Chapter 7

BIOLOGICAL IMPLICATIONS OF THE Zα STRUCTURE

Structural homologues of $Z\alpha$

A structural similarity search of the protein structure database using the program DALI [206] uncovered numerous $\alpha+\beta HTH$ DNA binding proteins with highly significant Z-scores (table 11). Of the 14 similar $\alpha+\beta HTH$ domains, 11 bind to B-DNA indicating that structural and functional homology correlate well for this fold. $Z\alpha$ and its B-DNA binding homologues agree well in the arrangement of DNA contacting residues in $\alpha 3$, but $Z\alpha$ lacks DNA contacts at the N-terminus of $\alpha 1$ (fig. 47). Furthermore, $Z\alpha$ mediates three DNA contacts through its loop between $\beta 2$ and $\beta 3$, whereas the B-DNA binders form only one DNA contact. Another difference is that $Z\alpha$ forms only water mediated backbone/Z-DNA interactions through the N-terminus of $\alpha 2$, where B-DNA binding $\alpha+\beta HTH$ domains have direct side chain/DNA interactions. Overall, $Z\alpha$ and its B-DNA binding homologues agree well in the arrangement of DNA contacts in the recognition helix $\alpha 3$ and agree partially in those of the C-terminal β -sheet, but differ in those of $\alpha 1$ and $\alpha 2$.

table 11 Structural homologues of $Z\alpha$

PDB ID	Z-score ¹	Rmsd [Å]	LALI ²	Protein	α1 length
-	12.9	0.9	63	Crystal structure of Zα bound to Z-DNA	-
1smt-A	9.7	1.6	58	Transcriptional repressor SmtB	very short
1hst-A	8.7	1.9	61	Histone H5	very short
1lea	8.4	2.0	62	LexA repressor	short
1bia	7.5	2.2	57	BirA biotin operon repressor	short
1cf7-A	7.2	2.0	60	Transcription factor E2F4	short
2cgp-C	7.1	1.9	58	Catabolite gene activator protein (CAP)	very short
1bja-A	6.9	1.4	56	Transcription regulator MotA	short
1opc	6.7	2.5	60	Omp repressor	short
2fok-A	6.3	1.8	57	FokI restriction endonuclease ³	no DNA
1xgs-A	5.9	1.7	51	Methionine aminopeptidase ³	no DNA
1ecl	5.7	2.3	59	Topoisomerase I ³	no DNA
1bm9-A	5.7	2.2	58	Replication terminator protein (RTP)	short
2tdx	5.6	1.8	59	Diphtheria tox repressor (DtxR)	very short
-	5.3	2.3	57	Hepatocyte nuclear factor 3γ (HNF3γ)	very short

¹The Z-score, calculated using the program DALI [206], describes the similarity between structures. Protein domains with Z-scores < 2.0 are structurally dissimilar.

²Length of equivalenced residues. The Zα core domain (63 residues) served as input.

³Function other than DNA binding.

Steric hindrance disfavors B-DNA binding by $Z\alpha$

Searching for structural discriminants that distinguish between B- and Z-DNA recognition by α+βHTH domains, the 11 B-DNA binding homologues of table 11 were superimposed with $Z\alpha$ based on the residue matches in $\alpha 3$, $\beta 2$ and $\beta 3$ suggested by DALI. Five of them show a helix 1 shorter by one turn or more than Zα (designated 'very short' in the final column of table 11), and six show a helix 1 shorter by less than one turn in the superposition (designated 'short'). Diphtheria toxin repressor (DtxR) is a suitable example for the 'very short α1' class because it uses nine residues to form contacts to the B-DNA backbone and only one residue for base-specific contacts [39], very similar to Za. The superposition of the lowest energy NMR structure of Z\alpha with the crystal structure of the DtxR/DNA complex shows that DtxR differs from Zα in having a helix α1 shorter by ~1 turn (fig. 53a). The residues of DtxR preceding $\alpha 1$ are bent out of the way, whereas the N-terminal residues of $Z\alpha$, including Y136. clash with B-DNA in the minor groove (fig. 53a). Y136 shows long-range NOE and is defined in all of the three complexes in the asymmetric unit of the crystal structure [6]. Therefore Y136 can only bend out of the way at the expense of free energy of binding to accommodate B-DNA binding. In contrast, Y136 and the prehelix have ample space in the distinct binding geometry of the $(Z\alpha)_2/Z$ -DNA complex. The superposition of $Z\alpha$ with the crystal structures of the HNF3γ/DNA [36] and the CAP/DNA complex [37], further members of the 'very short α1' category, also show steric hindrance between Y136 of Z\alpha and the minor groove of B-DNA. Consequently, these comparisons suggest that steric hindrance through the extended helix 1 of $Z\alpha$ may disfavor B-DNA binding by $Z\alpha$ in the binding mode of the 'very short α 1' class of α + β HTHs.

The superposition of $Z\alpha$ with the crystal structure of the E2F4/B-DNA complex [38] (fig. 53b) shows that E2F4 belongs to the 'short α 1' class of α + β HTHs. Here the N-terminus of α 1 of $Z\alpha$ does not collide with the minor groove. Steric hindrance with the prehelix of $Z\alpha$ may be circumvented by rearranging the loosely folded prehelix. However, the aromatic ring of Y177 of $Z\alpha$ clashes with a phosphate in the major groove. Y177 is the only residue in the crystal structure of the $(Z\alpha)_2/Z$ -DNA complex mediating a van der Waals contact with a base in the *syn* conformation specific for Z-DNA. Moreover, in CD spectroscopy experiments, the Y177A mutant showed a significantly reduced ability to bind specifically to Z-DNA and stabilize this left-handed DNA conformation [5]. Taken together, these data suggest that B-DNA binding by $Z\alpha$ may be also disfavored in some cases due to steric hindrance through the phenolic ring of Y177. Indeed, it may be possible to replace Y177 with a more flexible residue to produces a protein that can bind both B- and Z-DNA. The lack of conservation of Y177 in other $Z\alpha$ family members is thus of great interest. Domains capable of recognizing both B- and

fig. 53 **Steric hindrance disfavors B-DNA binding by Z** α (see next page). a, The superposition of the lowest energy structure of Z α (blue) with the crystal structure of diphtheria toxin repressor (DtxR in green) complexed with B-DNA shows that the N-terminus of Z α (residues Y136) and possibly also the prehelix of Z α (light blue) cause steric hindrance with B-DNA in the minor groove. For reference, the B-DNA contacting residues of DtxR close to Y136 and P193 of Z α are shown in green. b, The superposition of Z α with the E2F4/DNA complex (pink) shows that Y177 of Z α may clash with the B-DNA backbone in the major groove. The B-DNA contacting residues of E2F4 corresponding to Y136, Y177 and P193 of Z α are represented in pink. P193 is within van der Waals distance to the B-DNA in both superpositions.

(B)

Z-DNA may bind initially in a B-DNA sequence-specific fashion, e.g. to initiate transcription. The ability to bind Z-DNA allows the interaction with DNA to persist even when negative supercoils arising from the action of enzymes, such as RNA polymerase, disrupt the B-DNA specific interaction. In this manner targeting can be maintained.

In conclusion, the specificity of $Z\alpha$ for left-handed Z-DNA probably results from two different structural mechanisms: B-DNA binding by $Z\alpha$ is disfavored by steric hindrance. Second, Z-DNA binding by $Z\alpha$ is favored because seven of the nine Z-DNA contacting residues are prepositioned to bind the distinct backbone of Z-DNA. These structural modifications of the α + β HTH fold may enable $Z\alpha$ to recognize Z-DNA in the presence of excess B-DNA in the nucleus of a living cell.

Summary

The $Z\alpha$ domain shows close structural homology to several $(\alpha+\beta)$ HTH DNA binding protein domains which all bind to right-handed B-DNA. Superposition of $Z\alpha$ with the crystal structures of four homologous $(\alpha+\beta)$ HTH/B-DNA complexes suggests that binding of $Z\alpha$ to B-DNA is disfavored by steric hindrance through the extended helix $\alpha 1$ of $Z\alpha$ and in some cases through the rigid aromatic ring of Y177. Since $Z\alpha$ contains a prepositioned binding surface for Z-DNA, it prefers to bind to Z-DNA rather than B-DNA. However, the minute structural differences between $Z\alpha$ and its B-DNA binding homologues raise the possibility that $Z\alpha$ -related domains may bind to both B- and Z-DNA.