Appendix D

Integration of the pendulum equation

The first integral of the Eq. [2.19] reads as:

$$
\begin{equation*}
\mathcal{L}_{1}-\dot{\theta} \frac{\partial \mathcal{L}_{1}}{\partial \dot{\theta}}=-\lambda \dot{\theta}^{2}(t) / \mu^{2}+\sin ^{2}(\theta(t)) / T=C \tag{D.1}
\end{equation*}
$$

where $C=-\lambda V^{2}(0)$ is a constant of integration and $V(0)$ corresponds to the initial amplitude of the control field. After the second integration we obtain:

$$
\begin{equation*}
\sqrt{\frac{-\lambda}{C \mu^{2}}} \int_{0}^{\theta} \frac{d \theta^{\prime}}{\sqrt{1-\frac{1}{C T} \sin ^{2}\left(\theta^{\prime}\right)}}=t \tag{D.2}
\end{equation*}
$$

and, finally

$$
\begin{equation*}
\theta=\operatorname{am}\left(\mu V(0) t, \frac{1}{C T}\right) \tag{D.3}
\end{equation*}
$$

Here $a m$ is the amplitude of the Jacobian elliptic function. The shape of the optimal control field $V(t)$ is obtained through differentiation:

$$
\begin{equation*}
V(t) \equiv \dot{\theta}(t) / \mu=V(0) d n\left(\mu V(0) t,-\frac{1}{\lambda V^{2}(0) T}\right) \tag{D.4}
\end{equation*}
$$

where $d n$ is the Jacobian elliptic function. With a help of the condition on the pulse energy E_{0} (see Eq. [2.6]) we can determine the Lagrange multiplier λ.

