Chapter 9 Overview

OVERVIEW

Overall Summary of this Ph.D. thesis

The discovery of the first naturally occurring Z-DNA binding protein domain, $Z\alpha$, at the N-terminus of the mammalian RNA editing enzyme ADAR1 raised questions concerning the structural and functional characteristics that allow $Z\alpha$ to specifically interact with Z-DNA. In this Ph.D. thesis, the solution structure of human $Z\alpha$ was determined with high coordinate precision by multi-dimensional NMR spectroscopy. The structure was set in a functional context by scanning mutagenesis, interaction mapping and biochemical binding studies. By using site-directed mutagenesis, a number of residues were identified that diminished binding to Z-DNA when mutated to alanine. In conjunction with the complementary data from interaction mapping, these results allowed one to determine the interaction surface between $Z\alpha$ and Z-DNA in solution. Residues from helix α 3 and the C-terminal β -sheet form a contiguous, positively charged surface on $Z\alpha$ that is suitably shaped to bind to the negatively charged backbone of Z-DNA. Binding studies by analytical ultracentrifugation and surface plasmon resonance spectroscopy showed that two $Z\alpha$ domains bind to one $d(CG)_3T_4(CG)_3$ hairpin in the Z-DNA conformation with a K_d of 30 nM.

Comparison with the crystal structure of $Z\alpha$ complexed with Z-DNA [6] showed that seven of a total of nine Z-DNA contacting residues are prepositioned in the solution structure of unbound $Z\alpha$, though they are exposed on the protein surface. The prepositioned residues showed a large decrease in the free energy of binding ($\Delta\Delta G$) when mutated to alanine, while the flexible Z-DNA contacting residues showed no effect. This suggests that $Z\alpha$ uses prepositioned residues to minimize the entropic cost of binding.

Searching the structural database for similar proteins with the program DALI [206] revealed a number of structurally homologous $(\alpha+\beta)$ HTH DNA binding proteins, such as histone H5, CAP, DtxR, E2F-4 and others. Comparison of the solution structure of Z α with the crystal structure of these homologues complexed with cognate B-DNA suggests that Z α is disfavored from binding to B-DNA by steric hindrance at two sites. Firstly, Z α causes steric hindrance with the minor groove of B-DNA because it contains an extended helix α 1 that is further elongated by a prehelix. Secondly, the aromatic ring of Y177 of Z α collides with the major groove of B-DNA in the superposition with some homologous protein/B-DNA complexes. Consequently, Z α may bind to Z-DNA rather than B-DNA firstly because it possesses a suitably shaped binding surface for Z-DNA, and secondly because binding to B-DNA is disfavored by steric hindrance.