext

Figure 3.1: Setup of a scattering problem. The interior domain Ωint contains
the scatterer S and is embedded into an infinite exterior R3 with
relative permittivity εext and permeability µext. The incoming
electric field Ein is entering the interior domain via the boundary
Γ and is the source for the electric field E inside Ωint. The scattered
field Esc is originated within Ωint. It is, therefore, strictly outward
radiating.

where the incoming field Ein has to fulfill Maxwell’s equations in a neigh-
borhood of the boundary Γ in the exterior.

(iv) Radiating boundary condition: Esc is strictly outward radiating.
E.g., Silver-Müller radiation condition:

lim
r→∞

r

(

curl Esc(r) × r0 − i
ω
√

εextµext

c
curl Esc(r)

)

= 0

uniformly continuous in each direction r0,

where r is the coordinate vector in R3, r its norm, r0 = r
r
, εext and

µext the relative permittivity and permeability in the exterior, and c the
speed of light in vacuum.

Above setup is a coupled interior-exterior problem for the electric field with
no impressed sources, i.e.:

Ji = 0.

The data of the incoming field Ein enters via the continuity condition stated
on the boundary Γ.

40



3.2 Weak formulation of the scattering problem

3.2 Weak formulation of the scattering problem

For discretization with finite elements we have to derive a weak formulation
of the strong scattering Problem 2.

In the following we will denote the electric field by u. We start with the curl-
curl form of Maxwell’s equations (2.35), test it with the complex conjugate v̄
of a function v, and integrate over R3:

0 =

ˆ

R3

v̄d ∗−1
µ du − ω2v̄ ∗ε u.

The first term is integrated by parts, where we assume that u vanishes at
infinity. This gives:

0 =

ˆ

R3

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗ε u. (3.2)

According to Fig. 3.1 the infinite domain is divided into an interior and
exterior: R3 = Ωint ∪ (R3 \ Ωint). In the exterior we decompose the electric
field by u = uin + usc, which gives:

0 =

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗εu

+

ˆ

R3\Ωint

dv̄ ∧ ∗−1
µ dusc − ω2v̄ ∧ ∗εusc +

ˆ

R3\Ωint

dv̄ ∧ ∗−1
µ duin − ω2v̄ ∧ ∗εuin ,

(3.3)

where the continuity condition:

n× (uin + usc − u)|Γ = 0, (3.4)

has to hold. Now we use the product rule:

d(v ∧ u) = (dv) ∧ u − v ∧ du ⇔
(dv) ∧ u = d(v ∧ u) + v ∧ du,
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3 Electromagnetic scattering problem

on the last integral in (3.3):

ˆ

R3\Ωint

dv̄ ∧ ∗−1
µ duin − ω2v̄ ∧ ∗εuin =

ˆ

R3\Ωint

d(v̄ ∧ ∗−1
µ duin) + v̄ ∧ d ∗−1

µ duin − ω2v̄ ∧ ∗εuin =

ˆ

R3\Ωint

d(v̄ ∧ ∗−1
µ duin) + v̄ ∧

(
d ∗−1

µ duin − ω2 ∗ε uin

)

︸ ︷︷ ︸

=0

=

ˆ

R3\ΩintΓ

v̄ ∧ ∗−1
µ duin,

where we used Stoke’s theorem (2.15) and the fact that uin fulfills Maxwell’s
equations in the exterior. Equation (3.3) then reads:

0 =

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗εu

+

ˆ

R3\Ωint

dv̄ ∧ ∗−1
µ dusc − ω2v̄ ∧ ∗εusc +

ˆ

R3\ΩintΓ

v̄ ∧ ∗−1
µ duin. (3.5)

Now we want to incorporate the continuity condition (3.4) and therefore de-
fine:

ũsc = usc + P[uin], (3.6)

where P[uin] is an operator which interpolates the tangential component of
uin on Γ, and P[uin] has only support in a small region Ωδ ⊂ R3 \ Ω in the
exterior [84]. We use this ansatz in (3.5) and get:

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗εu +

ˆ

R3\Ωint

dv̄ ∧ ∗−1
µ dũsc − ω2v̄ ∧ ∗εũsc = f [uin](v),

with:

f [uin](v) =

ˆ

Ωδ

dv̄ ∧ ∗−1
µ dP[uin] − ω2v̄ ∧ ∗εP[uin] −

ˆ

Γ

v̄ ∧ ∗−1
µ duin. (3.7)

Since u and ũsc are continuous across Γ, we can glue them together and define:

ũ =

{
u x ∈ Ωint

ũsc x ∈ R3 \ Ωint
. (3.8)
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3.3 Transparent boundary conditions

This gives:

ˆ

R3

dv̄ ∧ ∗−1
µ dũ − ω2v̄ ∧ ∗εũ = f [uin](v).

We introduce the following abbreviations:

aid(u, v) :=

ˆ

R3

dv̄ ∧ ∗−1
µ dũ − ω2v̄ ∧ ∗εũ, (3.9)

f(v) = f [uin](v), (3.10)

where “id” refers to infinite domain. Now we can state the weak formulation
of the electromagnetic scattering problem.

Problem 3. Find u ∈ H (curl , R3) such that:

aid(u, v) = f(v) , ∀v ∈ H
(
curl , R3

)
. (3.11)

Using the isomorphisms of exterior calculus introduced in Section 2.1.2, we
can give aid and f in the notation of classical vector analysis:

aid(~u,~v) :=

ˆ

R3

(

curl ~̄v · µ−1 · curl ~̃u − ω2 ~̄v · ε · ~̃u
)

dV, (3.12)

f [~uin](~v) =

ˆ

Ωδ

(

curl ~̄v · µ−1curl P[~uin] − ω2 ~̄v · ε · P[~uin]
)

dV

−
ˆ

Γ

(

~̄v ×
[
µ−1 · curl ~uin

] )

· d ~A.

(3.13)

3.3 Transparent boundary conditions

The weak formulation of the scattering Problem (3.11) is stated on an un-
bounded domain, making a straightforward discretization and numerical com-
putation difficult. Truncating the domain and stating Dirichlet, Neumann, or
Robin boundary conditions, results in artificial reflections at the introduced
artificial boundaries. Therefore, transparent (or radiating) boundary condi-
tions have to be introduced. These boundary conditions have to assure that
the radiation condition holds, i.e., the scattered field is strictly outward radi-
ating.
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3 Electromagnetic scattering problem

3.3.1 Perfectly matched layers

In the present work we use the perfectly matched layer (PML) method as
a transparent boundary condition [8, 108]. For its application a special co-
ordinate system is introduced in the exterior, which includes a generalized
distance variable ξ. The basic idea of the PML method is a complex coordi-
nate stretching in radial direction ξ in the exterior R3 \ Ωint:

ξ̃ = (1 + iσ)ξ , 0 < σ ∈ R.

The transformed scattered field is then the complex continuation of the orig-
inal field:

ũPML
sc (·) = ũsc([1 + iσ] ·). (3.14)

The complex continuation ũPML
sc is used in the exterior, c.f. ansatz (3.8):

ũPML =

{
u x ∈ Ωint

ũPML
sc x ∈ R3 \ Ωint

. (3.15)

Since ũsc is outward radiating, its complex continuation is exponentially de-
creasing [8]. After sufficient decay of the scattered field, the exterior domain
can then be truncated according to:

R
3 \ Ωint → ΩPML. (3.16)

The integral over the infinite exterior in the definition of the bilinear form
aid (3.9) is truncated accordingly:

ˆ

Ω

dv̄ ∧ ∗−1
µ dũPML − ω2v̄ ∧ ∗εũ

PML = f [uin](v), (3.17)

where we set Ω = Ωint ∪ ΩPML. On the artificial boundary of Ω, which is in-
troduced by the PML truncation (3.16), zero Dirichlet or Neumann boundary
conditions are stated for uPML. It is worth noting that according to Section
2.2.4, the complex coordinate stretching (i.e. coordinate transformation) sim-
ply results in a transformation of the permittivity and permeability tensors.
Hence, the finite element discretization of the exterior domain ΩPML offers no
additional difficulties.

For brevity we introduce:

a(u, v) =

ˆ

Ω

dv̄ ∧ ∗−1
µ dũPML − ω2v̄ ∧ ∗εũ

PML, (3.18)
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3.3 Transparent boundary conditions

Ωint

ξ = const.

Figure 3.2: Interior domain Ωint with structured exterior and corresponding
prismatoidal coordinate system. Two coordinate lines of constant
ξ, referring to generalized distance variable are shown.

and suppress the dependence of the right hand side functional on uin:

f(v) = f [uin](v).

Now we state the electromagnetic scattering problem with perfectly matched
layers as transparent boundary conditions:

Problem 4. Find u ∈ H (curl, Ω) such that

a(u, v) = f(v) , ∀v ∈ H (curl, Ω) . (3.19)

This is the continuous problem formulation, which we will discretize with
finite elements.

Radial coordinate system

In the following we give details of our realization of the PML and the radial
coordinate system. For simplicity we consider the 2D case. For application
to typical nano-optical systems, the exterior coordinate system should allow
discretization of multiply structured exterior domains, which could contain
semi-infinite layers or waveguide structures.

We use a prismatoidal coordinate system with semi-infinite rays in the
exterior, as depicted in Fig. 3.2. The coordinate system for a specific ray is
shown in Fig. 3.3. Since Maxwell’s equations are rotational and translational
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α1

g1

(0, 0)

α2

g2

(h, 0)
x

y

η

ξ
r

Figure 3.3: Prismatoidal coordinate system for exterior rays, c.f. Fig. 3.2.

invariant, we located the baseline of the exterior prism between (0, 0) and
(h, 0). The coordinate transformation from the prismatoidal to Cartesian
coordinates is given by:

(
x(η, ξ)
y(η, ξ)

)

= g1(ξ) + η

((
h
0

)

+ g2(ξ) − g1(ξ)

)

,

g1(ξ) =
ξ

ζ

(
− tan α1

1

)

,

g2(ξ) =
ξ

ζ

(
tan α2

1

)

.

(3.20)

Hence, ξ describes the distance of a point to the baseline of the prism under
normal projection, and η is a generalized angular variable. The scaling factor
ζ is used to construct a global distance variable, i.e., connecting neighbouring
prisms: if a segment i and neighbour segment i + 1 are glued together, the
relation

ζi+1 = ζi
cos α1,i

cos α2,i+1
, (3.21)

has to hold.
Figure 3.2 shows ξ = const coordinate lines for demonstration. As ex-

plained before, using the PML method, ξ is replaced by (1+σ)ξ, and Maxwell’s
equations are formulated in the new coordinate system. The Jacobian of (3.20),
which is needed for transformation of the permeability and permittivity ten-
sors, is given by:

J =





hζ+a(1+σ)ξ
hζ

(1 + σ)−a1h+aη
hζ

0

0 1+σ
ζ

0

0 0 1



 , (3.22)

where a1 = tanα1 and a = tan α1 + tan α2.
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3.3 Transparent boundary conditions

3.3.2 Pole condition

Another elegant principle, which can be used to state transparent boundary
conditions, is the pole condition [85]. In order to characterize outgoing waves,
the following definition is utilized:

Definition 27 (Pole condition in 1D). A function u : R+ → C satisfies the
pole condition if its Laplace transform û has a holomorphic extension to the
lower half complex plane.

Outgoing waves are defined as functions satisfying the Pole condition. The
generalization to higher spatial dimensions is done by introduction of a coor-
dinate system in the exterior, which includes a generalized distance variable,
e.g., the prismatoidal coordinate system given in the previous section. Then
the Laplace transform of a function with respect to this distance variable is
utilized in the definition of the pole condition. A discretization scheme for the
pole condition leads to discretization of the Laplace transform û, where its an-
alyticity in the lower half complex plane is respected in the ansatz space. The
pole condition has spectral convergence properties in the number of degrees
of freedom for this representation [31, 32, 52, 86].

3.3.3 Dirichlet to Neumann operator

Transparent boundary conditions can also be formulated, using a so-called
Dirichlet to Neumann (DtN) operator. For its introduction we test the curl-
curl equations (3.1) with a function v, but only integrate over the interior
domain Ωint:

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗ε u =

ˆ

∂Ωint

v̄ ∧ ∗−1
µ du.

We already integrated the curl-curl term by parts. The 1-form ∗−1
µ du is con-

tinuous at interfaces, such that we can express u by the scattered field usc and
the incoming field uin, which have support in the exterior of Ωint:

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗ε u −

ˆ

∂Ωint

v̄ ∧ ∗−1
µ dusc =

ˆ

∂Ωint

v̄ ∧ ∗−1
µ duin.

In contrast to the incoming field duin, Neumann data for the scattered field
dusc is not known. Therefore, a DtN operator is introduced, which maps
Dirichlet data on the boundary ∂Ωint onto Neumann data:

DtN(u) = ∗−1
µ du|∂Ωint

.
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Substituting usc = u − uin gives a closed formulation for the unknown inte-
rior field u:

ˆ

Ωint

dv̄ ∧ ∗−1
µ du − ω2v̄ ∧ ∗ε u −

ˆ

∂Ωint

v̄ ∧ DtN(u) =

ˆ

∂Ωint

v̄ ∧ DtN(uin) +

ˆ

∂Ωint

v̄ ∧ ∗−1
µ duin.

In order to construct the DtN operator explicitly, the boundary value prob-
lem in the exterior for arbitrary Dirichlet data on ∂Ωint has to be solved.
This is only possible for simple cases, e.g., homogeneous exterior domains.
Discretization of the DtN operator results in a non-local dense operator on
the degrees of freedom of u on ∂Ωint, whereas for the PML and pole condition
approach the system matrix of the exterior degrees of freedom remains sparse.

3.4 Finite element discretization

The weak formulation of a PDE offers an elegant discretization scheme. The
key idea is the restriction of the continuous variational formulation (3.19) to
a finite dimensional space Vh. Here we choose:

Vh ⊂ H (curl, Ω) , dim Vh = N < ∞, (3.23)

i.e., the finite element space is a subspace of the original space H (curl, Ω).
In this case Vh is referred to as conforming finite element space [51, 10]. The
discrete scattering problem corresponding to Problem 4 then reads:

Problem 5. Find u ∈ Vh such that

a(u, v) = f(v) , ∀v ∈ Vh. (3.24)

This will be our so-called truth approximation.
In order to obtain a numerical scheme for solution of the truth approxima-

tion, we construct a basis B = {ϕ1, . . . , ϕN} of Vh. Then we can expand the
solution u according to:

u =

N∑

i=1

αiϕi.
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3.4 Finite element discretization

Since each element in Vh can be expanded in this basis, it is sufficient to
require:

a(u, v) = f(v) , ∀v ∈ B,

instead of (3.24). This gives:

a

(
N∑

i=1

αiϕi, ϕj

)

=

N∑

i=1

a(ϕi, ϕj)αi = f(ϕj), j = 1, . . . ,N ,

which gives a linear system of equations for the unknown coefficients αi.
An important question is how to construct the space Vh. In order to avoid

spurious modes, this has to be done with care for Maxwell’s equations, as will
be explained in the following [51]. We introduce the sequence:

H1(Ω)/R
grad−→ H(curl , Ω)

curl−→ H(div , Ω)
div−→ L2(Ω), (3.25)

which is called de Rham complex [20, 36]. Here elements of the quotient space
H1(Ω)/R are in the same equivalence class if they only differ by a constant
function. On simply connected subsets Ω ⊂ R3 this sequence is exact, i.e.:

• the grad -operator has a trivial kernel on H1(Ω)/R,

• the range of grad on H1(Ω)/R is a subset of H(curl , Ω), and it is
exactly the kernel of the curl -operator,

• the range of the curl -operator on H(curl , Ω) is a subset of H(div , Ω),
and it is exactly the kernel of the div -operator,

• the range of div on H(div , Ω) is L2(Ω).

For the corresponding conforming finite element spaces:

Uh ⊂ H1(Ω),

Vh ⊂ H(curl , Ω),

Wh ⊂ H(div , Ω),

Zh ⊂ L2(Ω),

(3.26)

we also want that an exact sequence holds:

Uh/R
grad−→ Vh

curl−→ Wh
div−→ Zh. (3.27)
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If this is fulfilled, each function v ∈ Vh, which lies in the kernel of the curl-
operator, is the gradient of a scalar function, i.e.:

curl v = 0 =⇒ ∃φ ∈ Uh : v = grad φ.

Then there are no unphysical spurious modes in Vh, which lie in the kernel
of the curl-operator, but can not be expressed as the gradient of a scalar
potential. In our work we use Nedelec elements for discretization [53, 51],
which fulfill the discrete exact sequence.

For a detailed overview of the finite element method for electromagnetic
field computations and appropriate construction of finite element spaces we
refer to [29, 106, 88].
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4 A posteriori error estimation

The reduced basis method computes approximate solutions to the truth ap-
proximation of a PDE. For efficient construction of a reduced basis approx-
imation, and in order to quantify the reliability of a reduced basis solution,
estimation of errors is very important. In this chapter we, therefore, derive
a posteriori error bounds for approximate solutions to a PDE. Our setting
is the following. We consider an exact problem with solution u and an ap-
proximated problem with solution ũ. Our goal is to derive bounds for the
difference between u and ũ, and outputs of interest, which are computed from
these solutions respectively.

The following results carry over directly to the reduced basis setting. Later
u will be identified with the truth approximation and ũ with the reduced basis
solution.

4.1 Problem setup

The exact problem we consider is given as follows:

Problem 6. Compute the output of interest

s = lo (u) , (4.1)

where u is the solution to the following problem:
Find u ∈ X such that:

a(u, v) = f(v) , ∀v ∈ X, (4.2)

which is the standard Galerkin scheme from a finite element discretization.
Trial and test space are equal. Equation (4.1) defines the so-called output of
interest, which is given by a functional, acting on the solution of (4.2). Now
suppose, we do not solve (4.2), but compute an approximate solution on the
reduced subspace:

X̃ ⊂ X. (4.3)
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4 A posteriori error estimation

The variational problem on the reduced space reads:

Problem 7. Compute the output of interest

s̃ = lo (ũ) , (4.4)

where ũ is the solution to the following problem:
Find ũ ∈ X̃ such that:

a(ũ, ṽ) = f(ṽ) , ∀ṽ ∈ X̃. (4.5)

The goal of a posteriori error estimation is to quantify the error of the solution:

||u − ũ||X , (4.6)

and of the output of interest:

|s − s̃| = |lo (u) − lo (ũ)| ,

without computing u itself.
The weak form of Maxwell’s equations leads to non-coercive sesquilinear

forms a. We will, therefore, focus on this case in the following [47, 16]. A
posteriori error analysis for reduced basis approximations in the elliptic case
can be found in [59, 82].

4.2 Residuum

The residuum rpr(·; ũ) of an approximate solution ũ plays a key role in a
posteriori error estimation. It is defined by:

rpr(·; ũ) : X → C

v 7→ rpr(v; ũ) := f(v) − a(ũ, v),
(4.7)

hence, rpr(·; ũ) ∈ X ′. The superscript “pr” thereby denotes the primal
residuum. Later we will introduce a dual problem with corresponding dual
residuum rdu.

The error e of the approximate solution:

e = u − ũ, (4.8)

is connected to the residuum via the following error residuum relationship:

a(e, v) = rpr(v; ũ) , ∀v ∈ X. (4.9)
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4.3 Inf-sup constant

Hence, the residuum can be interpreted as a source, from which the error
could be computed directly. However, this has costs equal to solution of the
original exact problem (4.2).

The Galerkin scheme ’orthogonalizes’ the components of the residuum against
the test space:

a(e, ṽ) = rpr(ṽ; ũ) = 0 , ∀ṽ ∈ X̃, (4.10)

which is referred to as Galerkin orthogonality.
If the bilinear form a is coercive, it induces a scalar product. Then the

solution of the Galerkin method has the following property:

ũ = arg min
ṽ∈X̃

||ṽ − u||a ,

i.e., the Galerkin solution is the element of the trial space which has the
minimum error, measured in the so-called energy norm ||·||a, induced by a
[10]. For non-coercive bilinear forms, Galerkin orthogonality (4.10) still holds,
however, there is no underlying minimization principle for the error.

For the construction of error bounds, the dual norm of the residuum has to
be determined. Therefore, first we define the Riesz representation êpr of the
residuum by:

(v, êpr)X = rpr(v; ũ), ∀v ∈ X. (4.11)

According to the Riesz representation theorem, the dual norm of the residuum
is equal to the norm of êpr:

||rpr(·; ũ)||X′ = ||êpr||X . (4.12)

4.3 Inf-sup constant

A second ingredient to a posteriori error bounds is the inf-sup constant. For
a given sesquilinear form the definition of the inf-sup constant (2.4), however,
offers no obvious instruction, how to compute it. Therefore, in the following
we reformulate the definition, such that the square of the inf-sup constant β2

can be interpreted as the solution to an eigenvalue problem.
Let a be a bounded non-coercive sesquilinear form. We recall the definition

of the inf-sup constant:

β = inf
v∈X

sup
w∈X

|a(v, w)|
||v||X ||w||X

.
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4 A posteriori error estimation

Since a(v, ·) is a linear form on X, the definition can also be formulated as:

β = inf
v∈X

||a(v, ·)||X′

||v||X
. (4.13)

According to Corollary 1, we can find a representation operator T of the
functional a(v, ·) ∈ X ′ such that:

a(v, ·) = (·, T v)X , ∀v ∈ X, (4.14)

with

T : X → X

v 7→ Tv.
(4.15)

The inf-sup constant can then be given as follows:

β = inf
v∈X

||a(v, ·)||X′

||v||X
= inf

v∈X

||(·, T v)X ||X′

||v||X
= inf

v∈X

||Tv||X
||v||X

(4.16)

= inf
v∈X

(Tv, Tv)X

||v||X ||Tv||X
= inf

v∈X

a(v, Tv)

||v||X ||Tv||X
, (4.17)

where we used ||(·, T v)X ||X′ = ||Tv||X . Squaring Eq. (4.16) gives:

β2 = inf
v∈X

(Tv, Tv)X

(v, v)X

. (4.18)

Now we interpret the right hand side of (4.18) as the Rayleigh quotient of the
following symmetric, positive-definite generalized eigenvalue problem:
Find pairs (χ, λ) with χ ∈ X and λ ∈ R such that:

(Tχ, Tv)X = λ (v, χ)X , ∀v ∈ X. (4.19)

According to (4.18) the square of the inf-sup constant β2 corresponds to the
minimum eigenvalue of (4.19):

β2 = λmin. (4.20)
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4.4 Primal error bounds

Now we can give an estimate for the error of the approximate solution ũ in
the X-norm:

Theorem 4. The error e (4.8) of the approximate solution ũ is bounded by:

||e||X ≤ 1

β
||rpr(·; ũ)||X′ . (4.21)

Proof. From (4.17) we find with v = u − ũ:

β ||u − ũ||X ||T (u − ũ)||X ≤ a(u − ũ, T (u − ũ))

= rpr(T (u − ũ) ; ũ)

≤ ||rpr(·; ũ)||X′ ||T (u − ũ)||X ,

where we used the error residuum relationship (4.9). Consequently we have:

||u − ũ||X ≤ 1

β
||rpr(·; ũ)||X′ . (4.22)

According to bound (4.21) we define the estimator for the error of the ap-
proximate solution in X-norm by:

∆X =
1

β
||rpr(·; ũ)||X′ . (4.23)

Now we can quantify the error of the output of interest (4.4).

Lemma 3. The error of the output of interest (4.4) is bounded by:

|s − s̃| ≤ 1

β
||lo (·)||X′ ||rpr(·; ũ)||X′ . (4.24)

Proof. Since the output of interest is given by a bounded linear function, we
find:

|s − s̃| = |lo (u) − lo (ũ) |
= |lo (u − ũ) |
≤ ||lo· (·)||X′ ||e||X
≤ 1

β
||lo (·)||X′ ||rpr(·; ũ)||X′ ,

where we used estimate (4.21) for ||e||X .
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4 A posteriori error estimation

The error estimator for the output of interest is according to (4.24) given by:

∆o =
1

β
||lo (·)||X′ ||rpr(·; ũ)||X′ . (4.25)

Hence, the error bound for the output of interest converges with the same
rate as the error bound for the X-norm of the solution.

4.5 Dual problem

It is possible to increase the convergence rate of the error bound for the output
of interest by introducing a dual problem [62]:

Problem 8. Find w ∈ Xdu such that:

a(v, w) = −lo (v) , ∀v ∈ Xdu. (4.26)

As for the primal problem, we define an approximate dual problem:

Problem 9. Find w̃ ∈ X̃du such that:

a(ṽ, w̃) = −lo (ṽ) , ∀ṽ ∈ X̃du, (4.27)

with X̃du ⊂ Xdu.

If the bilinear (sesquilinear) form a is (complex-) symmetric:

a(v, w) = a(w, v) , ∀v, w ∈ X, (4.28)

and the system right hand side is equal to the output functional:

f(·) = lo (·) , (4.29)

the primal and dual problem are equivalent. This is called the compliant case,
and the following lemma holds.

Lemma 4. For a compliant input-output relationship the error in the output
of interest is bounded by:

|s − s̃| ≤ 1

β
||rpr(·; ũ)||2X′ . (4.30)
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Proof. We use linearity of the output of interest, the compliance proper-
ties (4.28), (4.29), Galerkin orthogonality (4.10), and the error residuum re-
lationship (4.9):

|s − s̃| =|f(u − ũ)|
=|a(u, u − ũ)|
=|a(u − ũ, u)|
=|a(u − ũ, u) − a(u − ũ, ũ)|
=|a(u − ũ, u − ũ)|
=|rpr(u − ũ; ũ)|
≤ ||rpr(·; ũ)||X′ ||e||X .

Applying bound (4.21) for ||e||X concludes the proof.

Hence, in the compliant case the convergence rate of the error bound of the
output of interest is doubled. The compliant case is easy to treat in the
reduced basis context, since no reduced basis solution for the dual problem
has to be computed.

However, for the Maxwell scattering problem neither a is complex sym-
metric, nor are the primal right hand side and outputs of interest equal. In
the following we, therefore, derive error bounds for the non-compliant case.
According to the primal error (4.8), we define the dual error:

edu := w − w̃, (4.31)

and dual residuum of a solution to the dual Problem (4.27):

rdu(·; w̃) = −lo (·) − a(·, w̃). (4.32)

The dual error residuum relationship is given by:

a(v, edu) = rdu(v; w̃) , ∀v ∈ Xdu. (4.33)

Galerkin orthogonality for the dual solution reads:

rdu(ṽ; w̃) = 0 , ∀ṽ ∈ X̃du. (4.34)

The approximate solution of the dual problem can be used to correct the
output of interest of the primal problem [62]. We define:

s̃pd = s̃ − rpr(w̃; ũ), (4.35)

hence, the output is corrected by the primal residuum, evaluated at the dual
solution.
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4 A posteriori error estimation

The following lemma motivates this definition:

Lemma 5. The error of the dual corrected output of interest is bounded by:

|s − s̃pd| ≤ 1

β
||rpr(·; ũ)||X′

∣
∣
∣
∣rdu(·; w̃)

∣
∣
∣
∣
X′ . (4.36)

Proof. We find:

|s − s̃pd| = |s − s̃ + rpr(w̃; ũ)|
= |lo (u) − lo (ũ) + f(w̃) − a(ũ, w̃)|
= | − a(u, w) + a(ũ, w) + a(u, w̃) − a(ũ, w̃)|
= | − a(u − ũ, w) + a(u − ũ, w̃)|
= |a(u − ũ, w̃ − w)|.

Furthermore, we have:

|a(u − ũ, w̃ − w)| = |rdu(u − ũ; w̃)|
≤
∣
∣
∣
∣rdu(·; w̃)

∣
∣
∣
∣
X′ ||u − ũ||X

=
∣
∣
∣
∣rdu(·; w̃)

∣
∣
∣
∣
X′ ||e||X ,

which together with bound (4.21) for ||e||X concludes the proof.

Corresponding to (4.36) we define the error estimator for the dual corrected
output of interest:

∆o
pd =

1

β
||rpr(·; ũ)||X′

∣
∣
∣
∣rdu(·; w̃)

∣
∣
∣
∣
X′ . (4.37)

Comparing this primal-dual error bound with the primal error bound (4.25),
we notice that the constant norm of the output of interest in (4.25) is replaced
by the norm of the dual residuum. Hence, an accurate approximation to the
dual problem, can increase the convergence rate for the output of interest.

4.6 Effectivities

In order to quantify the performance of error estimators, we define the effec-
tivity of an estimator by:

effectivity =
estimated error

true error
.
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4.6 Effectivities

For the error estimators introduced in this chapter we define:

ηX =
∆X

||u − ũ||X
, (4.38)

ηo =
∆o

|s − s̃| , (4.39)

ηo
pd =

∆o
pd

|s − s̃pd| , (4.40)

which quantify the performance of the error estimator for the approximate
solution in X-norm and the output of interest using the primal and primal-
dual approximations. According to their construction, the estimators are
rigorous, i.e.:

ηX , ηo, ηo
pd ≥ 1.

This means the error is never underestimated. For sharpness we desire that
the estimators are as close to unity as possible.
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5 Reduced basis method

In this chapter we develop the reduced basis method for fast and reliable so-
lution of parametrized elliptic non-coercive PDEs. The reduced basis method
allows to split up the solution process of a parametrized problem into an ex-
pensive offline and a cheap online phase [82]. In the offline phase a reduced
model to the truth approximation is constructed self-adaptively. In the online
phase the reduced system can then be solved orders of magnitude faster than
the original problem.

In the following we start with the formulation of the problem setup and
develop established state-of-the-art reduced basis techniques, regarding con-
struction of the reduced basis, online-offline decomposition, and a posteriori
error estimation [82].

Then we develop the affine decomposition for geometrically parametrized
3D Maxwell scattering problems, which is the key for efficient online-offline
decomposition in the reduced basis context.

Examining online and offline computational costs, we will observe that there
is need for alternative error estimation techniques, when dealing with affine
decompositions consisting of a large number of terms. We introduce a novel
residuum estimator, inspired by the sub-domain residuum method of a pos-
teriori error estimation of finite element solutions [1], which will lead to sub-
stantial savings, regarding computational time and memory requirements.

Finally, we develop a novel reduced basis technique for dealing with systems
subject to a large number of different sources, which is a typical situation in
many nano-optical applications.

5.1 Problem setup

In our setting the connection between input and output of a parametrized
system is stated via a PDE. The input enters as parameters to the PDE, and
usually the result is a physical field, like a temperature distribution or electric
field strength. Often the output of interest is not the field solution itself, but
some quantity which is derived from the field. Here, we consider outputs,
which are given by linear operators acting on the field solution.

In our work we consider geometrical parameters as inputs to the PDE.
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5 Reduced basis method

The input parameters are then p real numbers, e.g., the width, height, or
length of objects, sidewall angles, radii etc. In applications the range of these
parameters is usually bounded. We assume that the input parameters ν are
restricted to a bounded parameter box D ⊂ Rp.

Variable material parameters like permittivities of objects in an optical
system, would offer no additional difficulty. In fact, assembling of a para-
metrized system with variable material parameters is simpler than in the case
of geometrical parameters.

Mathematically the continuous input-output relationship is stated as fol-
lows:

Problem 10. For given tuple of input parameters ν ∈ D ⊂ Rp, compute the
output of interest:

s(ν) = lo (u(ν)) , (5.1)

where u(ν) ∈ X is the solution to the following problem:
Find u(ν) ∈ X such that:

a (u(ν), v; ν) = f (v) , ∀v ∈ X. (5.2)

The PDE is stated in weak form, and the input parameters enter as parameters
to the bilinear form a (·, ·; ν). The output of interest is given by a linear
functional lo (·) ∈ (X)′, evaluated at the parameter dependent solution u(ν).

Usually the continuous mathematical model (5.2) can not be solved exactly.
Hence, a numerical method has to be applied. In the reduced basis context the
finite element method is the method of choice. The discretized input-output
relationship is then given by:

Problem 11. For given tuple of input parameters ν ∈ D ⊂ Rp, compute the
output of interest:

sN (ν) = lo
(
uN (ν)

)
, (5.3)

where uN (ν) ∈ XN is the solution to the following problem:
Find uN (ν) ∈ XN such that:

a
(
uN (ν), v; ν

)
= f (v) , ∀v ∈ XN . (5.4)

The dimension of the finite element space is dim XN = N , and lo (·) ∈
(
XN

)′

is the linear output functional.
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MN

XN

uN(ν1)

uN(ν2)

uN(ν3)

Figure 5.1: Sub-manifold of possible solutions MN in truth approximation
space XN for a single input parameter. Three snapshot solutions
uN(νi) are depicted.

Problem 11 is the so-called truth approximation. The variational formulation
(5.4) on a finite element space XN leads to a large sparse matrix equation of
dimension N , which has to be solved numerically. In nano-optical applications
N is typically between 105 and several millions.

In applications a single evaluation of the truth approximation can take
several minutes or up to hours, which often rules out real-time and many-
query applications.

5.2 Reduced basis approximation

The main purpose of the reduced basis (RB) method is the construction and
rapid evaluation of approximated input-output relationships for a given truth
approximation.

The reduced basis method can be motivated as follows [82]. First, we define
the manifold of all possible solutions to the truth approximation:

MN =
{
uN (ν) is a solution to (5.4) | ν ∈ D

}
. (5.5)

This manifold is a subset of the finite element space MN ⊂ XN , as depicted
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5 Reduced basis method

in Fig. 5.1. Now suppose the manifold MN can be approximated “with good qual-
ity” by a low dimensional space XN :

MN ≈ XN ⊂ XN .

Then it is reasonable to assume that solutions to following reduced problem
are good approximations to the truth approximation:

Problem 12. For given tuple of input parameters ν ∈ D ⊂ Rp, compute the
output of interest:

sN(ν) = lo (uN(ν)) , (5.6)

where uN(ν) ∈ XN is the solution to the following problem:
Find uN(ν) ∈ XN such that:

a (uN(ν), v; ν) = f (v) , ∀v ∈ XN . (5.7)

The space XN will be referred to as reduced basis space. Its dimension is
given by dim XN = N .

If N ≪ N , the resulting reduced system (5.7) can be solved much faster than
the truth approximations.

5.2.1 Reduced basis spaces

An important question is how to construct a space XN with good approxima-
tion properties to MN . In the reduced basis context the space XN is built
from so-called snapshots. These are solutions to the truth approximation (5.4)
for a set of fixed parameter values νi ∈ D, as depicted in Fig. 5.1. The cor-
responding reduced basis space is referred to as Lagrange space. In order to
approximate MN , it is also possible to include first or higher order derivatives
of snapshot solutions with respect to the parameters into the reduced basis.
This gives so-called Taylor and Hermite reduced basis spaces.

For construction of reduced basis spaces we first define a sequence of hier-
archical subsets of the parameter domain [59]. Let νi ∈ D , i = 1, . . . , Nmax.
Then we define the following nested sets:

Si = {ν1, . . . , νi} , i = 1, . . . , Nmax, (5.8)

which have the property:

S1 ⊂ S2 ⊂ · · · ⊂ SN ⊂ · · · ⊂ SNmax
. (5.9)
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5.2 Reduced basis approximation

The Lagrange reduced basis space WN
N of dimension N is then defined by:

WN
N =span

{
uN (ν) is a solution to (5.4) | ν ∈ SN

}
. (5.10)

For sufficiently large N this space should provide a good approximation to
MN . In numerical examples we will see that already for small reduced basis
dimensions N , usually of the the order O(10), the reduced system provides
very accurate approximations to the truth approximation.

5.2.2 Online-offline decomposition

The definition of the reduced basis space (5.10) already shows a main part of
the offline computational costs, when constructing a reduced basis approxi-
mation. Since a reduced basis space consists of snapshot solutions, the truth
approximation has to be solved N times for its construction. Therefore, if
one is only interested in a few evaluations of the input-output relationship
for known parameter values, the reduced basis method offers no advantage.
If, however, one is interested in real-time solutions, or has to perform many
evaluations, it becomes favourable to pay the price of a time-consuming offline
phase for the benefit of rapid online evaluations.

Let us have a look at the costs of solving the reduced variational formula-
tion (5.7). Suppose we have given a basis

BN
N =

{
ζN
q | q = 1, . . . , N

}
(5.11)

of the reduced basis space XN = span BN
N . Then we can expand each reduced

basis solution in this basis:

uN(ν) =

N∑

q=1

αq(ν)ζN
q . (5.12)

Galerkin projection of the reduced system onto the reduced basis v ∈ BN
N

gives:

N∑

q=1

αq(ν)a
(
ζN
q , ζN

n ; ν
)

= f
(
ζN
n

)
, n = 1, . . . , N, (5.13)

which is a N dimensional system of equations for the unknown parameter
dependent coefficients αq(ν). Hence, costs for solution of this equation only
depends on the dimension of the reduced basis space, which is usually very
small.
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The right hand side is a parameter independent vector of dimension N :

fN =
(
f
(
ζN
n

))

n=1,...,N
, (5.14)

which can be assembled offline. However, assembling of the parameter depen-
dent matrix in (5.13):

AN(ν) =
(
a
(
ζN
q , ζN

n ; ν
))

q,n=1,...,N
(5.15)

depends on the number of degrees of freedoms of the truth approximation,
which we want to avoid for efficient online-offline decomposition. The key
is the affine decomposition of the parameter dependent system bilinear form
a (·, ·; ν) as follows:

a (v, u; ν) =

Q
∑

m=1

Θm(ν)am(v, u), (5.16)

where we have parameter dependent functions Θm(ν) and parameter indepen-
dent bilinear forms am(·, ·). If we can construct such a decomposition of the
system bilinear form, we can assemble the following parameter independent
matrices in the offline phase:

Am
N =

(
am(ζN

q , ζN
n )
)

q,n=1,...,N
, m = 1, . . . , Q. (5.17)

The parameter dependent system matrix (5.15) is then assembled in the online
step according to:

AN(ν) =

Q
∑

m=1

Θm(ν)Am
N .

The assembling costs now only depend on the RB dimension N and the
number of terms Q in the affine decomposition. Since the right hand side
(
f(ζN

q )
)

q=1,...,N
of the reduced system (5.13) is also computed offline, the as-

sembling costs of (5.13) become independent on N .
Also for computation of output of interest (5.6) an online-offline decom-

position is possible. Since the output functional is linear, the output can be
computed by:

sN(ν) =
N∑

q=1

αq(ν)lo
(
ζN
q

)
. (5.18)
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The N dependent quantities lo
(
ζN
q

)
are computed offline. Hence, evaluation

of the reduced input-output relationship becomes independent on the degrees
of freedom of the truth approximation. Therefore, the accuracy of the truth
approximation can be chosen conservatively by discretization with high N ,
without increasing the online costs. Of course offline computational costs
depend on N .

5.2.3 Operation count

The online operation count is O(N2Q) for the assembling phase, O(N3) for
solution of the linear system, and O(N) for evaluation of output of interest.

Offline N FEM solutions of dimension N have to be computed. If the
reduced basis space provides a good approximation to the truth approximation
space MN , it is obvious that each new snapshot, which is added to the reduced
basis, has to be orthogonalized against the previous ones for stability reasons.
This leads to offline costs of O(N2N ) computing the scalar products, e.g., in
the Gram-Schmidt orthogonalization procedure.

Furthermore, the Q constant matrices Am
N (5.17) in the affine decomposition

have to be computed. This is done by projection of the affine decomposition
of the finite element matrix onto the reduced basis, which has offline costs
of O(QN2N ).

5.3 A posteriori error estimation

The result of a reduced basis computation is an approximative solution to the
truth approximation. In order to quantify the reliability of a reduced basis
solution, error estimation is very important. Furthermore, error estimators
can be used for greedy construction of reduced basis spaces [82].

For efficient online-offline decomposition in the reduced basis context, we
have the requirement that online evaluation costs of the error estimator should
be independent on the number N of FEM degrees of freedom.

5.3.1 Error bounds

The estimation of errors of a reduced basis solution and output of interest
directly resembles the setup in Section 4, where rigorous a posteriori error
bounds were derived: the reduced basis space is a subspace of the finite el-
ement space: XN ⊂ XN , c.f. Eq. (4.3). In the following we translate our
results to the reduced basis setup.
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5 Reduced basis method

First we define the error of the reduced basis solution:

e(ν) = uN (ν) − uN(ν) (5.19)

and the error of the output of interest

eo(ν) =|sN (ν) − sN(ν)|. (5.20)

For brevity we drop the ν dependence of uN and uN in the following. The
primary residuum of the reduced basis solution is given by:

rpr (·; uN ; ν) = f(·) − a (uN , ·; ν) , (5.21)

with rpr (·; uN ; ν) ∈
(
XN

)′
. The parameter dependent inf-sup constant of

a (·, ·; ν) is defined by:

β(ν) = inf
v∈XN

sup
w∈XN

|a (v, w; ν)|
||v||XN ||w||XN

. (5.22)

According to Section 4.3, the inf-sup constant can be computed from a gener-
alized eigenvalue problem. Therefore, first we define the parameter dependent
representation operator Tν of the functional a (v, ·; ν) ∈

(
XN

)′
:

a (v, ·; ν) = (·, Tνv)XN , ∀v ∈ XN , (5.23)

with:

Tν : XN → XN

v 7→ Tνv.
(5.24)

Now we state the following generalized eigenvalue problem:
Find pairs (χ(ν), λ(ν)) with χ(ν) ∈ XN and λ(ν) ∈ R such that:

(Tνχ(ν), Tνv)XN = λ(ν) (v, χ(ν))XN , ∀v ∈ XN . (5.25)

We then have β(ν)2 = λmin(ν), where λmin(ν) is the minimum eigenvalue
of (5.25).

According to the primal error estimate (4.23) derived in Section 4.4, we now
define the estimator for the error of the reduced basis solution in XN -norm
by:

∆XN

(ν) =
1

β(ν)
||rpr (·; uN ; ν)||(XN )′ , (5.26)

and for the output of interest according to estimate (4.25):

∆o(ν) =
1

β(ν)
||lo (·)||(XN )′ ||rpr (·; uN ; ν)||(XN )′ . (5.27)

According to Theorem 4 and Lemma 3 both estimators are rigorous:

||e(ν)||XN ≤ ∆XN

(ν), (5.28)

|sN (ν) − sN(ν)| ≤ ∆o(ν). (5.29)
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5.3 A posteriori error estimation

5.3.2 Online-offline decomposition

In the following we derive the online-offline decomposition for the reduced
basis error estimators (5.26) and (5.27).

Dual norm of residuum

A key ingredient to the error estimators is the dual norm of the residuum of
a reduced basis solution:

||rpr (·; uN ; ν)||(XN )′ . (5.30)

For numerical evaluation of this expression we utilize the Riesz representation
of the residuum, which is defined by:

(v, êpr (ν))XN = rpr (v; uN ; ν) , ∀v ∈ XN . (5.31)

Above definition is an elliptic problem, from which êpr (ν) can be computed.
According to the Riesz representation theorem, the dual norm can then be
evaluated by:

||rpr (·; uN ; ν)||(XN )′ = ||êpr (ν)||XN . (5.32)

However, solving elliptic problem (5.31) is as expensive as solving the truth
approximation itself. Also computation of the XN -norm of êpr (ν) depends
on the number of FEM degrees of freedom, which we want to avoid. For
an efficient online-offline decomposition again the affine decomposition of the
bilinear form a (·, ·; ν) (5.16) is utilized. According to the definition of the
primal residuum (5.21), we find:

rpr (·; uN ; ν) = f (·) −
Q
∑

m=1

Θm(ν)am(uN , ·)

= f (·) −
N∑

q=1

Q
∑

m=1

Θm(ν)αq(ν)am(ζN
q , ·), (5.33)

where we inserted the expansion of reduced basis solution uN into a basis of
XN in the second line. This formulation gives rise to the definition of following
elliptic problems:

f (v) = (v, b)XN , ∀v ∈ XN , (5.34a)

aq(ζ
N
m , v) =

(
v, Lm

q

)

XN
, ∀v ∈ XN , (5.34b)
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which are independent on the parameters ν and can be solved offline. Using
expansion (5.33) and (5.31), the Riesz representation of the residuum can
then be expressed in terms of solutions of above problems:

êpr (ν) = b −
N∑

q=1

Q
∑

m=1

Θm(ν)αq(ν)Lm
q . (5.35)

The norm of êpr (ν) is given by:

||êpr (ν)||2XN =(b, b)XN − 2ℜ
{

N∑

q=1

Q
∑

m=1

Θm(ν)αq(ν)
(
b, Lm

q

)

XN

}

+

N∑

q,q′=1

Q
∑

m,m′=1

Θm(ν)Θm′(ν)αq(ν)αq′(ν)
(

Lm
q , Lm′

q′

)

XN
.

(5.36)

The scalar products (b, b)XN ,
(
b, Lm

q

)

XN
, and

(
Lm

q , Lm′

q′

)

XN
can be computed

offline, such that evaluation of the dual norm of the residuum becomes inde-
pendent on N .

Inf-sup constant

The second ingredient for computation of error bounds (5.26) and (5.27) is
the parameter dependent inf-sup constant β(ν). According to (5.25), it can be
obtained from a generalized eigenvalue problem of size N . Hence, an online-
offline decomposition for the computation of β(ν) is necessary for an efficient
evaluation of error bounds in the reduced basis context. State-of-the-art meth-
ods determine a lower bound to the inf-sup constant 0 < β(ν)LB < β(ν), such
that the estimators remain rigorous. The most recent development is the suc-
cessive constraint method (SCM), which constructs a lower bound by solving a
linear optimization problem [33, 16]. Especially when resonances occur in the
system, the inf-sup constant β varies over several orders of magnitude and
tends to zero. This leads to dramatically overestimated errors and, hence,
ineffective error bounds.

The problem setup we are interested in are electromagnetic scattering prob-
lems on unbounded domains. For our examples the inf-sup constant hardly
depends on the geometrical parameters. It is basically constant, as will be
demonstrated numerically. With nearly constant inf-sup constant, it is not
a great loss of effectivity, using a parameter independent lower bound β0 for
the error bounds:

β0 = min
ν∈D

β(ν). (5.37)
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5.4 Dual problem

Realizing this approach we take the minimum over a finite subset D̃ ⊂ D. In
order to minimize computational costs, it is favourable to take the minimum
over all snapshot parameters. Taking a snapshot we already have the neces-
sary LU decomposition of the system matrix A(ν) at hand, which is used in
the Lanczos procedure computing β(ν).

Of course with this approach, the computed error bounds are not rigorous
anymore, and in case there are resonances in the system, above approach is
not feasible. For scattering problems with transparent boundary conditions
there are, however, only resonances with complex eigenvalues ω in the system
[41]. The scattering problem (3.19) with real-valued ω is always invertible,
and the magnitude of the inf-sup constant should depend on the distance of
the given real incoming frequency ω to the closest complex resonance in the
system. At least for our scattering examples with no “cavity-like” character
these complex resonances and therewith the inf-sup constant does not depend
significantly on the geometry, even for larger parameter variations.

5.3.3 Operation count

The online operation count for computation of the dual norm of the residuum
is O(N2Q2), according to decomposition (5.36).

Offline N · Q finite element problems of dimension N have to be solved,
to obtain the Riesz representations (5.34a) and (5.34b). However, only a
single expensive LU decomposition of the matrix defining the norm on XN

has to be performed and N · Q forward backward substitutions, which gives
costs of O(NQN ). The costs for computation of scalar products (5.36) are
O(N2Q2N ).

5.4 Dual problem

In Section 4.5 we showed that usage of an approximation to the dual (or ad-
joint) Problem (4.26) in the non-compliant case can increase the convergence
rate of the output of interest.

The truth approximation of the dual problem for the input-output relation-
ship Problem 11 is defined by:

Problem 13. Find wN ∈ XN
du such that:

a
(
v, wN ; ν

)
= −lo (v) , ∀v ∈ XN

du. (5.38)

The solution wN to the dual problem can be used to correct the output of
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interest according to (4.35):

sNpd(ν) = sN (ν) − rpr
(
wN ; uN ; ν

)
. (5.39)

If the dual problem would be solved on the same space as the primal problem,
i.e. XN

du = XN , the correction would be zero, since rpr
(
wN ; uN ; ν

)
= 0 due

to Galerkin orthogonality.
In the reduced basis context the dual problem reads:

Problem 14. Find wN ∈ Xdu
N such that:

a (v, wN ; ν) = −lo (v) , ∀v ∈ Xdu .
N (5.40)

Also here a separate dual reduced basis space has to be constructed, in order
to correct the output of interest of the primal reduced basis problem:

spd
N (ν) = sN (ν) − rpr (wN ; uN ; ν) . (5.41)

We define the error of the dual corrected output of interest by:

eo
pd(ν) =|sN (ν) − spd

N (ν)|. (5.42)

Especially for many outputs of interest the increased convergent rate might
not pay of, due to the necessity of solving a dual problem for each output of
interest separately.

Online-offline decomposition

The online-offline decomposition strategy for the dual problem is given as
follows. Since the system right hand side f (·) and the output of interest lo (·)
differ, one is forced to construct a separate reduced basis space for the primal
and dual reduced basis problem. Let us denote the dual basis by:

BN
N,du =

{
ζN
q,du| q = 1, . . . , N

}
. (5.43)

Then the solution of the dual reduced basis approximation can be given by:

wN(ν) =

N∑

q′=1

αq′,du(ν)ζN
q′,du. (5.44)

The online-offline decomposition of the dual reduced basis system is similar
to the primal system, given in Section 5.2.2. Again the affine decomposition
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of the system bilinear form is the key ingredient. For efficient computation of
the dual correction (5.41) we also utilize the affine decomposition:

rpr (wN ; uN ; ν) =f (wN) − a (uN , wN ; ν)

=
N∑

q′=1

αq′,du(ν)f
(
ζN
q′,du

)

−
N∑

q,q′=1

Q
∑

m=1

Θm(ν)αq(ν)αq′,du(ν)am(ζN
q , ζN

q′,du).

(5.45)

The parameter independent quantities f
(
ζN
q′,du

)
and am(ζN

q , ζN
q′,du) can be com-

puted offline. Hence, evaluation of the dual correction becomes independent
on the number of FEM degrees of freedom.

Error bounds

According to Section 4, the error estimator for the dual corrected output of
interest (4.37) is given by:

∆o
pd(ν) =

1

β(ν)
||rpr (·; uN ; ν)||(XN )′

∣
∣
∣
∣rdu (·; wN ; ν)

∣
∣
∣
∣
(XN )′

. (5.46)

The online-offline decomposition for computation of the norm of the dual
residuum follows exactly that of the primal residuum given in Section 5.3.2.

Operation count

The online and offline operation count for solution of the dual problem is
equal to the primal reduced basis problem. In addition the dual correction
(5.45) has to be determined. Computation of the N dependent quantities in
(5.45) has offline costs of O(QN2N ). Online evaluation of the dual correction
then has costs of O(QN2).

For several outputs of interest, in general, all dual online and offline costs
have to be multiplied by the number of output functionals, since a separate
dual correction has to be computed for each output. This can make the usage
of dual corrections infeasible.

5.5 Effectivities

In order to quantify the performance of the error estimators, we introduce ef-
fectivities according to Section 4.6. They measure the ratio between estimated
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and true error:

ηH(ν) =
∆H(ν)

||uN − uN ||XN

, (5.47a)

ηo(ν) =
∆o(ν)

|sN (ν) − sN(ν)| , (5.47b)

ηo
pd(ν) =

∆o
pd(ν)

|sN (ν) − spd
N (ν)|

, (5.47c)

for the reduced basis solution in XN -norm, and the output of interest using the
primal and primal-dual reduced basis approximations. Since the estimators
are rigorous, we have ηH(ν), ηo(ν), ηo

pd(ν) ≥ 1.

5.6 Greedy sampling strategy

In Section 5.2.1 we introduced Lagrange reduced basis spaces. These spaces
consist of snapshot solutions of the truth approximation for N parameter
values in the parameter domain SN ⊂ D. An important question is, how to
choose the snapshot parameter set SN . Since the online costs of reduced basis
computations depend on N , our goal is to construct reduced basis spaces of
smallest possible dimension with good approximation properties. Hence, we
have to choose SN , such that a maximum of information about the manifold
of possible solutions MN (5.5) is included in the reduced basis space XN .

For selection of snapshot parameters, we use a greedy algorithm [82], which
is explained in the following. First a so-called training set Ξtrain ∈ D of can-
didate snapshot has to be defined, from which the reduced basis snapshot
parameters are chosen iteratively. The first snapshot parameter is chosen
randomly from the training sample. Now suppose, a reduced basis approx-
imation of dimension i is already built. For selection of the next snapshot
parameter, a reduced basis error estimator ∆i(ν) as introduced in Section 5.3
is utilized. The error estimate using the current reduced basis approximation
is computed for each parameter in the training set. Then the snapshot for
the parameter corresponding to the largest estimated error is included into
the current basis.

The motivation for this procedure is that a candidate snapshot with large
error is not well approximated by the current basis, and its inclusion adds a
“maximum of new information” into the reduced basis.

In an actual implementation a criterion which defines, if the reduced basis
approximation is sufficiently accurate, could be introduced by:

∆i(ν) < ǫ , ∀ν ∈ Ξtrain,
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5.6 Greedy sampling strategy

Algorithm 1 Greedy construction of reduced basis space XN

1: choose training sample Ξtrain ∈ D, maximum reduced basis dimension
Nmax ≥ 1, and error threshold ǫ

2: choose ν1 ∈ Ξtrain randomly
3: compute snapshot uN(ν1)
4: X1 = uN(ν1)
5: orthonormalize X1

6: compute β(ν1)
7: β̂LB = β(ν1)
8: construct ∆1

9: ν2 = arg max
ν∈Ξtrain

∆1(ν)

10: i = 2
11: while (∆i−1(ν

i) ≥ ǫ) && (i ≤ Nmax) do
12: compute snapshot uN(νi)
13: Xi = Xi−1 ∪ uN(νi)
14: orthonormalize Xi

15: compute β(νi)
16: if β(νi) < β̂LB then
17: β̂LB = β(νi)
18: end if
19: construct ∆i

20: νi+1 = arg max
ν∈Ξtrain

∆i(ν)

21: i = i + 1
22: end while
23: XN = span {XN}

where the threshold ǫ has to be specified by the user. This guarantees that
the reduced basis approximation is sufficiently accurate over the training set.
Furthermore, the greedy sampling can be stopped, if the reduced basis space
reaches a maximum dimension Nmax. The greedy construction algorithm,
which is used in our numerical examples is stated in Algorithm 1. It also
includes computation of an estimate to the global lower bound of the inf-sup
constant, as explained in Section 5.3.2.

The step “construct ∆i” includes offline steps for projection of the affine
decomposition onto the reduced basis and for construction of error estimator
given in Sections 5.2.2 and 5.3.2 respectively. It is reasonable to choose the
estimator for the output of interest (5.27) in Algorithm 1.

If we include the dual problem, Algorithm 1 is modified, and a dual reduced
basis space Xdu

N is constructed in addition to the primal reduced basis space.
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5 Reduced basis method

Algorithm 2 Greedy construction of primal and dual reduced basis spaces
XN and Xdu

N

1: choose training sample Ξtrain ∈ D, maximum reduced basis dimension
Nmax ≥ 1, and error threshold ǫ

2: choose ν1 ∈ Ξtrain randomly
3: compute primal snapshot uN(ν1)
4: X1 = uN(ν1)
5: orthonormalize X1

6: compute β(ν1)
7: β̂LB = β(ν1)
8: construct ∆1

9: ν1
du = arg max

ν∈Ξtrain

∆1(ν)

10: compute dual snapshot wN(ν1
du)

11: Xdu
1 = wN(ν1

du)
12: orthonormalize Xdu

1

13: construct ∆2

14: ν2 = arg max
ν∈Ξtrain

∆2(ν)

15: i = 2
16: while (∆2i−2(ν

i) ≥ ǫ) && (i ≤ Nmax) do
17: compute primal snapshot uN(νi)
18: Xi = Xi−1 ∪ uN(νi)
19: orthonormalize Xi

20: compute β(νi)
21: if β(νi) < β̂LB then
22: β̂LB = β(νi)
23: end if
24: construct ∆2i−1

25: νi
du = arg max

ν∈Ξtrain

∆1(ν)

26: compute dual snapshot wN(νi
du)

27: Xdu
i = Xdu

i−1 ∪ wN(νi
du)

28: orthonormalize Xdu
i

29: construct ∆2i

30: νi+1 = arg max
ν∈Ξtrain

∆i(ν)

31: i = i + 1
32: end while
33: XN = span {XN}
34: Xdu

N = span
{
Xdu

N

}
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(a) (b) (c)

ν1

ν2

ν1

ν2

ν1

ν2

(d) (e) (f)

Figure 5.2: (a), (b), (c) Iterative enlargement of training sample. Crosses:
snapshots - circles: candidate snapshots. (a) Initial training sam-
ple (b), (c) training sample after first and second snapshot. (d),
(e), (f) Logarithm of error estimate over parameter domain for
one, two, and three dimensional reduced basis approximation –
corresponds to numerical example of Section 6.3 with variable pa-
rameters width ν1 = W and length ν2 = H . The figures have
different scaling (blue: small error bound, red: large error bound).

This is given in Algorithm 2, and of course the primal-dual error estimator for
output of interest (5.27) is chosen for selection of the snapshot parameters.

For training samples Ξtrain with many elements, computation of the maxi-
mum arg max

ν∈Ξtrain

∆i(ν) can become very expensive, especially for higher dimen-

sional parameter spaces. To circumvent this, we use an adaptive refinement
strategy for the training sample [66]. We start with a small Ξtrain and refine
it, after a snapshot has been made, as follows. We assume the parameter do-
main D is a p-dimensional cube in Rp. At the beginning the training sample
only includes the center of this cube, which is consequently chosen as snap-
shot parameter. The chosen parameter is removed from Ξtrain, and the cube
is subdivided into 2p new cubes, see Fig. 5.2(a), (b), and (c) for illustration
in a 2D parameter space. The 2p new center points of the cubes are included
into the training sample, and the next parameter is chosen. The correspond-
ing center point of the cube is removed from the training sample again, and
the cube divided into 2p new cubes as before. Therewith the training sample
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grows moderately by 2p − 1, when a snapshot is made.
A motivation for this adaptive approach is given in Figures 5.2(d), (e), and

(f). The reduced basis error bound over a 2D parameter domain is shown
for a one-, two-, and three-dimensional reduced basis approximation. For
the type of wave equation we are considering, a snapshot at a specific point
in the parameter space mainly leads to a local improvement of the reduced
basis approximation. Therefore, it seems reasonable to include candidate
snapshots with increasing density into the training sample. In general, the
adaptive approach could lead to failures, if a candidate snapshot is very well
approximated by a different parameter, which is already included in the basis.
This candidate might then not be included in the basis and ”blocks” the
inclusion of new close candidates into the training sample. A way out could
be an occasional dense sweep over the parameter domain during adaptive
construction of the basis, in order to find such problematic cases. However,
we did not observe above problems in our applications.

Other approaches to adaptive greedy strategies can be found in [25, 26].

5.7 Affine geometry precondition

In the preceeding sections we saw that affine decomposition of the bilinear
form of the truth approximation (5.4) is essential for efficient online-offline
decomposition. The solution of the reduced basis approximation (5.7), as
well as error estimation (5.36) becomes independent on the number of FEM
degrees of freedom N . In the following we show for which types of para-
metrized geometries an affine decomposition of the system bilinear form can
be constructed. These geometries are said to hold the affine geometry pre-
condition [82].

We start by introducing a mapping G, which maps a reference configuration
of the geometry with corresponding parameters νref onto a new configuration:

G : Ω × D →Ω,

(x, ν) 7→G(x; ν),
(5.48)

where D ⊂ Rp is the parameter domain, and Ω ⊂ Rn. By construction G
becomes the identity on Ω for νref :

G(·; νref) = 1Ω(·).

Next we introduce the Jacobian J of G:

J : R
n × D →R

n,

(x, ν) 7→J(x; ν).
(5.49)
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5.7 Affine geometry precondition

Figure 5.3: Topologically equivalent grids which can be mapped by piecewise
linear transformation onto each other.

The affine geometry precondition is defined as follows:

Definition 28. Let Ω ⊂ Rn and G be a mapping as defined in (5.48) with
Jacobian J . The pair (Ω, G) holds the affine geometry precondition, if
there exists a partition of open subsets P = {Ω1, . . . , ΩK} of Ω with the
following properties:

(i) Ω =
K⋃

i=1

Ωi,

(ii) Ωi

⋂
Ωj = ∅, for i 6= j ,

(iii) J(x; ν) is constant in x on each Ωi for fixed ν ∈ D.

If (iii) holds for the Jacobian J , it can be written as:

J(·; ν) =
K∑

i=1

Ji(ν) χΩi
(·), (5.50)

where χΩi
(·) is the characteristic function of Ωi define by:

χΩi
: Ω →Ω

(x) 7→χΩi
(x) =

{
1 : x ∈ Ωi

0 : else
.

(5.51)

We will refer to the sets Ωi as meta cells of the reduced basis partition of the
geometry. For example, the mapping of a triangulation of a geometry onto a
topologically equivalent triangulation, as depicted in Fig. 5.3, fulfills the affine
geometry precondition. Since the mapping of each triangle onto a deformed
triangle has a constant Jacobian, the composed mapping of all triangles has
a piecewise constant Jacobian. Having a geometrically parametrized problem
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which holds the affine geometry precondition, it is possible to construct an
affine decomposition of the system bilinear form:

a(v, u; ν) =

Q
∑

m=1

Θm(ν)am(v, u).

An explicit derivation of the affine decomposition for Maxwell’s equations will
be given in the following section.

5.8 Affine decomposition of Maxwell’s equations

For construction of the affine decomposition of geometrically parametrized
Maxwell scattering problems, we focus on the three dimensional case: Ω ⊂ R3.

Let us recall, how Maxwell’s equations transform under a coordinate trans-
formation G. The sesquilinear form of the scattering problem reads according
to (3.18):

a(u, v) =

ˆ

Ω

dv̄ ∧ ∗−1
µ dũPML − ω2v̄ ∧ ∗εũ

PML.

The transformation rules (2.41) and (2.42) describe how ∗µ and ∗ε transform
under G. Since G is parameter dependent, the sesquilinear form also becomes
parameter dependent:

a (u, v; ν) =

ˆ

Ω

dv̄ ∧
(

1

|J(x; ν)|J(x; ν)T ∗−1
µ (x)J(x; ν)

)

du

−
ˆ

Ω

ω2v̄ ∧
(
|J(x; ν)|J(x; ν)−1 ∗ε (x)J(x; ν)−T

)
u.

(5.52)

Now suppose that the parametrized geometry (Ω, G) holds the affine geome-
try precondition, as defined in Section 5.7. Furthermore, we require that the
permeability and permittivity tensors ∗µ, ∗ε respect the reduced basis parti-

tion of Ω into
K⋃

i=1

Ωi, such that they take constant values ∗µ,i and ∗ε,i on each

Ωi. Then we can define the parameter dependent stiffness tensor:

S(x; ν) =
1

|J(x; ν)|J(x; ν)T ∗−1
µ J(x; ν)

=
K∑

i=1

1

|Ji(ν)|Ji(ν)T ∗−1
µ,i Ji(ν) χΩi

(x)

=

K∑

i=1

Si(ν) χΩi
(x),

(5.53)
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with:

Si(ν) =
1

|Ji(ν)|Ji(ν)T ∗−1
µ,i Ji(ν), (5.54)

and the parameter dependent mass tensor:

M(x; ν) =|J(x; ν)| J(x; ν)−1 ∗ε (x)J(x; ν)−T

=
K∑

i=1

|Ji(ν)| Ji(ν)−1 ∗ε,i Ji(ν)−T χΩi
(x)

=

K∑

i=1

M i(ν) χΩi
(x),

(5.55)

with:

M i(ν) = |Ji(ν)| Ji(ν)−1 ∗ε,i Ji(ν)−T . (5.56)

First we insert (5.53) into the stiffness integral of (5.52):

ˆ

Ω

dv̄ ∧
(

1

|J(x; ν)|J(x; ν)T ∗−1
µ (x)J(x; ν)

)

du =

ˆ

Ω

dv̄ ∧
K∑

i=1

Si(ν) χΩi
(x)du =

K∑

i=1

ˆ

Ωi

dv̄ ∧ Si(ν) du.

Let us denote by Si
jk the jk-component of the symmetric 3 by 3 tensor Si.

Furthermore, for clarity we use the classical notion du ∼= ∇× ~u. Expanding
Si into components, we then get (note the symmetry in the second line):

K∑

i=1

Si
11(ν)

ˆ

Ωi

(
∇× ~̄v

)





1 0 0
0 0 0
0 0 0



 (∇× ~u) +

Si
12(ν)

ˆ

Ωi

(
∇× ~̄v

)





0 1 0
1 0 0
0 0 0



 (∇× ~u) + · · ·+

Si
33(ν)

ˆ

Ωi

(
∇× ~̄v

)





0 0 0
0 0 0
0 0 1



 (∇× ~u) ,
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and accordingly for the mass integral of (5.52):

K∑

i=1

M i
11(ν)

ˆ

Ωi

~̄v ·





1 0 0
0 0 0
0 0 0



 · ~u+

M i
12(ν)

ˆ

Ωi

~̄v ·





0 1 0
1 0 0
0 0 0



 · ~u + · · ·+

M i
33(ν)

ˆ

Ωi

~̄v ·





0 0 0
0 0 0
0 0 1



 · ~u.

Hence, we arrive at an affine decomposition of the form:

a(v, u; ν) =

K∑

i=1

L∑

j=1

Θj
i (ν)aj

i (v, u), (5.57)

where the parameter dependent functions Si
kl(ν) and M i

mn(ν) were rearranged
and relabeled by Θj

i (ν). We could rearrange the sums over i and j into a single
sum (which would give an affine decomposition of form (5.16)), however, for
implementation of the following sub-domain residuum method we will need
this form of the affine decomposition. The important property is that the
integral of the sesquilinear form aj

i is only carried out over the meta cell Ωi,
for j = 1, . . . , L.

For Maxwell’s equations in 3D we have in general L = 12 terms on each Ωi,
2 × 6 terms for the components of the symmetric 3 by 3 tensors Si and M i.
For other elliptic operators a similar decomposition can be derived, where
the constant L depends on the type of equation that is transformed. For an
arbitrarily polarized electric field in 2D we have L = 8, for TM polarization
(electric field in 2D plane) and TE polarization (Helmholtz equation) we have
L = 4.

Construction of piecewise affine mappings

Finally we comment on the construction of the mapping G, such that the
parametrized geometry holds the affine geometry precondition. Let us look at
the transformation of a reference tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1) onto a tetrahedron with vertices x0, x1, x2, x3, with xi ∈ R3.
The mapping G of this transformation is given by:

G(x, y, z) =





x1
1 − x0

1 x2
1 − x0

1 x3
1 − x0

1

x1
2 − x0

2 x2
2 − x0

2 x3
2 − x0

2

x1
3 − x0

3 x2
3 − x0

3 x3
3 − x0

3









x
y
z



 ,
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5.9 Residuum estimator

where xi
j is the j-th Cartesian component of xi. Hence, the Jacobian Matrix

is constant:

J =





x1
1 − x0

1 x2
1 − x0

1 x3
1 − x0

1

x1
2 − x0

2 x2
2 − x0

2 x3
2 − x0

2

x1
3 − x0

3 x2
3 − x0

3 x3
3 − x0

3



 .

Since the transformation of a tetrahedron onto another deformed tetrahedron
can be constructed via an intermediate transformation to a reference tetra-
hedron, the joined Jacobian is also constant. If we now subdivide Ω into
tetrahedrons and define G such that it produces a topologically equivalent
tetrahedral mesh, its Jacobian is piecewise constant as desired. The same
holds for transformation of topologically equivalent triangular meshes in 2D,
and even curvy triangles can be used for reduced basis triangulations [82].

In our implementation the reduced basis triangulation comes from a coarse
Delaunay triangulation of the computational domain, which respects con-
straint edges of the geometry. Often it is possible to summarize several tetra-
hedrons (triangles in 2D) into a single meta cell, which transform with same
constant Jacobian. This reduces the number of terms in the affine decompo-
sition of the system bilinear form.

5.9 Residuum estimator

The residuum based error estimator given in Section 5.3 uses the dual norm of
the residuum of a reduced basis approximation to construct an error bound.
The dual norm is evaluated via the Riesz representation of the residuum.
The online-costs regarding computational time and memory requirements are
O(Q2N2), where N is the reduced basis dimension and Q the number of terms
in the affine expansion of the system bilinear form.

Especially when constructing the affine decomposition for a geometrically
parametrized problem in 3D, Q can become very large ∝ 103. With a typ-
ical reduced basis dimension of N ∝ 102 the operation count and memory
requirements are of the order of 1010. This corresponds to Terabytes of data
and makes error estimation in the presented form basically impossible. Fur-
thermore, the online costs for solution of the reduced basis system is only
O(QN2), a factor Q cheaper than error estimation. In the following, there-
fore, our goal is to construct a much cheaper error estimator, with costs also
of the order O(QN2) [66].

The estimator is inspired by the sub-domain residuum method, which is
used for a posteriori error estimation of finite element solutions [3, 1]. Before
considering the reduced basis setup, we give the idea of the method in the
following.
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5 Reduced basis method

(a) (b)

Figure 5.4: (a) Finite element and (b) reduced basis triangulation with ex-
emplary sub-domains for sub-domain residuum method.

5.9.1 Classical sub-domain residuum method

The basic idea of the sub-domain residuum method is to solve the error
residuum relationship approximatively, by restricting it to several indepen-
dent problems on sub-domains of the computational domain Ω. Let us con-
sider the following variational problem:
Find u ∈ X(Ω) such that:

a(u, v) = f(v) , ∀v ∈ X(Ω), (5.58)

where a(·, ·) is a coercive bilinear form and f ∈ (X(Ω))′. Let XN (Ω) ⊂ X(Ω)
and uN a solution to (5.58) on XN (Ω) given by:
Find uN ∈ XN (Ω) such that:

a(uN , v) = f(v) , ∀v ∈ XN (Ω). (5.59)

Now we want to quantify the error e = u−uN . In principle the error residuum
relationship (4.9) can be used to compute e:

a(e, v) = r(v; u) = f(v) − a(uN , v) , ∀v ∈ X(Ω),

which is a boundary value problem of same complexity as the original Problem
(5.58). This problem will now be simplified as follows.

Let P be a partition of Ω into patches, e.g., triangles from finite element
discretization. The set {ϑn}n∈W denotes the first-order Lagrange functions,
defined by the element vertices xm of the partition. The Lagrange basis
functions are characterized by:

ϑn(xm) =δmn, (5.60)

and have the important property:
∑

n∈W

ϑn(x) = 1, x ∈ Ω. (5.61)
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5.9 Residuum estimator

Furthermore, we define the support of the basis functions:

Ω̃n = supp ϑn , n ∈ W. (5.62)

Figure 5.4(a) shows a single sub-domain Ω̃n for a finite element triangulation.
Property (5.61) is now used in the error residuum relationship (5.58):

a(e, v) = a(e,
∑

n∈W

ϑnv) = f(
∑

n∈W

ϑnv) − a(uN ,
∑

n∈W

ϑnv)

=
∑

n∈W

a(e, ϑnv) =
∑

n∈W

[
f(ϑnv) − a(uN , ϑnv)

]
,

which can be written as follows:

∑

n∈W

[
a(e, ϑnv) − f(ϑnv) + a(uN , ϑnv)

]
= 0. (5.63)

The function ϑnv only has support on Ω̃n and vanishes on ∂Ωn, hence,
(ϑnv) ∈ X0(Ω̃n), which is a subset of elements from X(Ω̃n) with zero Dirichlet
values on the boundary ∂Ω̃n. This gives rise to the definition of following
restricted bilinear forms and functionals:

an(v, w) =a(v, w) , ∀v, w ∈ X0(Ω̃n), (5.64)

fn(v) =f(v) , ∀v ∈ X0(Ω̃n), (5.65)

hence, an(v, w) : X0(Ω̃n) × X0(Ω̃n) 7→ R(C) and fn(·) ∈
(

X0(Ω̃n)
)′

.

The sub-domain residuum method consists of solving the following prob-
lems, which are motivated by the partition introduced in (5.63):
For n ∈ W find en ∈ X0(Ω̃n) such that:

an(en, v) − fn(v) + an(uN , v) = 0 , ∀v ∈ X0(Ω̃n). (5.66)

These equations can be understood as localized error residuum relationships.
The error estimator ∆n associated with the sub-domain Ω̃n is defined by:

∆n = ||en||an
, (5.67)

where ||·||an
is the energy norm induced by the coercive bilinear form an(·, ·):

||v||an
=
√

an(v, v) , ∀v ∈ X0(Ω̃n). (5.68)
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The global estimate for the error in energy norm is obtained by summing up
the local contributions:

∆ =

√
∑

n∈W

∆2
n. (5.69)

In [1] the equivalence of this estimator to the true error ||e||a is proven.
The simplification of the sub-domain residuum method is the division of

the error residuum relationship into several smaller problems (5.66) on sub-
domains.

5.9.2 Reduced basis sub-domain residuum method

We can adapt the idea of the sub-domain residuum method for construction
of a cheap residuum estimator in the reduced basis context. The meta cells
Ωi , i = 1, . . . , K introduced in the derivation of the affine decomposition in
Section 5.7 appear as natural candidates for the sub-domains, as depicted in
Fig. 5.4(b).The key analogon to the classical sub-domain residuum method
is the following representation of the identity:

K∑

i=1

χΩi
(x) = 1, x ∈ Ω, (5.70)

which is used instead of (5.61). Since we want to derive an estimate for the
dual norm of the residuum, we start with the characterization of the Riesz
representation of the residuum (5.31) and use the affine decomposition (5.57)
of the sesquilinear form:

(v, êpr (ν))XN = f (v) −
K∑

i=1

L∑

j=1

Θj
i (ν)aj

i (uN , v) , ∀v ∈ XN . (5.71)

Now we insert the representation of unity (5.70):

(
K∑

m=1

χΩm
v, êpr (ν)

)

XN

=f

(
K∑

m=1

χΩm
v

)

−
K∑

i=1

L∑

j=1

Θj
i (ν)aj

i

(

uN ,
K∑

m=1

χΩm
v

)

K∑

m=1

(χΩm
v, êpr (ν))XN =

K∑

m=1

(

f (χΩm
v) −

K∑

i=1

L∑

j=1

Θj
i (ν)aj

i (uN , χΩm
v)

)

K∑

m=1

(χΩm
v, êpr (ν))XN =

K∑

m=1

(

f (χΩm
v) −

L∑

j=1

Θj
m(ν)aj

m(uN , v)

)

. (5.72)
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In the last step we used:

aj
i (uN , χΩm

v) = δimaj
i (uN , v),

which holds, since aj
i (uN , v) only depends on data of uN and v on Ωi, and

χΩm
(x) = 0 for x 6∈ Ωm, c.f. discussion after (5.57). Furthermore, f (χΩm

·)
only depends on data on Ωm.

Inspired by the sub-domain residuum method (5.66), we solve the following
localized problems:
For m = 1, . . . , K find êpr

m (ν) ∈ XN
0 (Ωm) such that:

(v, êpr
m (ν))XN (Ωm) =

(

f (v) −
L∑

j=1

Θj
m(ν)aj

m(uN , v)

)

, ∀v ∈ XN
0 (Ωm).

(5.73)

In the classical sub-domain residuum method the choice of homogeneous
Dirichlet boundary conditions is motivated by the property that each La-
grange basis function vanishes on the boundary of its support. The corre-
sponding functions χΩi

do not have this property. Here we chose homogeneous
Dirichlet boundary conditions for computational convenience. Following the
error estimate (5.69) of the sub-domain residuum method, the reduced basis
residuum estimate is:

ǫpr (ν) =

√
√
√
√

K∑

m=1

||êpr
m (ν)||2XN (Ωm), (5.74)

which is the main result of this section.
In order to quantify the performance of the residuum estimator in numerical

examples, we define the following effectivity:

η̃res(ν) =
ǫpr (ν)

||êpr (ν)||XN

, (5.75)

which measures the ratio between estimated and true residuum.

5.9.3 Online-offline decomposition

For the introduced residuum estimator an online-offline decomposition can be
constructed. The following localized problems have to be solved offline:

f (v) = (v, bm)XN (Ωm) , ∀v ∈ XN
0 (Ωm),

aj
m(ζN

q , v) =
(
v, Lq

jm

)

XN (Ωm)
, ∀v ∈ XN

0 (Ωm).
(5.76)
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The localized contributions to the estimate ǫpr (ν) in (5.74) are then obtained
by:

||êpr
m (ν)||2XN (Ωm) = ||bm||2XN (Ωm)

−
L∑

j′=1

N∑

q′=1

Θj′

m(ν)αq′(ν)
(

bm, Lq′

j′m

)

XN (Ωm)

−
L∑

j=1

N∑

q=1

Θj
m(ν)αq(ν)

(
Lq

jm, bm

)

XN (Ωm)

+

L∑

j,j′=1

N∑

q,q′=1

Θj
m(ν)αq(ν)Θj′

m(ν)αq′(ν)
(

Lq
jm, Lq′

j′m

)

XN (Ωm)
.

(5.77)

The terms ||bm||2XN (Ωm),
(

bm, Lq′

j′m

)

XN (Ωm)
,
(

Lq
jm, Lq′

j′m

)

XN (Ωm)
can also be

computed offline, such that evaluation of estimate (5.74) becomes independent
on the number of finite element degrees of freedom N .

5.9.4 Operation count

In the offline phase the elliptic problems (5.76) for determination of the Riesz
representation have to be solved. Without the sub-domain residuum method
this corresponds to NQ forward backward substitution (FBS) with total costs
O(NNQ), a single LU decomposition of a matrix of size N , and computation
of scalar products with costs of O(N2Q2N ), c.f. Section 5.3.3. With the sub-
domain residuum method we have to perform K LU decompositions with
an average size of N /K and NLK = NQ FBSs. However, each FBS is only
performed on a meta cell, which leads to costs of O(NNQ/K) = O(NNL).
Computing the scalar products in (5.77) has costs of O(K · N2L2(N /K)) =
O(N2L2N ).

In the online step the computational time and memory costs comput-
ing the exact dual norm of the residuum are O(N2Q2). With the sub-
domain residuum method the leading term according to (5.74) and (5.77)
is O(N2L2K) = O(N2LQ).

Using the proposed sub-domain residuum method in the reduced basis con-
text, memory and offline and online computational costs are saved by a factor
of K, corresponding to the number of meta cells. In our application especially
in 3D we have K ∝ 100, which results in huge savings, making the reduced
basis method applicable to a much larger class of applications. Furthermore,
the factor L only depends on the PDE which is solved. L corresponds to the
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5.9 Residuum estimator

number of affine terms in the matrix expansion on a meta cell (5.57) and is
therefore bounded. For 3D Maxwell’s equations we have a maximum of L = 12
terms, corresponding to the entries in the symmetric 3 × 3-permittivity and
permeability tensors. A constant L means that the sub-domain residuum es-
timator has online costs of O(N2Q), which is equal to the assembling costs of
the reduced basis system as desired. For the class of problems considered in
[82] we have L = 6, for 2D Helmholtz problems L = 4, etc.
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5 Reduced basis method

5.10 Multiple sources

In applications it is often necessary to simulate the response of a system for
multiple sources. In nano-optics an important example are complex, e.g., so-
called dipole or quadrupole [44], illuminations. These can be modeled by a set
of P plane waves with different amplitudes, incident angles, and polarizations,
which have to be simulated independently.

5.10.1 Problem setup

The truth approximation to a setup with multiple sources reads:

Problem 15. For i = 1, . . . , P and given tuple of input parameters ν ∈ D ⊂
R

p, compute the outputs of interest:

sNi (ν) = lo
(
uN

i (ν)
)
, (5.78)

where uN
i (ν) ∈ XN is the solution to the following problem:

Find uN
i (ν) ∈ XN such that:

a
(
uN

i (ν), v; ν
)

= fi (v) , ∀v ∈ XN . (5.79)

Here we assume that the system bilinear form does not depend on the source
i. For time-harmonic Maxwell’s equations this is the case if different sources
have same frequency ω, since the incoming frequency ω enters into a (·, ·; ν),
c.f. (3.9). In a Bloch-periodic setting, furthermore, the different sources must
have the same phase difference across the domain, since this phase difference
also enters the system bilinear form.

If the system bilinear form does not depend on the source, the finite el-
ement computation of the truth approximation is basically independent on
the number of right hand sides P . Only a single LU-decomposition of the
system matrix has to be performed and P forward backward substitutions for
different right hand sides. The forward backward substitutions are thereby
much cheaper to compute than the LU-decomposition.

For formulation of the reduced basis problem, the finite element space
XN in truth approximation (5.79) is replaced by spaces of global functions
X i

N ⊂ XN :

Problem 16. For sources i = 1, . . . , P and given tuple of input parameters
ν ∈ D ⊂ R

p, compute the outputs of interest:

si
N(ν) = lo

(
ui

N(ν)
)
, (5.80)
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where ui
N(ν) ∈ X i

N is the solution to the following problem:
Find ui

N(ν) ∈ X i
N such that:

a
(
ui

N(ν), v; ν
)

= fi (v) , ∀v ∈ X i
N . (5.81)

The space X i
N is spanned by snapshot solutions to truth approximation (5.79)

for different parameter values ν:

X i
N = span

{
uN

i (ν1), . . . , u
N
i (νN )

}
. (5.82)

In contrast to the truth approximation (5.79), the trial and test spaces in
the reduced basis problem (5.81) differ for different i, and the reduced basis
system matrices will, therefore, also depend on i. This is due to the fact that
each reduced basis space X i

N consists of snapshots, which are computed with
different sources fi (·). Hence, in general P reduced basis systems have to
assembled and solved online for P sources. If P becomes large (e.g. ∝ 100),
this dramatically reduces the performance of the reduced basis approximation.

5.10.2 Efficient reduced basis treatment

In the following we will motivate and explain, how to obtain a reduced basis
solution for above setting with online costs basically independent on P [67].
Let us have a look at the reduced basis solution to a fixed source j. It is given
by:

uj
N =

N∑

q=1

αj
q(ν)ζN ,j

q , (5.83)

where αj
q are the reduced basis coefficients and ζN ,j

q the elements of the reduced
basis for source j. The primal residuum then reads:

rpr
(
v; uj

N ; ν
)

= fj (v) −
N∑

q=1

αj
q(ν)a

(
ζN ,j
q , v; ν

)
, ∀v ∈ XN . (5.84)

The elements of the reduced basis are computed from snapshot solutions with
parameters νq. Let us assume for simplicity that they are not orthogonalized
against each other. Then the elements of the reduced basis are solutions to:
Find ζN ,j

q ∈ XN such that:

a
(
ζN ,j
q , v; νq

)
= fj (v) , ∀v ∈ XN . (5.85)
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Now we introduce the Riesz representation of functional fj (·):

fj (v) =
(

v, f̃j

)

XN
, ∀v ∈ XN , (5.86)

with f̃j ∈ XN and utilize the representation operator of the functional

a
(
ζN ,j
q , ·; ν

)
∈
(
XN

)′
, introduced in (5.23):

a
(
ζN ,j
q , ·; ν

)
=
(
·, Tνζ

N ,j
q

)

XN
, ∀ζN ,j

q ∈ XN . (5.87)

The snapshot Problem (5.85) is then equivalent to:
Find ζN ,j

q ∈ XN such that:

(
v, Tνq

ζN ,j
q

)

XN
=
(

v, f̃j

)

XN
, ∀v ∈ XN , (5.88)

from which we conclude:

ζN ,j
q =

(
Tνq

)−1
f̃j . (5.89)

The primal residuum (5.84) can now be rewritten as follows:

rpr
(
v; uj

N ; ν
)

=fj (v) −
N∑

q=1

αj
q(ν)a

(
ζN ,j
q , v; ν

)

=
(

v, f̃j

)

XN
−

N∑

q=1

αj
q(ν)a

((
Tνq

)−1
f̃j, v; ν

)

=
(

v, f̃j

)

XN
−

N∑

q=1

αj
q(ν)

(

v, Tν

(
Tνq

)−1
f̃j

)

XN

=

(

v,

{1SN − Tν

[
N∑

q=1

αj
q(ν)

(
Tνq

)−1

]}

f̃j

)

XN

, (5.90)

where 1SN is the identity on the space of Riesz representations of all sources:

SN = span
{

f̃1, . . . , f̃P

}

. (5.91)

Hence, the residuum will be small, and the truth approximation will be well
approximated if the operator:

Tν

[
N∑

q=1

αj
q(ν)

(
Tνq

)−1

]

(5.92)
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provides a good approximation to 1SN or in other words:

N∑

q=1

αj
q(ν)

(
Tνq

)−1 ≈ T−1
ν , on SN .

The key observation is that the operator (5.92) does not depend on the func-
tional f̃j itself.

Instead of computing reduced basis coefficients αj
q(ν) for all sources j, we

therefore compute the coefficients only for a single source i and use them for
all other sources, i.e.:

αj
q(ν) = αq(ν) := αi

q(ν) , j = 1, . . . , P , q = 1, . . . , N, (5.93)

hence, we use a single representative f̃i from SN to compute the reduced basis
coefficients, and hope that the operator (5.92) provides a good approximation
to unity on the whole space SN . We will show in numerical examples that
this technique provides very good results.

As motivated above, in the offline phase the snapshots ζN ,j
q for different

sources j are computed at the same parameters νq. Then only a single LU-
decomposition has to be computed for determination of snapshots solutions
ζN ,j
q for all sources j = 1, . . . , P . The offline costs, therefore, do not increase

significantly with increasing number of sources, since the LU decomposition
is much more expensive then FBSs for all sources.

For numerical stability the reduced basis for source i is orthogonalized:

ζ̂N ,i
r =

N∑

q=1

γrqζ
N ,i
q , (5.94)

where ζ̂N ,i
r then is the orthonormal basis. The outputs of interest for all

sources j are computed by:

sj
N(ν) =

N∑

r=1

αr(ν)lo
(

ζ̂N ,j
r

)

, (5.95)

where the basis functions ζ̂N ,j
r for sources j 6= i are given by:

ζ̂N ,j
r =

N∑

q=1

γrqζ
N ,j
q , i = 1, . . . , P, (5.96)

i.e., the snapshots of all sources j are “orthogonalized” (transformed) with
the same coefficients γrq as for source i.
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Unfortunately the costs for error estimation of outputs of interest depends
on the number of sources P and is, therefore, infeasible for a large number
of sources. In numerical examples we will, however, see that the convergence
rate for the outputs of all sources is basically equal. Hence, a small estimate
for single source i gives confidence that reduced basis outputs for all sources
provide accurate results.

94



6 Application examples

In this chapter we apply the developed reduced basis techniques to 2D and 3D
electromagnetic scattering problems. The finite element solver used for imple-
mentation of the reduced basis method is JCMsuite, developed by the Zuse-
Institute Berlin and JCMwave GmbH for the numerical solution of Maxwell’s
equations [13]. JCMsuite provides high-order edge elements, adaptive grid
refinement, and transparent boundary conditions for multiply structured ex-
terior domains. It offers the possibility for electromagnetic field computations
in a wide range of nano-optical applications, including waveguide structures
[11], nano resonators [40], DUV phase masks [12], and other nano-structured
materials [17, 39, 30, 14]. The application field of our examples is computa-
tional lithography [44].

Lithography is a technique, which is nowadays used for fabrication of basi-
cally all integrated circuits [44, 103]. The basic principle is depicted in Fig. 6.1.
In the lithographical process the design pattern of a circuit is imaged via a
photomask onto a wafer, which is covered with photo sensitive resist. In illu-
minated areas the resist is chemically transformed and afterwards developed.
This gives the desired patterns on the waver.

The following numerical examples will deal with application of the reduced
basis method to simulation of light transmission through geometrically para-
metrized photomasks.

We start with a 2D and a 3D mask example, before we consider two more
complex applications in the field of inverse scatterometry and mask pattern
optimization. We will analyze the performance and convergence of the devel-
oped certified reduced basis techniques, where an evaluation of the proposed
sub-domain residuum method and efficient treatment of multiple sources will
be an important aspect.

The first real-time application will deal with a real world 2D inverse scat-
terometry problem. Our goal is fast reconstruction of a grating profile of
an extreme ultraviolet (EUV) mask from experimental scatterometric data.
This work was done in collaboration with the German national standards and
metrology institute (Physikalisch-Technische Bundesanstalt, PTB) and the
Advanced Mask Technology Center (AMTC) in Dresden, Germany.

Finally, we consider a challenging 3D example from optical proximity cor-
rection (OPC) [44], where the layout of a photomask is optimized, in order to
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light source

imaging system

photomask

projection system

wafer

Figure 6.1: Principle setup of optical lithography: a photomask is illuminated
by light, passing through an imaging system. The light distri-
bution created by the mask absorber pattern is projected onto a
wafer, which is covered with photosensitive resist.

obtain a desired resist pattern on the wafer. This is a many-query application.
Thereby we model a complex light source with P = 74 sources and have to
compute several thousands of outputs of interest. Computational times of the
truth approximation are of the order of hours for this example.

All computational times given in this section correspond to single CPU
times on a 2.6 GHz AMD Opteron processor.

Before we apply the reduced basis method, we comment on the type of
sources and outputs of interest, considered in the numerical examples.

6.1 Incoming fields and outputs of interest

The incoming source fields of the scattering examples will be plane waves,
given by:

uin(x) = E0 exp (i (nextk0) · x) . (6.1)

The vector E0 describes the electric field amplitude, k0 the vacuum wave
vector of the incoming field, and next =

√
ǫextµext the refractive index of the

exterior material. Plane waves are often the appropriate model in nano-optics,
since the scattering objects are usually much smaller than, e.g., the spot size
of a laser. Hence, compared to the scatterer the source field is treated as if it
would extend to infinity.

The solution of an electromagnetic scattering problem is the electric field
u on Ω. This solution is referred to as near field. In applications the near
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Lx

yb

yt

Figure 6.2: Periodic geometry of width Lx. Far field coefficients are computed
on top (y = yt) or bottom boundary (y = yb).

field itself is often not of interest. More important are quantities which can
be derived from the near field and are, e.g., easily experimentally accessible
and basically determine the functionality of the system under consideration.
The most important output of interest from a scattering experiment is the
so-called far field, which describes the electromagnetic field far away from the
scatterer. In the numerical examples we will consider periodic geometries.
A periodic domain in 2D is periodified in one spatial dimension (here the
x-direction) and in 3D in two spatial dimension (here the x- and y-direction),
see Fig. 6.2. For these types of geometries the far field consists of discrete
diffraction orders. The diffraction orders are complex Fourier coefficients of
the near field on a periodic boundary. They are defined by:

Êl =
1

Lx

ˆ Lx

x=0

dx u(x, y = yb, yt) e−ikx,lx,

Êl,m =
1

LxLy

ˆ Lx

x=0

dx

ˆ Ly

y=0

dy u(x, y, z = zb, zt) e−i(kx,lx+ky,my),

(6.2)

where Êl is used for 2D domains and Êl,m for 3D domains. Lx (and Ly in
3D) is the dimension of the periodic boundary, which is located at yb or yt,
see Fig. 6.2. The k-vectors take values:

kx,l = kx,0 +
2π

Lx
l with l ∈ Z,

ky,m = ky,0 +
2π

Ly
m with m ∈ Z,

(6.3)

where kx,0 and ky,0 are the x- and y-component of the k-vector (nextk0) of the
incoming field (6.1). In the 2D (3D) case the y-(z-)component of the k-vector
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of diffraction orders is given by:

ky,l =
√

n2
ext |k0|2 − k2

x,l (2D),

kz,lm =
√

n2
ext |k0|2 − k2

x,l − k2
y,m (3D).

In the far field only so-called propagating diffraction orders are visible. These
correspond to k-vectors fulfilling the following relation:

n2
ext |k0|2 − k2

x,l > 0 (2D),

n2
ext |k0|2 − k2

x,l − k2
y,m > 0 (3D).

(6.4)

The corresponding modes Êl and Êl,m propagate undamped towards infinity.
In contrast, the amplitudes of evanescent modes decrease exponentially with
increasing distance from the scatterer:

e
−y

q

k2
x,l

−n2
ext|k0|

2

(2D),

e
−z

q

k2
x,l

+k2
y,m−n2

ext|k0|
2

(3D).

These evanescent modes are not visible in the far field.
Our outputs of interest are, therefore, defined by expanding the field data

on the boundary of the computational domain into a Fourier series (6.2),
where the k-vectors satisfy (6.4). Linearity of this output functional follows
from linearity of integration.

6.2 2D phase shift mask

Figure 6.3 shows the 2D cross section of our first numerical example. A
Chromium on glass (CoG) phase shift mask together with the intensity of the
electric field is depicted. For this example we choose three geometrical param-
eters {d1, d2, d3} for construction of the reduced basis. The three dimensional
parameter domain is given by D = [340 nm, 420 nm]3, hence

d1 ∈ [340 nm; 420 nm],

d2 ∈ [340 nm; 420 nm],

d3 ∈ [340 nm; 420 nm].

(6.5)

The dimensions of the computational domain are 1520 nm × 500 nm. The
wavelength of the incoming plane wave is λ = 193 nm. The incoming wave
vector is given by:

k0 =
(
0, 3.25 · 107, 0

)
,
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6.2 2D phase shift mask

(a)

(b)

Figure 6.3: (a) Parametrized 2D phase shift mask for reduced basis computa-
tion. (b) Intensity of electric field obtained from FEM computa-
tion.

hence, we have normal incidence from below. The incoming field vector is
given by:

E0 = (1, 0, 1) . (6.6)

FEM discretization yields a system with N = 236832 unknowns. The affine
decomposition of the system matrix gives Q = 151 terms. Two separate
reduced basis approximations were built, using a primal-only and primal-dual
approximation. For analysis of the reduced basis approximation, the exact
solution of the truth approximation was computed for 200 points, chosen
randomly in the parameter domain.

First we look at the performance of the sub-domain residuum estimator,
introduced in Section 5.9. For each of the 200 points in the random parame-
ter ensemble Ξ the true and estimated residua were compared for increasing
dimension of the reduced basis up to 125, i.e., we have 25000 data points
for comparison. Figure 6.4(a) shows the estimated residuum ǫpr (ν) (5.74) in
dependence on the true dual norm of the residuum ||êpr (ν)||XN . The corre-
sponding effectivity of the residuum estimate is given in Fig. 6.4(b). The
effectivity varies only very little between 2.0 and 5.0 over 6 orders of magni-
tude of the true residuum, which demonstrates a very good performance of
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Figure 6.4: (a) Estimated dual norm of residuum (5.74) in dependence on
exact dual norm of residuum. (b) Effectivity of residuum estimate
(5.75) in dependence on true residuum. (2D mask, Section 6.2)

the reduced basis sub-domain residuum method.

The lower bound for the inf-sup constant (5.37), which was obtained during
construction of the reduced basis was β0 = 3.0176·10−3. The inf-sup constants
over the random parameter ensemble varied from 3.0202 ·10−3 to 3.0316 ·10−3,
which gives a maximum relative error of ≈ 5 · 10−3 and justifies usage of a
constant estimate for the lower bound. Next we look at the convergence of the
reduced basis solution in the H (curl, Ω)-norm. Figures 6.5(a), (b) show the
error and the corresponding error bound. We observe exponential convergence
with increasing dimension of the reduced basis approximation. The effectivity
of the estimate is shown in Fig. 6.5(c). The effectivities stay between 200
and 900 and increase moderately with decreasing error of the reduced basis
solution. In applications the convergence of the error in the output of interest
is of importance. We compare a reduced basis approximation, using only the
primal reduced basis and a primal-dual reduced basis with corrected output
of interest. We restrict us to one vector component of the zeroth transmitted
diffraction order, i.e., l = 0 in (6.3). The convergence of the primal and
primal-dual errors (5.20), (5.42) and the corresponding error bounds (5.27)
and (5.46) are shown in Figures 6.6 and 6.7. Again we observe exponential
convergence. Incorporation of the dual correction dramatically increases the
convergence rate. For a mean target accuracy of 10−2 for the error bound,
the primal approximation has a dimension of 125, c.f. Fig. 6.6. With dual
correction a primal and dual reduced basis approximation of only dimension
28 is needed. Finally, Fig. 6.8 shows the corresponding effectivities of the error
estimates for the primal and primal-dual approximation. The effectivities of
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Figure 6.5: (a) Reduced basis solution error (4.8) in H (curl, Ω)-norm and (b)
corresponding error bound (4.23) in dependence on reduced ba-
sis dimension. The mean, minimum and maximum values over
the random parameter ensemble Ξ are shown. (c) Effectivity of
H (curl, Ω)-estimator (5.47a) in dependence on reduced basis so-
lution error. (2D mask, Section 6.2)
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Figure 6.6: Convergence of output of interest in dependence on reduced basis
dimension, (a) using only the primal and (b) primal-dual reduced
basis approximation. The dimension of the dual reduced basis was
set equal to the dimension of the primal reduced basis. The dual
corrected solution converges much faster, compare the different
scalings of the x-axes. (2D mask, Section 6.2)
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Figure 6.7: Convergence of error bound for output of interest in dependence on
reduced basis dimension (a) using only the primal and (b) primal-
dual reduced basis approximation. The dimension of the dual
reduced basis was set equal to the dimension of the primal reduced
basis. The dual corrected solution converges much faster, compare
the different scalings of the x-axes. (2D mask, Section 6.2)
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Figure 6.8: Effectivities of error estimates for output of interest in dependence
on the error of the output of interest (a) using the primal-only
reduced basis and (b) with dual correction. The dimension of the
dual reduced basis was set equal to the dimension of the primal
reduced basis. (2D mask, Section 6.2)

computational times primal only (N = 125) primal-dual (N = 28)
output of interest 0.08 s 0.05 s
error estimation 1.5 s 0.4 s

Table 6.1: Comparison of computational times for primal and primal-dual re-
duced basis computation for comparable error bound. Truth ap-
proximation computational time is 40 s.

both cases are comparable but quite high mostly between 104 and 106.

Solution of the full FEM problem takes about 40 s. Reduced basis compu-
tational times are given in Table 6.1. The reduced basis computational times
are about 500 times smaller than for the truth approximation.

Multiple sources

In Section 5.10 we developed a technique for efficient treatment of problems
with multiple sources in the reduced basis context. In order to quantify the
performance of this method, we consider the 2D phase shift mask example
with three different incoming plane waves as sources. These are defined by
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Figure 6.9: (a) Reduced basis solution error (4.8) in H (curl, Ω)-norm and (b)
corresponding error bound (4.23) in dependence on reduced basis
dimension. The mean, minimum and maximum values over the
random parameter ensemble Ξ are shown. (2D mask with multiple
sources, Section 6.2)

the following electric field and wave vectors:

k1
0 =

(
0, 3.25 · 107, 0

)
, E1

0 = (0, 0, 1) ,

k2
0 =

(
0, 3.25 · 107, 0

)
, E2

0 = (1, 0, 0) ,

k3
0 =

(
4.13 · 106, 3.23 · 107, 0

)
, E3

0 = (0, 0, 1) ,

i.e., we consider different polarization and incidence angle. As explained in
Section 5.10, we build a reduced basis approximation only for source field 1.
The corresponding reduced basis solution defines the coefficients α(ν), which
are also used to compute the outputs of interest for source fields 2 and 3,
according to Eq. (5.93). We compare the reduced basis approximation to
the truth approximation for an ensemble Ξ of 100 random points in parameter
space. For each source we computed two outputs of interest, corresponding to
the 0th, and 1st diffraction order. First we look at the convergence of the re-
duced basis solution for source 1 in H (curl, Ω)-norm in Fig. 6.9. The error as
well as the error bound converge exponentially with increasing reduced basis
dimension. Hence, the reduced basis approximation for source 1 provides ac-
curate results. Figure 6.10 shows the convergence of the mean error of outputs
of interest for all sources over the random parameter ensemble. For sources
1 and 3 the output corresponds to the z-component of the diffraction order
(TE polarization) and to the x-component for source 2 (TM polarization) -
note that the y-component can be computed from the x-component using the
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Figure 6.10: Convergence of reduced basis output of interest for multiple
sources in dependence on reduced basis dimension. (a) Mean
error and (b) maximum error over an ensemble Ξ of 100 ran-
dom points in parameter space is shown. For each source, two
independent outputs of interest were computed. (2D mask with
multiple sources, Section 6.2)

divergence condition for the electric field div E = 0. We observe that all out-
puts converge exponentially and basically with the same rate. The output of
interest for source 1 converges slightly faster, which is not surprising, since the
reduced basis system was constructed for this source. The numerical results
show that our technique can be used for efficient construction of reduced basis
approximations for systems with multiple sources. The online computational
time is, thereby, independent on the number of sources.

6.3 3D periodic grating

Our next example is a 3D periodic grating structure, as shown in Fig. 6.11.
Variable geometrical parameters width w, height h, and length l of the grating
are chosen for construction of the reduced basis. The parameter domain is
D = [550 nm; 650 nm] × [150 nm; 250 nm] × [75 nm; 125 nm], i.e.:

w ∈ [550 nm; 650 nm],

h ∈ [150 nm; 250 nm],

l ∈ [75 nm; 125 nm].

(6.7)

The dimensions of the computational domain are 800 nm× 400 nm× 200 nm,
and it is periodified in x- and y-direction. The wavelength of the incoming
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(a) (b)

Figure 6.11: (a) 3D periodic grating for reduced basis computations. Param-
eters are height, width and length of the grating (depicted in
grey). (b) Intensity of electric field obtained from FEM com-
putation.

light is λ = 532 nm with normal incidence from above. FEM discretization
gives a system with N = 89820 unknowns for the truth approximation. The
affine decomposition of the system matrix gives Q = 1148 terms. Thereby
meta cells of the geometry, which undergo the same affine mapping, were
merged together, in order to reduce Q, e.g., all tetrahedrons within the bar.
Looking at the rather simple parametrized geometry with a rectangular bar
of variable length, width, and height, this number seems quite high. If one
would allow variable grid points on the outer boundary of the computational
domain, this simple example could be decomposed into a relatively small
number of bricks with variable length, width, and height. The Jacobians of
the transformation of each brick would, furthermore, only have entries on the
diagonal and no “shear” terms – c.f. [82], where a 2D rectangle of variable
length and width is considered. This would reduce the number of affine terms.
However, for formulation of the scattering problem, variable grid points on the
boundary lead to difficulties: for construction of the right hand side functional
f [uin](·) (3.7), the incoming field has to be interpolated on the boundary,
which leads to a non-affine parameter dependence of the system right hand
side for variable points on the boundary. Therefore, we keep boundary points
fixed, which leads to a number of sheared meta cells also in the substrate
below the bar, c.f. Figure 6.11, and in the region filled with air above the bar,
which is not depicted. Especially these sheared tetrahedrons in 3D seldom
undergo the same affine mapping and contribute to Q.

A primal-only and primal-dual reduced basis approximation with respective
dimensions of 99 and 29 was built. Again we compare the reduced basis
approximation to the exact FEM solution over a random parameter ensemble
Ξ of 200 points.
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Figure 6.12: (a) Estimated dual norm of residuum (5.74) in dependence on ex-
act dual norm of residuum. (b) Effectivity of residuum estimate
(5.75) in dependence on true residuum. (3D mask, Section 6.3)

computational times primal only (N = 99) primal-dual (N = 29)
output of interest 0.3 s 0.4 s
error estimation 5 s 2.3 s

Table 6.2: Comparison of computational times for primal and primal-dual re-
duced basis computation for comparable error bound. Truth ap-
proximation computational time is 225 s.

We start quantifying the performance of the sub-domain residuum method.
Figure 6.12(a) shows a scatter plot of the estimated residuum in dependence
on the true residuum for 19800 points. The corresponding effectivity of the
residuum estimate (5.75) is given in Fig. 6.12(b). Like for the 2D case, we
have small and uniform effectivities between 2.0 and 6.0 for the sub-domain
residuum method over 6 orders of magnitude for the true residuum, which
again demonstrates the good performance of method.

The lower bound for the inf-sup constant determined during construction of
the reduced basis was β0 = 8.4930·10−3. Over the random parameter ensemble
it varied between 8.5060·10−3 and 8.8720·10−3. This gives a maximum relative
error of ≈ 4 ·10−2. For the error and error bound of the reduced basis solution
in H (curl, Ω)-norm, we observe exponential convergence, Fig. 6.13(a), (b).
The effectivity of the error bound shown in Fig. 6.13(c) stays between 200
and 700.

As an example for the output of interest we choose one component of the
−1st reflected diffraction order. The output of interest convergences expo-
nentially, and again the dual correction leads to much faster convergence,
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Figure 6.13: (a) Reduced basis solution error (4.8) in H (curl, Ω)-norm and
(b) corresponding error bound (4.23) in dependence on reduced
basis dimension. The mean, minimum and maximum values over
the random parameter ensemble Ξ are shown. (c) Effectivity
of H (curl, Ω)-estimator (5.47a) in dependence on reduced basis
solution error. (3D mask, Section 6.3)
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Figure 6.14: Convergence of reduced basis output of interest in dependence on
reduced basis dimension (a) using only the primal reduced basis
and (b) with dual correction. The dimension of the dual reduced
basis was set equal to the dimension of the primal reduced basis.
The dual corrected solution converges much faster, compare the
different scalings of the x-axes. (3D mask, Section 6.3)

see Figures 6.14 and 6.15. The effectivities for the error of the output of
interest are quite high, mostly between 104 and 106 like in the 2D case, as
shown in Fig. 6.16.

The computational time for the truth approximation is about 225 s. The
computational times of the reduced basis approximation are given in Table
6.2. Although the dimension of the dual reduced basis is smaller, we have a
slightly larger computational time for the output, since two separate reduced
basis systems have to be assembled and solved. In summary the reduced
basis computational times are about 500 times smaller than for the truth
approximation.

6.4 Inverse scatterometry

Inverse scatterometry is a metrology technique, which deduces properties of a
system by analyzing fields or particles, which are scattered from the system.
Here we focus on optical scatterometry, where the system under investiga-
tion is illuminated by a light source. The measured properties, which are
of interest, are often geometrical or material parameters ν. In general the
scattered light carries no direct information about the system under con-
sideration, hence, an inverse problem has to be solved: given the measured
response of a system, determine the parameters ν of the system, such that
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Figure 6.15: Convergence of reduced basis error bound for output of inter-
est in dependence on reduced basis dimension (a) using only the
primal reduced basis and (b) with dual correction. The dimen-
sion of the dual reduced basis was set equal to the dimension
of the primal reduced basis. The dual corrected solution con-
verges much faster, compare the different scalings of the x-axes.
(3D mask, Section 6.3)
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Figure 6.16: Effectivities of error estimates for output of interest in depen-
dence on the error of the output of interest (a) using only the
primal reduced basis and (b) with dual correction. The dimen-
sion of the dual reduced basis was set equal to the dimension of
the primal reduced basis. (3D mask, Section 6.3)
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6.4 Inverse scatterometry

the response is reproduced.
Solution of the inverse problem usually requires a large number of solu-

tions of the forward problem. In this many-query context, application of the
reduced basis method leads to significant savings in computational time.

6.4.1 Mathematical formulation

The inverse problem is usually solved by simulating the system under inves-
tigation and trying to find good agreement to measured data. Since experi-
mental measurements always carry errors, and also the model of a real world
system is never exact, the measured response will not be reproduced exactly.
Hence, the inverse problem is transformed into a minimization problem: given
the response of a system, determine the parameters ν which minimize the error
between measured and simulated response in some sense.

In order to state the minimization problem, we first define the response
of a system. Since it will correspond to a set of m experimentally measured
values, we will define it as an element of Rm:

sexp ∈ R
m : measured (experimental) response,

ssim ∈ R
m : simulated response.

In order to quantify the error between measurement and simulation, a metric
d on Rm has to be chosen:

d(sexp, ssim(ν)).

The function d(sexp, ·) then defines a cost functional, which has to be mini-
mized [2]. The inverse scattering problem can be stated as follows:

Problem 17. Given the experimental response sexp ∈ Rm of a system, find
νmin ∈ D such that:

νmin = min
ν∈D

d(sexp, ssim(ν)), (6.8)

where the simulated response

ssim(ν) = (s1(ν), . . . , sm(ν)) , (6.9)

is given as the outputs of interest

si(ν) = loi (u(ν)) , i = 1, . . . , m , (6.10)

to the solution of the following problem:
Find u(ν) ∈ X such that:

a (u(ν), v; ν) = f (v) , ∀v ∈ X. (6.11)
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We notice the familiar input-output relationship, which usually has to be
evaluated several times, solving the inverse problem. Instead of computing
the truth approximation, a reduced basis approximation can be used.

The parameter domain D of the minimization Problem (6.8) has to be spec-
ified further. In the optical setting ν describes the permittivity distribution
(we assume constant permeability) in the computational domain. All possi-
ble distributions define the so-called set of admissible geometries. In order
to arrive at a well-posed minimization problem, we have to restrict the set
of admissible geometries; see e.g. [6, 5] for theoretical results on the inverse
reconstruction of grating profiles. In our example we will define the class of
admissible geometries by a finite number of geometrical parameters. There-
with, we arrive at a well-posed finite dimensional optimization problem, and
the parameter domain D fits into the reduced basis setting.

As optimization algorithm we use the Gauß-Newton method [2]. Therefore,
we need derivative information, according to:

∂νd(sexp, ssim(ν)),

which describes the change of the cost functional with respect to the input
parameters. Hence, the derivatives of reduced basis outputs of interest with
respect to the input parameters have to be computed:

∂νsN(ν) = ∂νl
o (uN) = lo (∂νuN) .

Here ∂νuN is the Frechet-derivative of the reduced basis solution. Using the
expansion of uN into the reduced basis (5.12) and linearity of the output
functional lo (·), above expression can be evaluated by:

∂νsN(ν) =
N∑

q=1

(∂ναq(ν)) lo
(
ζN
q

)
, (6.12)

where the quantities lo
(
ζN
q

)
are already available for computation of the out-

put of interest. The derivative of the reduced basis coefficients with respect to
ν are obtained as follows. The reduced basis system gives a linear system of
equations for the reduced basis coefficient vector α(ν) = (α1(ν), . . . , αN(ν)):

AN (ν)α(ν) = f,

where AN(ν) refers to the parameter dependent reduced basis system matrix
and f to the right hand side vector. Taking the derivative with respect to ν
gives:

(∂νAN (ν))α(ν) + AN(ν)∂να(ν) = 0,
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6.4 Inverse scatterometry

from which we conclude:

∂να(ν) = −AN(ν)−1 (∂νAN (ν)) α(ν).

Once α(ν) has been computed for the primal solution, the derivative is avail-
able at low costs, because the LU decomposition of AN(ν) can be reused. The
assembling of ∂νAN(ν) offers no additional difficulties, since only the deriva-
tives of the known parameter dependent functions in the affine decomposition
with respect to the parameters have to be computed:

∂νAN(ν) =

Q
∑

m=1

(∂νΘm(ν)) Am
N .

6.4.2 EUV mask reconstruction

In the following we apply the reduced basis technique to an inverse scat-
terometry application, namely the reconstruction of the pattern profile of
so-called extreme ultraviolet (EUV) masks [60, 65]. We analyze experimental
data, obtained from scatterometric measurements, carried out by the German
national standards and metrology institute (Physikalisch-Technische Bunde-
sanstalt, PTB) at the electron synchrotron BESSY II [98, 97]. The experi-
mental data was taken from an EUV test mask, fabricated by the Advanced
Mask Technology Center (AMTC, Dresden). In addition to the scatteromet-
ric measurements, direct atomic force (AFM) and scanning electron (SEM)
microscopic measurements of the pattern profiles were performed by AMTC.
The reconstructed results can, therefore, be compared and validated.

In the following we give a short introduction to EUV technology and de-
scribe the experimental setup. Then we define the truth approximation and
construct the reduced basis approximation, which will be used for solution of
the inverse scatterometric problem.

EUV lithography and metrology

Due to constant miniaturization of integrated circuits, the wavelength of light,
which is used in the lithographic process, also has to decrease [44]. EUV
lithography is a possible candidate for production of future generation com-
puter technology. Figure 6.17 shows the principle setup. Due to the short
wavelength of EUV light (≈ 13 nm), novel reflective masks and optical sys-
tems have to be used in the production process, since there are no appropriate
transparent materials in the EUV range.

The quality of pattern profiles of EUV masks becomes important, e.g., due
to shadowing effects at oblique incidence illumination [94, 95]. Consequently,
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EUV source

imaging system

EUV mask

projection system

wafer

Figure 6.17: Setup of EUV lithography. An EUV mask is illuminated by EUV
light, passing through a reflecting imaging system. The light
distribution created by the mask absorber pattern is projected
onto a wafer, which is covered with photosensitive resist.

there is a need for adequate destruction free pattern profile metrology tech-
niques, allowing characterization of mask features down to a typical size of
100 nm and below [104]. The desired accuracy is, thereby, of the order of 1 nm,
which is challenging even for direct atomic force (AFM) or scanning electron
microscopic (SEM) measurements. These methods, e.g., suffer from surface
charges and the need of the definition of edge operators, to reconstruct the
mask topology. Furthermore, it is extremely time consuming and not prac-
tical, to scan large areas of a mask with direct microscopical measurements.
Therefore, in the following we analyze capabilities of mask metrology by in-
verse EUV scatterometry. The reduced basis method will, thereby, reduce the
reconstruction time significantly.

EUV mask

The principle assembly of an EUV mask is depicted in Fig. 6.18. In contrast
to photomasks used nowadays in lithography, EUV masks are not transparent,
but reflect the incident light. Thereby, an alternating Bragg multilayer stack,
consisting of Molybdenum and Silicon, acts as mirror [89]. The Bragg mirror
is covered with a resist pattern, corresponding to the desired image on the
wafer.

Experimental data for inverse scatterometry was taken from an EUV test
mask, fabricated by AMTC. The mask is subdivided into 11 (labeled A-K)
times 11 (labeled 1-11) test fields.

Each of these test fields, furthermore, consists of a number of differently

114



6.4 Inverse scatterometry

absorber pattern

capping layer

multilayer

substrate

Figure 6.18: Principle assembly of an EUV mask. A multilayer acting as
Bragg mirror for EUV radiation is deposited on a substrate. The
capping layer is partially covered by the absorber pattern, corre-
sponding to the desired reflected image.

Figure 6.19: Top down SEM image of uniformity fields D4 and H4. It can be
seen that the lines of field H4 are not completely etched.

patterned areas, e.g.:

• bright field: unpatterned, i.e., no absorber,

• dark field: completely covered with absorber material,

• CD (critical dimension) uniformity: covered with 1D periodic absorber
lines,

where the term critical dimension refers to the width of the absorber lines. We
will focus on CD uniformity fields, with design parameters given in Table 6.3.
Figure 6.19 shows a top down microscopic image. We consider fields labeled
by D4, H4, F6, D8, H8. The actual CD is the most important parameter,
which we want to reconstruct.
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mask parameters nominal values
ARC + TaN-absorber thickness 67 nm
SiO2-buffer thickness 10 nm
Si-capping layer thickness 11 nm
multilayer Mo/Si
pitch 720 nm
CD 540 nm

Table 6.3: Design parameters of EUV test mask used for inverse scatterometry

EUV scatterometry

Single wavelength scatterometry, the analysis of light diffracted from a pe-
riodic structure, is a well suited tool for analysis of the geometry of EUV
masks [91]. Since scatterometry only needs a light source and a simple de-
tector with no imaging lens system, its setup is inexpensive and offers no
additional technical challenges. Figure 6.20(a) shows a sketch of the experi-
mental setup. Light of fixed wavelength and fixed incident angle is reflected
from the mask, and the intensity of the reflected light is measured in depen-
dence on the diffraction angle. Usage of EUV light for mask characterization
is advantageous, because it fits the small feature sizes on EUV masks. Diffrac-
tion phenomena are minimized, and of course the appropriate wavelength of
the resonant structure of the underlying multilayer is chosen. Light is not
only reflected at the top interface of the mask, but all layers in the stack
contribute to reflection. Therefore, one expects that EUV radiation provides
much more information on relevant EUV mask features than conventional long
wavelength methods [90]. The presented EUV measurements often provide
up to 20 or more non-evanescent diffraction orders.

In experimental measurements the incidence angle was fixed at θin = 6◦,
and the electric field was TE polarized. Figure 6.20(b) shows the intensity
of a set of experimentally determined diffraction orders of the EUV mask
for a CD uniformity field. These diffraction orders define the experimental
response sexp. We want to determine the absorber profile numerically, whose
simulated diffraction orders, i.e., simulated response ssim, fits the experimental
best.

Since EUV light is reflected from the mask multilayer mirror, the intensities
of the diffraction orders depend not only on the absorber profile but also on
the underlying multilayer [64, 104]. This is demonstrated experimentally in
Fig. 6.21(b). The wavelength dependence of the plain multilayer reflectivity
is shown in comparison to the intensity of several diffraction orders. The
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Figure 6.20: (a) Experimental setup for EUV scatterometry with fixed inci-
dence angle θin and variable angle of detection θout. (b) Result of
single wavelength scatterometry measurement of periodic mask
pattern. Diffraction orders appear as peaks with finite width, the
zeroth diffraction peak is centered around 6◦.

curves resemble each other to a great extend. Hence, accurate modeling of
the underlying multilayer is a crucial and also difficult part in inverse EUV
scatterometry. Our model of the multilayer was built in advance to absorber
profile reconstruction [63, 64]. Thereby, experimental bright field curves were
fitted to 1D simulations of the plain multilayer. Figure 6.21(a) shows that
measured and fitted multilayer curves agree quite well.

Another difficulty arises, because the multilayer is not homogeneous across
the whole mask. Therefore, we also introduce a global multilayer scaling factor
γ as a parameter into the reduced basis model, which scales the thicknesses
of layers in the Bragg mirror. This parameter controls the relative position of
the reflectance curve.

The experimental measurements were performed at three different wave-
lengths for each test field, corresponding to the left full width half maximum
(FWHM) λ1, center λ2, and right FWHM wavelength λ3 of the bright field
curve as depicted in Fig. 6.21(a).

The experimental diffraction orders were measured with a relative accuracy
of 1%. Noise in the EUV detector was of the order of 5 · 10−5 relative to the
incident light. Experimental diffraction orders with intensity below this limit
were, therefore, not used for reconstruction, since their relative error is above
100%.
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Figure 6.21: (a) Numerical fit of experimental bright field curve. Three wave-
lengths used for measurement of scatterometric data are shown.
(b) Bright field measurement and diffraction orders in depen-
dence on wavelength. Intensity of diffraction orders are scaled
for better comparison. The wavelength λ = 13.655 nm corre-
sponds to the center wavelength of the bright field curve.
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In [23] the uncertainty of the reconstruction results caused by measurement
errors of the diffraction orders is analyzed and quantified. However, these un-
certainties are smaller than those caused by modeling errors of the multilayer
[64].

Truth approximation

Figure 6.22 shows the geometry of the EUV mask and a finite element solution
for the electric field, which is the truth approximation. In the multilayer we
observe a standing wave pattern, created by incoming and reflected light.
In order to create the parametrized mask model, we choose 4 geometrical
parameters:

• center CD w,

• height h of the absorber line,

• sidewall angle β of absorber stack,

• scaling factor γ for the multilayer.

The parameters are depicted in Fig. 6.23.
The outputs of interest are discrete diffraction orders. For the truth ap-

proximation we choose finite element degree p = 6. Discretization gives a
system with N = 3032880 unknowns. A single evaluation of the input-output
relationship of the truth approximation takes about 420 s. For the inverse
problem several of these evaluations have to be performed, which leads to re-
construction times in the order of hours, far too long for real-time application.

Reduced basis approximation

The affine decomposition of the mask model gives Q = 262 terms. For con-
struction of the reduced basis approximation, we choose the parameter domain
D as follows:

w ∈ [530nm; 570nm],

h ∈ [51.9nm; 57.9nm],

β ∈ [0◦; 10◦],

γ ∈ [0.996; 1.004].

(6.13)

Since the wavelength is not included as an input parameter to the model,
three different reduced basis approximations are built, corresponding to the
experimental wavelengths.
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Figure 6.22: Geometry of EUV mask model and electric field intensity of finite
element solution. Light is only reflected in regions not covered
with absorber.
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6.4 Inverse scatterometry

Figure 6.23: Illustration of geometrical parameters of EUV mask model –
clockwise, starting at upper left: reference layout, center CD
w, absorber stack sidewall angle β, multilayer scaling factor γ,
absorber height h.

The final reduced basis dimension is chosen as N = 80. Due to the large num-
ber of outputs of interest, we construct a primal-only reduced basis approx-
imation. Before solving the inverse problem, we present convergence results
for λ2 as an example. We compare the reduced basis approximation to the
exact FEM solution for a random parameter ensemble Ξ of 100 points in the
parameter domain.

First we look at the residuum estimator in Fig. 6.24. We observe small
effectivities between 3.0 and 6.0 over several orders of magnitude of the true
residuum, which again demonstrates the good performance of the sub-domain
residuum method. Figure 6.25 shows the convergence of the reduced basis
solution in H (curl, Ω)-norm and the corresponding error bound. The con-
vergence of a number of outputs of interest, namely the 0th, 5th, and 10th
diffraction order, is given in Fig. 6.26 together with the corresponding bound
for the 0th order. We observe exponential convergence with increasing dimen-
sion of the reduced basis. Again we have moderate effectivities for the error
in H (curl, Ω)-norm and high effectivities for the output of interest, given in
Fig. 6.27.
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Figure 6.24: (a) Estimated dual norm of residuum (5.74) in dependence on ex-
act dual norm of residuum. (b) Effectivity of residuum estimate
(5.75) in dependence on true residuum. (EUV mask)
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Figure 6.25: (a) Reduced basis solution error (4.8) in H (curl, Ω)-norm and
(b) corresponding error bound (4.23) in dependence on reduced
basis dimension. The mean, minimum and maximum values over
the random parameter ensemble Ξ are shown. (EUV mask)
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Figure 6.26: (a) Convergence of reduced basis output of interest in dependence
on reduced basis dimension. The mean and maximum error over
the assemble Ξ is shown for the 0th, 5th, and 10th diffraction
orders. (b) Corresponding error bound for the 0th diffraction
order. (EUV mask)
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Figure 6.27: (a) Effectivity of H (curl, Ω)-estimator (5.47a) in dependence on
reduced basis solution error. (b) Effectivity of error estimates for
0th diffraction order, c.f. Fig 6.26. (EUV mask)
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Figure 6.28: (a) Reconstructed CDs from inverse scatterometry using different
subsets of experimental data. (b) Comparison of CDs obtained
from direct scanning electron microscopy and inverse scatterom-
etry after subtraction of mean values. The inverse scatterometry
results correspond to best correlated results given in Table 6.4.

Also for this example, the inf-sup constant does not show a strong depen-
dence on the input parameters. It varies between 2.918 · 10−3 and 3.527 · 10−3

over the random parameter ensemble. During construction of the reduced
basis we obtained an estimate of β0 = 3.096 · 10−3.

The online computational time for solution of the reduced basis problem is
0.15 s, which is about 3000 times faster than the truth approximation.

Reconstruction Results

The measured sexp and simulated diffraction orders ssim are used in the mini-
mization problem (6.8). As metric, measuring their difference, we choose the
sum of squared relative errors of m diffraction orders:

d(sexp, ssim(ν)) =
m∑

n=1

(
sn
exp − sn

sim(ν)

sn
exp

)2

. (6.14)

Diffraction orders were measured at different wavelengths λ1, λ2, and λ3 for
each of the test fields. Figure 6.28(a) shows reconstruction results for the
center CD of the line spacing (= pitch−absorber CD), using different subsets
of the experimental data. For example for the curve “λ1, λ3”, only exper-
imental diffraction orders sn

exp were used in (6.14), which were measured at
wavelengths λ1 and λ3. Especially field H4 shows large deviations for different
data subsets. The reason can be seen from a top down image of the absorber
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data set λ1 λ2 λ3 λ1, λ2 λ1, λ3 λ2, λ3 λ1, λ2, λ3

λ1 1.0000 0.1223 0.2540 -0.2505 0.0754 0.2204 0.0142
λ2 0.1223 1.0000 0.9909 -0.0665 0.9863 0.9944 0.9872
λ3 0.2540 0.9909 1.0000 -0.1082 0.9729 0.9991 0.9651

λ1, λ2 -0.2505 -0.0665 -0.1082 1.0000 -0.2077 -0.1240 -0.1537
λ1, λ3 0.0754 0.9863 0.9729 -0.2077 1.0000 0.9818 0.9973
λ2, λ3 0.2204 0.9944 0.9991 -0.1240 0.9818 1.0000 0.9751

λ1, λ2, λ3 0.0142 0.9872 0.9651 -0.1537 0.9973 0.9751 1.0000

Table 6.4: Cross correlation of reconstructed CDs of test fields using different
experimental data sets. Maximum correlation can be found for
reconstruction with wavelength λ3, and wavelengths λ2 and λ3.

test field CD [nm] CD uniform. [nm]
D4 186.7 3.2
H4 168.0 7.3
F6 180.3 2.7
D8 188.7 3.0
H8 184.1 3.6

Table 6.5: SEM measurements of line profiles. CD uniformity is defined as 3σ
over an ensemble of measurements. The CD is the mean over the
ensemble.

lines of the field in Fig. 6.19. The absorber is not etched completely down
to the capping layer, and the remaining material results in a large amount
of diffusive scattering [90]. This effects the intensity of the measured diffrac-
tion orders and therewith the reconstruction results. Therefore, we will not
consider field H4 in the following analysis.

Also the reconstructed CDs for all other fields given in Fig. 6.28(a) show
differences for different subsets of experimental data. How can the “correct”
CDs be extracted from these results and compared to the microscopically
determined values?

For this task we first compute the cross correlation of the CDs of all fields,
which were reconstructed with the different experimental subsets, i.e., the
cross correlation between all curves given in Fig. 6.28(a). As shown in Table
6.4, many of the results are highly correlated (> 0.9). Some disagree com-
pletely, namely reconstructing with the single data set λ1, and wavelengths λ1

and λ2. In order to obtain an estimate for the correct CD, we could for exam-
ple average the CDs from two reconstructions, which are correlated best. Here,
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Figure 6.29: Experimental and best fitting simulated diffraction orders for re-
construction on field D4 for (a) wavelength λ2 and (b) wave-
length λ3.

this means reconstruction with wavelength λ3, and wavelengths λ2 and λ3.
The result is shown in Fig. 6.28(b) in comparison to the SEM measurements.
We subtracted the mean CD from both data sets, since also in the microscopic
measurements determination of absolute CD values was difficult, and differ-
ent methods like atomic force (AFM) or scanning electron microscopy (SEM)
gave different absolute values [64]. We see very good agreement below 1 nm
between direct microscopic measurements and inverse scatterometry. The un-
certainty estimates for the microscopical results were obtained by several SEM
measurements at different positions on the same test field.

Finally a comparison between experimental and best fitting diffraction in-
tensities is given in Fig. 6.29 for field D4 as an example. We see remarkable
agreement for almost all diffraction orders.

6.5 Optical proximity correction

In optical lithography photomasks are used to image desired patterns of inte-
grated circuits onto wafers [44]. The ongoing miniaturization of these circuits
drives the semiconductor industry and leads to CPUs with higher performance
and memory elements with larger capacity. In order to produce structures
with smaller feature size, absorber structures on the photomask also have to
decrease in size.

Using optical lithography one is, however, confronted with the fundamental
problem that optical systems act as low pass filters: consider for example a 2D
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(a) (b)

Figure 6.30: (a) Top view of mask layout for imaging of contact hole. Ab-
sorber material is shown in blue. (b) Far field image of contact
hole shows corner rounding.

domain of width Lx, which is periodified in x-direction and an incoming plane
wave under normal incidence with wavelength λ0. As explained in Section 6.1,
the spatial frequencies of propagating modes in the far field are given by:

kx,l = l
2π

Lx

, with l = −
⌊

Lx

λ0

⌋

, . . . , 0, . . . , +
⌊

Lx

λ0

⌋

,

where we assumed vacuum in the exterior for simplicity, and ⌊·⌋ denotes
rounding down. With decreasing structure size and therewith decreasing Lx,
only low frequencies remain in the far field. The maximum spatial frequency
in the far field is given by:

kx,lmax
=

2π

Lx

⌊
Lx

λ0

⌋

≤ 2π

λ0

.

Hence, the system acts as a low pass filter.
Figure 6.30 shows the consequence for the image of a rectangular hole.

In the far field sharp corners are washed out, which is referred to as corner
rounding. Optical proximity correction (OPC) is the adjustment of features
on the photomask, in order to compensate this spatial filtering [44]. For
the image of contact holes, OPC can be achieved with the introduction of
serifs to the corners of the contact hole, as will be shown in the following.
Our numerical example will be the optimization of such an OPC structure,
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in order to obtain a structure on the wafer which is closest to the desired
rectangular shape.

6.5.1 Model problem

The geometry of the contact hole under consideration is depicted in Fig.
6.31. The size of the computational domain is 2.5 µm × 2.5 µm with a height
of 90 nm. The height of the Chromium absorber is 50 nm with a refractive
index of:

nCr = 0.84 − 1.65i,

for a wavelength of λ = 193 nm [44]. The absorber (blue) is deposited on a
silica substrate (gray). In x- and y-direction periodic boundary conditions are
applied. The shape of serifs is described by 4 input parameters p1,x, p2,x, p1,y,
and p2,y, defined in Fig. 6.31(b). The dimensions of the contact hole itself are
fixed at:

dx = 800 nm,

dy = 600 nm.

As incoming light we use so-called conventional illumination [44]. This is
modeled by a set of incoming plane waves, whose incoming angles lie within
a cone up to a certain maximum angle. In order to speed up computational
time and make use of the efficient reduced basis setting with multiple sources,
we use incoming plane waves with same wavelength and Bloch periodicity in
x- and y-direction. The source can be visualized by a set of points in the
kx-ky-plane, as shown in Fig. 6.32. For each of these incoming directions two
orthogonal polarization states are simulated to mimic unpolarized light. This
gives P = 74 sources in total.

Let us denote the far field coefficients of the system, obtained from illumi-
nation with the r-th source, by Ar

j . For coherent illumination the electric field
intensity in the far field is given by:

Icoh(x) =

∣
∣
∣
∣
∣

P∑

r=1

∑

j

Ar
je

ikj ·x

∣
∣
∣
∣
∣

2

, (6.15)

In this case a single FEM simulation is sufficient, where all P incoming plane
waves are added to obtain the complex source.
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(a)

(b)

dx

dy

p1,y

p2,y

p1,xp2,x

Figure 6.31: (a) 3D mask model used for finite element computation. (b) Def-
inition of OPC parameters used for optimization; dx and dy are
fixed.
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Figure 6.32: Modeling of conventional illumination: a set of plane waves with
incoming directions up to a maximum incidence angle is used,
i.e., maximum transversal k-vector. Each cross in k-space corre-
sponds to two plane waves with orthogonal polarizations.

The far field for so-called partial coherent illumination, which we are con-
sidering, is given by [93, 103]:

Iincoh(x) =
P∑

r=1

∣
∣
∣
∣
∣

∑

j

Ar
je

ikj ·x

∣
∣
∣
∣
∣

2

.

In order to compute this expression, the far field coefficients of a single source
are added coherently, and then the resulting P intensities are added incoher-
ently (taking the absolute value). In this case P near field simulations have
to be performed separately, i.e., for each incoming plane wave. In application
the partial coherent case is often important. For each of the sources we, there-
fore, have to compute the near field and corresponding far field coefficients
separately. In this example there are 37 far field coefficients with 2 indepen-
dent polarization states for each sources. This gives a total number of 5476
outputs of interest.

FEM discretization gives a system with N = 474720 unknowns. The com-
putational time for all sources is about 9300 s ≈ 2.5h. Hence, optimization
of this structure can not be performed in reasonable time, using the truth
approximation.
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6.5.2 Optimization problem

In the following we describe a simple model, how the fabricated structure on
the wafer, which we want to optimize, can be computed from the far field
coefficients of the incoming fields.

Behind the photomask we place an optical system with a 4 : 1 reduction
ratio, which is common for many wafer steppers [44]. The propagating modes
computed from the near fields of all sources pass this system. For simplicity
we assume that the optical system is aberration free and, therefore, only the
direction of propagation of the modes in the far field is changed. Then we
compute the aerial image [44] from the propagating modes after passing the
optical system. The aerial image is the intensity distribution of the electric
field in the plane where the wafer is located. However, it is computed assuming
that only air occupies the space. For simplicity we assume that the wafer is
located at z = 0, which gives following expression for the aerial image A:

A(x, y) =

P∑

r=1

∣
∣
∣
∣
∣

∑

l,m

Ar
l,mei(kx,lx+ky,my)

∣
∣
∣
∣
∣

2

, (6.16)

where Al,m and kx,l and ky,m are amplitudes and wave vector components of
the propagating modes after passing the optical system.

The aerial image determines where the photo sensitive resist on the wafer
is developed. Usually one defines a certain threshold σ, and all areas in the
aerial image with intensity above this threshold are developed. The shape γσ

of the structure on the wafer after development of the resist, is then given
implicitly by:

γσ =
{
(x, y) ∈ R

2 : A(x, y) = σ
}

, (6.17)

hence, γσ is the contour line of the aerial image at level σ.
Figure 6.33(a) shows the desired target rectangular structure on the wafer

and a contour curve γσ, corresponding to the aerial image given in Fig. 6.30(b)
with σ = 0.4. The target rectangle on the wafer has dimensions:

dtarget
x = 180 nm,

dtarget
y = 120 nm.

We observe that the printed structure differs in size and due to corner rounding
from the target structure. The level for the contour line can be adjusted such
that the aerial image matches the target structure better. However, due to
corner rounding, without OPC the shape is still ellipsoidal as demonstrated
in Fig. 6.33(b).
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Figure 6.33: (a) Structure on wafer given as contour line of aerial image at
σ = 0.55, i.e., 55% of maximum intensity. Furthermore, the
target structure and area defining error functional are depicted.
(b) Comparison of contour lines for different levels of σ.

For optimization of the mask layout, we have to define a cost functional.
Therefore, let us denote by Γ(ν) the domain enclosed by the target shape γT

and γσ(ν), as depicted in Fig. 6.33(a). The cost functional g is then given by
the area of this domain:

g(ν) = ||1||L1(Γ(ν)) . (6.18)

We want to determine optimal parameters such that:

νmin = min
ν∈D

g(ν). (6.19)

In order to use a Gauß-Newton method for optimization, we need derivative
information of the cost functional (6.18). Using for example a finite element
representation of the aerial image (6.16), it offers no principle difficulties to
compute the derivative of the cost functional:

∂ν ||1||L1(Γ(ν))

from the derivatives of the far field coefficients ∂νA
r
j .

132



6.5 Optical proximity correction

(a) (b)

10
0

10
1

10
2

residuum

10
1

10
2

10
3

es
tim

at
ed

 r
es

id
uu

m

10
0

10
1

10
2

residuum

0.0

2.0

4.0

6.0

8.0

10.0

ef
fe

ct
iv

ity
 o

f 
re

si
du

um
 e

st
im

at
e

Figure 6.34: (a) Estimated dual norm of residuum (5.74) in dependence on ex-
act dual norm of residuum. (b) Effectivity of residuum estimate
(5.75) in dependence on true residuum. (OPC example)
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Figure 6.35: (a) Reduced basis solution error (4.8) in H (curl, Ω)-norm and
(b) effectivity of H (curl, Ω)-estimator (5.47a) in dependence on
reduced basis solution error. (OPC example)
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Figure 6.36: Reduced basis solution error (4.8) in H (curl, Ω)-norm for small
parameter domain: D = [217 nm; 233 nm] × [145 nm; 155 nm] ×
[117 nm; 133 nm] × [145 nm; 155 nm] , c.f. original parameter do-
main (6.20). (OPC example)

6.5.3 Reduced basis approximation

The affine decomposition of the truth approximation gives Q = 1932 terms.
For the parameter domain D we choose:

p1x ∈ [145 nm; 305 nm],

p2x ∈ [100 nm; 200 nm],

p1y ∈ [45 nm; 205 nm],

p2y ∈ [100 nm; 200 nm].

(6.20)

Considering the high number of terms in the affine expansion, complexity of
the truth approximation, regarding the number of incoming fields and com-
putational times, and also the large parameter domain, this example can be
seen as a very challenging problem for the reduced basis method. Again we
use the technique for multiple sources developed in Section 5.10. Due to high
computational times of 2.5h for a single snapshot and large memory require-
ments for the snapshots of all sources, we restrict the reduced basis dimension
to N = 40.

We compare the reduced basis approximation to the truth approximation
over a random parameter ensemble Ξ with 100 points in the parameter domain
D. The good performance of the sub-domain residuum estimate is demon-
strated in Fig. 6.34. We have low and homogeneous effectivities for the
residuum estimate between 4.0 and 8.0. Figure 6.35 shows the convergence of
the error in H (curl, Ω)-norm and the effectivities of the corresponding error
estimate. After an initial drop, the error decreases very slowly for this exam-
ple. However, this is not surprising since we consider a very large parameter

134



6.5 Optical proximity correction

(a) (b)

0 10 20 30 40
reduced basis dimension

10
-5

10
-4

10
-3

10
-2

10
-1

er
ro

r 
of

 d
if

fr
ac

tio
n 

or
de

r output 1
output 21
output 81

0 10 20 30 40
reduced basis dimension

10
-4

10
-3

10
-2

10
-1

er
ro

r 
of

 d
if

fr
ac

tio
n 

or
de

r source 2
source 1
source 6

Figure 6.37: Convergence of reduced basis output of interest in dependence on
reduced basis dimension (a) for source 1 and different outputs of
interest, and (b) output of interest 1 and different sources. (OPC
example)

space. For smaller parameter space the exponential convergence is again ob-
servable. This is shown in Fig 6.36, where a reduced basis was built for a
parameter domain, which is 10 times smaller in each of the four parameter
dimensions.

Convergence of the output of interest is shown in Fig. 6.37 for differ-
ent diffraction orders and sources. We have the same situation as for the
H (curl, Ω)-norm, with a large initial drop of the error and a very slow con-
vergence. However, the errors are at a relatively low level. We observe that
the efficient treatment of multiple sources also works for this example. The
outputs of interest for all sources converge with the same rate as for source 1,
which was used for construction of the reduced basis system, see Fig. 6.37(b).
The inf-sup constant varied between β = 7.7 · 10−5 and 8.8 · 10−4 over the
random parameter ensemble for this example, which is also due to the large
parameter domain.

Since the convergence of the error of the reduced basis solution is very slow,
the construction of a basis with rigorous small error bounds is not feasible.
After performing the optimization in an application, it might be advisable, to
compare the optimal reduced basis solution with the truth approximation for
optimal parameters.

Despite the large number of sources and outputs of interest, the reduced
basis computation only takes 1.1s. This gives a speed up factor of about 8000
compared to the truth approximation and allows many-query application.
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(a) (b)

Figure 6.38: (a) Mask layout after OPC optimization and (b) corresponding
aerial image.
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Figure 6.39: (a) Comparison of structure on wafer without and with optimized
mask layout obtained from reduced basis computation. (b) Com-
parison of optimized reduced basis structure and corresponding
truth approximation result (σ = 0.55).
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Results

Figure 6.38 shows the optimized geometry of the photomask and the corre-
sponding aerial image. The optimal values were found at:

popt
1x = 295.0 nm,

popt
2x = 142.6 nm,

popt
1y = 152.1 nm,

popt
2y = 185.0 nm,

with a value for the cost functional (6.18) of g(νopt) = 1234.6 nm2. The shape
of the structure on the wafer without and with optimized serifs is depicted
in Fig. 6.39(a). The optimized structure shows good agreement to the target
structure. Of course corner rounding can not be avoided completely. Fur-
thermore, a comparison of the optimal structure computed with the reduced
model and obtained from the truth approximation is given in Fig. 6.39(b).
We observe very good agreement. Largest deviations are of the order of 1 nm.
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7 Conclusion and outlook

In the present work we developed efficient techniques for the reduced basis
method, with a focus on application to real world nano-optical problems.

Especially in the field of a posteriori error estimation and multiple sources,
established techniques were found to be infeasible and had to be further de-
veloped, in order to treat complex geometries in 2D and 3D and complex
sources. Savings of computational costs of several orders of magnitude, could
be demonstrated, compared to state-of-the-art methods.

In application examples our results showed that the reduced basis method
is very well suited for complex engineering tasks like real-time inverse scat-
terometry, parameter estimation, and design optimization of optical systems.

Due to the encouraging results for quantitative scatterometry of EUV masks,
the German national standards and metrology institute PTB uses the devel-
oped implementation as a prototype for evaluation of scatterometric measure-
ments.

Future work will focus on the improvement of error estimation techniques.
In general, this is a very difficult field for Maxwell’s equations in the high-
frequency regime and a topic of actual research [9, 87]. In our numerical
examples the error estimates were highly correlated to the true errors and
could, therefore, be used for efficient greedy construction of reduced basis
spaces. However, the obtained error bounds were often largely overestimating
errors.

Besides error estimation, other important topics for future development
include the parametrization of exterior domains and parallelization of the de-
veloped methods for industrial applications, e.g., in the field of computational
lithography.
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8 Zusammenfassung

Eine Hauptaufgabe von numerischer Analysis und Modellierung ist die Simu-
lation komplexer technologischer Probleme im ingenieur- und naturwissen-
schaftlichen Bereich. Simulationen helfen, Systeme oder Komponenten besser
zu verstehen, zu designen, zu optimieren oder zu charakterisieren.

In vielen Anwendungsfeldern, wie numerischem Design, Parameterrekon-
struktion oder bei inversen Problemen werden im Allgemeinen eine Viel-
zahl von Simulationen eines gegebenen Systems in Abhängigkeit von z.B.
Geometrie- oder Materialparametern durchgeführt. Oft besteht dabei Echt-
zeitanforderung, so dass kurze Rechenzeiten des Vorwärtsproblems unverzicht-
bar sind. Vor allem für 3D-Probleme sind die Zeiten für die Berechnung einer
einzigen Vorwärtslösung dafür jedoch oft zu lang.

Thema der vorliegenden Arbeit ist die Reduzierte Basis Methode, die zum
Ziel hat, parametrisierte Probleme in obigen Anwendungsfeldern in Echtzeit
zu lösen. Die Grundidee besteht darin, den Lösungsprozess in eine langsame
Offline- und einen schnelle Online-Phase aufzuspalten. In der Offline-Phase
wird das zu Grunde liegende Problem mehrmals rigoros gelöst, wobei längere
Rechenzeiten in Kauf genommen werden. Diese Lösungen bilden die Basis ei-
nes reduzierten niedrigdimensionalen Systems, das man durch Projektion aus
dem ursprünglichen Problem erhält. Im Online-Schritt wird lediglich das redu-
zierte Problem gelöst. Da die Reduzierte Basis Methode Näherungslösungen
liefert, ist es für die Qualität und Verlässlichkeit der Rechnungen von großer
Bedeutung, rigorose Fehlerschätzer zu konstruieren.

Anwendungsfeld dieser Arbeit ist das Gebiet “Computational Nano-Optics”,
das sich mit der Lösung der Maxwellgleichungen in nanostrukturierten Syste-
men beschäftigt. Speziell werden Streuprobleme auf unbeschränkten, geome-
trisch parametrisierten 3D-Gebieten betrachtet. Vor allem auf dem Gebiet der
a posteriori Fehlerschätzung sind bisherige “State-of-the-Art” Reduzierte Ba-
sis Methoden aufgrund extrem hohen Aufwands praktisch nicht durchführbar,
um komplexe geometrisch parametrisierte Systeme in 2D und 3D zu behan-
deln. Daher wurde in der vorliegenden Arbeit ein neuer Fehlerschätzer ent-
wickelt, der den Rechen- und Speicheraufwand um mehrere Größenordnungen
reduziert. Dieser basiert auf Gebietszerlegungsmethoden, die auch für Feh-
lerschätzung von Finite Elemente Lösungen verwendet werden. Desweiteren
wurde eine neue Technik für die Reduzierte Basis Methode entwickelt, die
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es erlaubt, die Reaktion von Systemen unter dem Einfluß einer Vielzahl von
Quellen extrem effizient zu berechnen. Dies ist eine typische Situation in vielen
nanooptischen Anwendungen, z.B. in der Lithographie.

Als numerische Beispiele wurde die Optimierung von Photomasken und
die inverse Scatterometrie von EUV (extrem ultraviolett) Masken untersucht.
Die Arbeiten zur inversen Scatterometrie wurden in Kollaboration mit der
Physikalisch-Technischen Bundesanstalt (PTB) am Berliner Elektronensyn-
chrotron BESSY II (experimentelle Messungen) und dem Advanced Mask
Technology Center (Herstellung einer EUV Testmaske und Mikroskopie) durch-
geführt. Aufgrund der vielversprechenden Ergebnisse wird eine Prototypim-
plementierung der in dieser Arbeit entwickelten Methoden für die Auswertung
von Streuexperimenten an der PTB eingesetzt.
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[91] F. Scholze, J. Tümmler, and G. Ulm. High-accuracy radiometry in the
EUV range at the PTB soft X-ray radiometry beamline. volume 40,
pages 224–228. Metrologia, 2003.

[92] S. Sen. Reduced-Basis approximation and a posteriori error estimation
for non-coercive elliptic problems: Application to acoustics. Phd the-
sis, Massachusetts Institute of Technology, Department of Mechanical
Engineering, 2007.

[93] W. Singer, M. Totzeck, and H. Gross. Handbook of Optical Systems:
Vol. 2. Physical Image Formation. Wiley-VCH, 2. edition, 2005.

[94] M. Sugawara and I. Nishiyama. Impact of slanted absorber sidewall on
printability in EUV lithography. volume 5992. Proc. SPIE, 2005.

[95] M. Sugawara, I. Nishiyama, and M. Takai. Influence of asymmetry of
diffracted light on printability in EUV lithography. volume 5751, pages
721–732. Proc. SPIE, 2005.

[96] T. Tonn and K. Urban. A reduced-basis method for solving parameter-
dependent convection-diffusion problems around rigid bodies. In P. Wes-
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stechnik, 31(3):116–120, 1977.

[102] D. Werner. Funktionalanalysis. Springer, 3. edition, 2000.

[103] A. K.-K. Wong. Optical Imaging in Projection Microlithpgraphy. SPIE,
1. edition, 2005.
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