
Chapter 3

Results

In this chapter we present the results of our investigations. This chapter
consists of four sections. In the first section we present results for optimal
control of time averaged quantities in simple quantum systems. The influ-
ence of relaxation on the shape of the optimal control field is investigated.

In the second section a ground state and excited states of strongly
interacting few body quantum systems are calculated with a help of the
QGA. As an example, we have investigated the formation and melting of
a Wigner molecule in one and two dimensions.

In the third section we determine the optimal pulse shape in order
to maximize the transfered charge through a double quantum dot. We
investigate the influence of relaxation on the optimal control field and the
role of interdot Coulomb repulsion.

In the fourth section we provide results of our simulations of the ul-
trafast cluster explosion of clusters under strong femtosecond laser fields.
The correlation between charge state and kinetic energy of the ejected ion
is investigated. We also study the influence of the cluster size on the mean
and maximal kinetic energy of the ions after explosion.
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CHAPTER 3. RESULTS

3.1 Optimal control of a time averaged oc-

cupation of the excited level in a two-

level system

In this section we study the influence of relaxation on the shape of the
optimal field.

In the first subsection we perform numerical integration of the Euler-
Lagrange equation (see Eq. [2.10]) for various parameters of relaxation.
The influence of boundary conditions on the shape of the control field is
also investigated.

In the second subsection we present numerical and analytical studies
of the control problem using a simplified Lagrangian.

3.1.1 The influence of relaxation on the optimal con-

trol

In order to make a systematic study of the problem of control over a finite
time interval that we have formulated in the Theory section [2.1], let us
consider the optimal control of a two level system. We assume that initially
the ground state of this system is occupied and the excited level is empty,
i.e. ρ11 = 1 and ρ22 = 0. We are looking for the optimal shape of the field
V (t) that maximizes the mean occupation of the excited state ρ22 over time

interval t ∈ [0, T ], or in other words, that maximizes n2 =
1
T

∫ T

0
ρ22(t)dt.

Therefore, we consider the objective functional density (see Eq. 2.4)

Lob(ρ(t)) = ρ22(t)/T. (3.1)

In the limit of a weak relaxation in the system, the expression for the oc-
cupation of the exited state ρ22 obtains a very simple form ρ22 = sin2(θ(t))
within the Rotating Wave Approximation.

In this limit the corresponding Euler-Lagrange (EL) equation for the
optimal pulse envelope θ(t) (see Eq. [2.10]) reads

−λ1
d4θ

dt4
+ λ

d2θ

dt2
− µ2

2T
sin(2θ) = 0. (3.2)

Here, we use the boundary conditions θ(0) = θ̇(0) = θ̇(T ) = 0 and θ(T ) =
π/2, that guarantees maximization of the population ρ22. Eq. [3.2] is
known as a limiting case of the dispersive sine-Gordon equation and it is
exactly integrable [63]. In the presence of decoherence (γ1, γ2 6= 0) we use
the explicit formula for the ρ22(t) given by Eq. [2.16] and then solve the
corresponding EL equation by standard numerical techniques, for example
using the fourth order Runge-Kutta method [71].

We have calculated the optimal pulse area θ(t) and, correspondingly,
the optimal pulse shape V (t) for different values of the relaxation constants
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γ1, γ2. We also considered different values of the pulse energy E0 and
the pulse curvature R of the control fields. For simplicity we choose the
duration of the control interval T = 1.

0 0.2 0.4 0.6 0.8 1
Time

0

1

2

3

4

5

O
pt

im
al

 f
ie

ld
 V

(t
)

Figure 3.1: The optimal control field V (t) that maximizes the value of n2 over control
time interval [0, 1] (arbitrary units). Solid line: solution of the Euler-Lagrange
Eq. [3.2] for a system with zero relaxation and dephasing (γ1 = γ2 = 0). The
pulse energy is E0 = 4.8 and the pulse curvature R = 182.2. Dashed line: optimal
field for a system with non-zero relaxation and dephasing (γ1T = 2γ2T = 0.2)
with the same pulse energy and curvature R = 134.32.

In Fig. [3.1] we show the optimal field V (t) for a two level system
without relaxation (γ1 = γ2 = 0) and with relaxation (γ1T = 2γ2T = 0.2)
for the same value of the pulse energy E0. Note, that for both cases the
pulse maximum occurs near the beginning of the control interval.

This leads to a rapid increase of the population ρ22(t) and therefore to a
maximization of a time averaged occupation n2. We find that the optimal
pulse obtained for the system with relaxation improves the value of n2 by
50% with respect to a Gaussian pulse and by 25% compared to a square
pulse of the same energy. For the case of a system without relaxation the
pulse vanishes when the population inversion has been achieved, whereas
for a system with relaxation the optimal pulse seems to be broader. One
can suggest a simple interpretation of this result. Using Eq. [2.16] we
can estimate that in the presence of external field the occupation of the
upper level ρ22(t) decays exponentially with the rate (γ1 + γ2)/2 = 3γ1/4
that is slower than free decay of the system with the rate γ1. Therefore,
relaxation effects can be partially compensated by a longer application of
the field during control interval.

In Fig.[3.2] we show the corresponding dynamics of the population of
the excited level ρ22(t) for both cases. As it was mentioned before, the
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Figure 3.2: Dynamics of the population ρ22(t) corresponding to the fields shown in
Fig [3.1] for a system with zero relaxation (thick solid line), and with non-zero re-
laxation and dephasing (dash dotted line using the approximate formula given by
Eq. [2.16], thin solid line-numerical solution of the Liouville equation Eq. [2.13]).
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Figure 3.3: The optimal control field V (t) for a two level system with zero relaxation
and dephasing (γ1 = γ2 = 0, solid line). The pulse energy is E0 = 4.57 and the
pulse curvature R = 128.4. The dashed line shows the optimal pulse for a system
with non-zero relaxation and dephasing (γ1T = 2γ2T = 5) with the pulse energy
E0 = 53.54 and curvature R = 808.8.

expression given by Eq. [2.16] is exact for a system without relaxation
within the Rotating Wave Approximation. However, for a system with
relaxation that Eq. [2.16] also agrees well with the numerical solution
of the Liouville equation Eq.[2.13]. This indicates that V (t) fulfills the
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Figure 3.4: Dynamics of the population ρ22(t) for a system with zero relaxation
(thick solid line), and with non-zero relaxation and dephasing (dash dotted line-
using formula (2.16), thin solid line-numerical solution of the Liouville equation
Eq. [2.13]).

condition given by Eq. [2.15] on the control interval [0,T] and therefore
our approach is self consistent.

Let us examine now the case of a strong decoherence, for which the
controlled system is close to the saturation regime. In Fig. [3.3] we com-
pare the optimal field V (t) for a two level system without relaxation
(γ1 = γ2 = 0) and with relaxation (γ1T = 2γ2T = 5). We choose a
relatively large pulse energy E0 of the control pulse in the relaxation re-
gime in order to compensate a rapid decay of the exited level. Indeed, in
this case control is not coherent within all control interval. Since the op-
timal pulse amplitude does not change significantly over time interval, one
can conclude that in the strong relaxation regime a pulse with a constant
envelope V (t) will be a good approximation for the optimal one.

In Fig. [3.4] we show the corresponding dynamics of the population of
the excited level ρ22(t). Surprisingly, the analytical expression for ρ22(t)
works also well even for relatively large relaxation rates γ1, γ2. The ex-
planation of this result is that the analytical expression for ρ22 given by
Eq. [2.16] becomes exact for a pulse with a constant envelope V (t) = V0.
Because the optimal one is almost constant (except at the boundaries)
this expression works also well.

We found that the value of the averaged occupation n2 increases both
for a system with and without relaxation monotonously with the energy
E0 of the optimal control field. In order to illustrate this we plot in
Fig. [3.5] the averaged occupation n2 as a function of the energy E0 and
the curvature R of the optimal fields for a system without relaxation
(γ1 = γ2 = 0). Note, that pulses of fixed shape (for instance Gaussian)
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would show an oscillating behavior for increasing energy due to Rabi os-
cillations [96]. The monotonous increase of the n2 with E0 is a feature
which characterizes the optimal pulses.

Figure 3.5: Dependence of the averaged occupation n2 as a function of the pulse
energy E0 and pulse curvature R (see Eq. [2.7]) of the optimal pulses using γ1 =
γ2 = 0.

3.1.2 Optimal control field calculated using a simpli-

fied Lagrangian

In Fig. [3.6] we plot the optimal control field V (t) which maximizes the
simplified Lagrangian given by Eq. [2.18] for two level systems with zero
(γ1 = γ2 = 0) and non-zero (γ1T = 2γ2T = 0.2) relaxation and dephasing.
For the system with zero relaxation and dephasing we use the analytical
solution for the optimal control field given by Eq. [2.20]. In both cases the
field has its maximum value at t = 0 and exhibits a monotonous decay.
As in the case of the solutions of the Eq. [2.10] the control field is broader
for the system with relaxation in order to compensate decay of the exited
state.

In Fig. [3.7] we plot corresponding dynamics of the population ρ22(t).
The overall behavior of ρ22(t) is similar to that of the populations shown
in Fig. [3.2]. This means that essential physics of the optimal control is
already contained in the second order differential equation. The boundary
conditions V (0) = V (T ) = 0 change dramatically the shape of the optimal
fields, but they do not affect significantly the dynamics of the controlled
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Figure 3.6: The optimal control field V (t) which maximizes the time averaged oc-
cupation n2 in a two level system. Solid line: system with zero relaxation
(γ1 = γ2 = 0). The pulse energy is E0 = 4.6. The dashed line shows the optimal
pulse for the system with non-zero relaxation and dephasing (γ1T = 2γ2T = 0.2)
with the same energy.

system. For a comparison, in Fig. [3.8] we also show results for the case
of large relaxation γ1T = 2γ2T = 5 .
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Figure 3.7: Dynamics of the occupation ρ22(t) for system with zero relaxation and
dephasing (thick solid line) and non-zero relaxation and dephasing (dash dotted
line: approximate analytical solution given by Eq. [2.16], thin solid line: numerical
solution of the Liouville equation Eq. [2.13)].

As in Fig. [3.6] the field is maximal at t = 0 and exhibits a monotonous
decay, and similar to Fig. [3.3] the control field is close to be constant for
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Figure 3.8: The optimal control field V (t) for a two level system with zero relaxation
and dephasing (γ1 = γ2 = 0, solid line). The pulse energy is E0 = 20.50. Dashed
line: optimal field for a system with non-zero relaxation and dephasing (γ1T =
2γ2T = 5) with the pulse energy E0 = 89.72.

the strong relaxation regime. In Fig. [3.9] we plot the corresponding pop-
ulation ρ22(t) dynamics. As in Fig. [3.4] the system is close to saturation
regime.
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Figure 3.9: Dynamics of the occupation ρ22(t) for system with zero relaxation and
dephasing (thick solid line) and with non-zero relaxation and dephasing (dash
dotted line using Eq. [2.16], thin solid line-numerical solution of the Liouville
equation Eq. [2.13]).
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3.2 Application of the QGA to the eigen-

state problem for interacting electrons

in quantum dots

In this section we present results of the ground and excited states cal-
culations for interacting electrons in a quantum dot using the Quantum
Genetic Algorithm.

In the first subsection we perform calculations of the ground state
for different simple one and two dimensional systems and compare the
obtained results with known analytical solutions. This serves as a good
test for the method developed in this work.

In the second subsection we compute the partition function and the
excitation spectra of strongly interacting few body systems. With the help
of the QGA we investigate the formation of “Wigner molecules” in systems
of few confined electrons. We also investigate two different mechanisms
for the so called “melting of the Wigner molecule”, namely due to thermal
and quantum fluctuations.

3.2.1 The ground state problem in one and two di-

mensions

With the purpose to test our method (GA) we apply it to calculate the
ground state wave function Ψ(x) in the case of different external poten-
tials in one and two dimensions. For each iteration of the QGA we eval-
uate the fitness function for the different individuals of the population:
Ej = E[ψj] =< Ψj|Ĥ|Ψj >. Then follow the steps described in the
Theory section [2.2]. This process is repeated until the values of the fit-
ness function converge to the minimal value of the energy. In the figures
presented below we show the results for the density probability of the
ground state and the behavior of the fitness function during the iterative
GA-procedure.

Let us start from the ground state problem for one particle captured in
the region [0,L] being in the infinite square well. The analytical solution
gives the lowest energy state with energy E = π2/2L2 corresponding to
the ground state wavefunction

Ψ(x) =
√

2/L sin(πx/L). (3.3)

In Fig. [3.10] we show the calculated ground state particle density
|Ψ(x)|2 for a potential well with infinite walls at x = 0 and x = 1 (through-
out this chapter we use atomic units). In the inset of the Fig. [3.10] we
show the evolution of the mean energy of the population.The mean pop-
ulation energy is defined using calculated energies of all population mem-
bers. It is clear that the QGA converges rapidly to the ground state. The
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ground-state energy calculated using our method is very close to the ex-
act value E = π2/2 = 4.9348... up to an error of 10−5% already after 20
iterations. We also performed calculations for other analytically solvable
problems, namely the harmonic potential U(x) = 1

2
ω2(x − 0.5)2. In this
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Figure 3.10: Ground state spatial density distribution of an electron |Ψ(x)|2 in a one-
dimensional infinite well (defined on the interval [0,1]) calculated using the QGA.
Inset figure: evolution of the fitness as a function of the number of iterations.

case the ground state energy is E = ω/2, and the ground state wavefunc-
tion is given by

Ψ(x) =
(

ω/π
)1/4

exp(−ω(x− 0.5)2/2). (3.4)

In Fig. [3.11] the calculated ground density state is shown for ω = 2
√
10 ·

102. The value of the ω is chosen rather large, therefore one can neglect
the influence of the walls on the final result. In the inset of Fig. [3.11]
we show the evolution of the mean energy of the population. It converges
slower than in the case of the infinite well because the QGA should find
rather localized solution. However, it converges after only 30 iterations.
For the ground-state energy the QGA yields EQGA = 316.29, while the
analytical result is E = 316.22 which represents a discrepancy of less than
0.02% after 30 iterations.

In order to check whether the QGA finds a solution in more complic-
ated cases, if, for example, the spatial distribution of the electron density
has not one but two maxima, we performed calculations for the case of
anharmonic potential with two distinct minima.

In Fig. [3.12] we present the calculated ground state density for an
anharmonic potential of the form

U(x) = k0 − k2x2 + k3x
3 + k4x

4, (3.5)
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Figure 3.11: Calculated spatial distribution of electron density |Ψ(x)|2 (solid line)
for an electron in a 1D harmonic potential (dotted line). The inset shows the
evolution of the fitness as a function of the number of iterations.
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Figure 3.12: Calculated spatial distribution of the electron density |Ψ(x)|2 (solid line)
for an electron in an anharmonic potential of the forth order (dotted line). The
inset shows the evolution of the fitness as a function of the number of iterations.

with k0 = −137.7074997, k2 = 7, k3 = 0.5, and k4 = 1. We use these
values of the parameters in order to compare with existing calculations
performed using the spectral method [81]. In the inset of Fig. [3.12] we
also show the evolution of the mean energy of the population. It con-
verges slower than in the previous two cases. The reason is that the QGA
operates is more complicated space of possible solutions. Nevertheless,
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Figure 3.13: Calculated spatial distribution of the electron density |Ψ(x)|2 (solid line)
for an electron in a potential produced by a chain of positive ions (dotted line).
The inset shows the convergence behavior of the fitness function.

algorithm converges after 200 iterations. Our calculated ground-state en-
ergy is EQGA = −144.87, whereas the value obtained by using the spectral
method is E = −144.96, i.e., the discrepancy is less than 0.06% after 200
iterations.

Our next example deals with the ground state of an electron subject
to a 1D potential produced by a chain of 5 positive charged ions, which is
given by

U(x) =
5
∑

i=1

Q
√

(x− xi)2 + S
, (3.6)

where Q is the charge of each ion and xi its position. S is a cutoff para-
meter. This smooth 1D ionic potential has been used, for instance, in
the context of the Coulomb explosion of small clusters induced by intense
femtosecond laser pulses [28, 107]. In the QGA-calculations for this po-
tential, and in order to speed up the convergence process, we use for the
initial populations trial functions of the form

Ψj(x) =
5
∑

j=1

Aj exp(−(x− xj)2/σ2j )(x− a)(b− x), (3.7)

having 5 peaks, where the amplitudes Aj, widths 0 < σj < b−a and peak
positions xj ∈ (a, b) are random numbers. In our calculations we have
used Q = 5,a = 0, b = 50, xi = 13, 19, 25, 31, 37, and S = 0.25. Note,
that the calculated probability distribution, shown in Fig. [3.13], has the
same symmetry properties as the external potential U(x). In the inset of
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Figure 3.14: Calculated densities |φ1(x)|2 (solid line) and |φ2(x)|2 (dotted line) of two
orbitals which build the first triplet-state wave function for two noninteracting
electrons in a 1D harmonic potential (dashed line). The convergence behavior of
the fitness function is shown in the inset.

Fig. [3.13] we plot the evolution of energy of the best ”offspring” in the
population. It is clear that using appropriate initial guess for the form of
the wave function can considerably accelerate the convergence of the QGA.
In this example the genetic process converges after only 20 iterations.

Now we study the simplest case of the few body problem. For sim-
plicity we consider first a system of two noninteracting fermions trapped
into harmonic potential V (x) = 1

2
ω2(x− 0.5)2. We assume that the wave-

function of electrons has symmetric spin part, and therefore we search
for the antisymmetric spatial solutions. The triplet-state wave function
of two noninteracting electrons having the lowest energy can be written
as Ψ(x, x′) = [φ1(x)φ2(x

′) − φ2(x)φ1(x′)]/
√
2, where φ1(x) and φ2(x) are

the ground-state and first excited state of the single-particle Hamiltonian,
respectively.

With the help of the QGA we have determined φ1(x) and φ2(x), and
consequently Ψ(x, x′) for the harmonic potential described above. For this
calculations the individuals of the successive populations were the pairs
{φ1(x), φ2(x)}.

In Fig. [3.14] the functions φ21(x) and φ22(x) for this case are shown
using ω =

√
20·102. Note, that this procedure yields both the two-particle

triplet state with the lowest energy and first two single-particle states of
the single particle Hamiltonian. For the ground-state energy the QGA
yields EQGA = 894.90, while the analytical result is E = 2ω = 894.43.

Let us now test the QGA by determining the ground state wavefunction
in two dimensions under different external potentials.
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Figure 3.15: Density distribution ρQGA(x, y) for the ground state of two noninter-
acting fermionic particles (triplet state) in a square infinite well.

The region of discretization Ω is chosen as follows. For practical pur-
poses we consider a rectangular box Ω ≡ {(x, y), 0 ≤ x ≤ d, 0 ≤ y ≤ d}
in two dimensions. The value of the length d is 1 atomic unit. We also
assume that the external potential outside Ω is infinitely high. In all 2D
examples presented here we use a lattice with 100 by 100 grid points. To
calculate the kinetic energy term in the Hamiltonian given by Eq. [2.29]
we use a high-order finite-difference formula [83].

In our first example we perform the evaluation of the ground state for
two noninteracting particles (in a triplet state) confined into the infinite
well.

The ground state of this system is degenerate, and the wave functions
corresponding to the different degenerated states are antisymmetric. One
possible solution is given by

Ψ(x1, y1, x2, y2) = 4[sin(πx1) sin(πy1) sin(2πx2) sin(πy2)

− sin(πx2) sin(πy2) sin(2πx1) sin(πy1)]. (3.8)

The QGA procedure converges rapidly to a solution having the same sym-
metry of the function given by Eq. (3.8). In Fig. [3.15] we show the
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Figure 3.16: Density distribution ρQGA(x, y) for the ground state of two noninteract-
ing fermionic particles (triplet state) in an external harmonic potential.

ground state spatial density ρQGA(~r) =
∫

|ΨQGA(~r, ~r′)|2d~r′ obtained from
the QGA. The overall shape of the solution and its symmetry are in good
agreement with the exact result. The calculated value of the ground energy
(EQGA=34.543619) is also in a very good agreement with the analytical
result (E = 7π2/2=34.543615), the relative error being less than 10−5%.

In the next example we determine the ground state of two noninter-
acting particles (in a triplet state) in a 2D harmonic potential described
by potential

U(x, y) =
1

2
ω2((x− 0.5)2 + (y − 0.5)2), (3.9)

using ω = 102. The analytical solution for one of the degenerate triplet
state reads

Ψ(x1, y1, x2, y2) =
ω
3
2

π
exp{−ω(x21 + y21)/2} exp{−ω(x22 + y22)/2}(x2 − x1).

(3.10)
In Fig. [3.16] we present the ground state density ρQGA(x, y) for this prob-
lem. In this case there is also good agreement between the result obtained
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from the QGA and the exact result. The calculated value of the ground-
state energy is EQGA = 300.0024, which compares well with the exact one
(E = 3ω = 300).

3.2.2 Formation of a “Wigner molecule” and its “melt-

ing”

The fact that for noninteracting quantum problems the QGA yields good
convergence to the exact results motivated us to apply our approach to test
its efficiency for interacting systems. Therefore, we study two interacting
particles (in a triplet state) in 1D using an artificially smoothed Coulomb-
like interacting potential

V (x1, x2) =
Q

√

(x1 − x2)2 + ε2s
, (3.11)

where εs is a smoothing coefficient. Q is the strength of the interparticle
interaction. In our calculations we use εs =

√
3. As we mentioned above

we seek for the Hartree-Fock approximation. Therefore, we construct an
initial population {Ψi(x1, x2)} consisting of antisymmetric functions of the
form Ψ(x1, x2) = [ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] for particles in a triplet
state. After convergence of the QGA we determine the spatial density of
the particles given by ρQGA(x) =

∫

|ΨQGA(x, x
′)|2dx′.
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Figure 3.17: Density distribution ρQGA(x) for two interacting fermionic particles in
a triplet state in one-dimensional infinite well. The different curves refer to dif-
ferent strengths Q of the interaction V (x1, x2) = Q/

√

(x1 − x2)2 + 3 between the
particles.
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PROBLEM FOR INTERACTING ELECTRONS IN QUANTUM DOTS

In Fig. [3.17] we show the calculated ρQGA(x) corresponding to the
Hartree-Fock approximation to the ground state for different values of the
interaction strength Q. For Q = 0 (noninteracting case) the solution is
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Figure 3.18: Electron density distribution ρQGA(x, y) of two interacting electrons in
a triplet state in a square infinite well in the low density limit (large box size).
The spatial coordinates are rescaled to unity. Note the localization of the electron
density that corresponds to formation of the so-called “Wigner molecule”.

built up from the ground state and the first excited state of the single
particle problem. As a consequence, the particles are well delocalized and
minimize the kinetic energy.

In contrast, in the interacting case the repulsive term of the Hamilto-
nian forces the particles to be far away from each other. This effect in-
creases with increasing interaction strength, and leads to a localization
near the opposite walls. For Q = 100 the overlap between one particle
wavefunctions becomes negligible.

Now let us study the ground state of two particles strongly interacting
via repulsive Coulomb potential in 2D. This is a common problem in
the physics of quantum dots [86, 74, 75, 87]. In this case the repulsive
interaction potential is given by

U(~r1, ~r2) =
e2

|~r1 − ~r2|
. (3.12)
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For this example we rescale the size of the box by setting d = 1000. This
corresponds to the low-density case. In Fig. [3.18] we show the calculated
density distribution ρQGA(x, y). For low electronic densities, the contribu-
tion of the Coulomb interaction is more important than the contribution
of the kinetic energy of the particles. This leads to a strong localization
of the particles in opposite corners of the square box, which minimizes
the energy of the system. This effect may correspond to the well known
Wigner crystallization [84]. Note that for the two-particle 1D system dis-
cussed above this effect also takes place upon increase of the interaction
strength Q (see Fig. [3.17]). The Wigner crystallization in quantum dots,
which is also described as formation of a “Wigner molecule”, has been
obtained recently using other theoretical approaches [74, 82, 87]. In fact,
our calculated density shown in Fig. [3.18] is in good agreement with other
methods [74]. This is a remarkable result.

0 20 40 60 80 100
Position, atomic units

0

1

2

3

4

5

6

Pa
rt

ic
le

 d
en

si
ty

, a
rb

itr
ar

y 
un

its

Figure 3.19: Particle density ρ(x) of two interacting particles in an infinite well with
the width L = 100, using β = 4 · 107 (dotted line),2 · 106 (dash-dotted line),1 · 106

(dashed line),1 · 105 (solid line).

Next, we present results of calculations of the partition function to-
gether with the excitation spectrum. Once calculated, the excitation spec-
trum can be used to derive any kind of quantum statistical values. For
instance, with a help of partition function we compute particle densities
for different temperatures.

We consider particles in a triplet state being in the 1D infinite well
with the width L and interacting via repulsive Coulomb potential. In
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PROBLEM FOR INTERACTING ELECTRONS IN QUANTUM DOTS

order to eliminate logarithmic singularity which is typical for Coulomb
interaction in one dimension [28], we use a smoothed interaction potential
given by Eq. [3.11]. In these calculations we use L = 100 that guarantees
low electron density and set εs = 1/

√
10.

In his pioneering work [84], Wigner pointed out that the electron
gas would crystallize at sufficiently low temperature and density. When
thermal fluctuations (in energy units) becomes comparable with the en-
ergy of the interparticle interaction, the opposite to the Wigner crystal-
lization transition occurs, i.e. melting of the Wigner crystal.

First we present the results of our calculations of the melting of a
“Wigner molecule” in one dimension due to increasing of thermal fluc-
tuations. In Fig. [3.19] we show the electron density for the case of two
particle system. In our calculations we set parameter β = 4 ·107, 2 ·106, 1 ·
106, 1 ·105 and we choose size of the well a = 100. The density of particles
ρ(x) clearly becomes more delocalized with increasing of the temperature
(decreasing of the parameter β) and for β = 1 · 105 it is almost uniform.

In Fig. [3.20] we plot the particle density for three particles with par-
allel spins, using parameter β = 6 ·107, 3 ·106, 1.5 ·106, 1.5 ·105 and for the
same size of the well. As in Fig. [3.19], initially localized particle density
is smeared out with increasing of the temperature. Because of the small
amount of the particles in the system, this transition is quite smooth.
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Figure 3.20: Particle density ρ(x) of three interacting particles in an infinite well
with the width L = 100, using β = 6 · 107 (dotted line), 3 · 106 (dash-dotted line),
1.5 · 106 (dashed line), 1.5 · 105 (solid line).
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Now let us investigate the behavior of the finite quantum system at
low temperatures, i.e., in the quantum regime. In contrast to classical sys-
tems, recently a new “Wigner molecule melting” scenario which is caused
by quantum fluctuations and exists even at zero temperature [90] has
been studied. It was shown, that delocalization of the electron density oc-
curs when the ratio of the kinetic energy to the Coulomb energy exceeds
a certain threshold [90]. The kinetic energy Ekin of a quantum system
with fixed number of particles and variable size L scales as Ekin ∼ L−2,
while the Coulomb energy EC scales only as EC ∼ L−1. Therefore, with
decreasing of the size of the system quantum fluctuations become more
and more significant (due to the Heisenberg’s uncertainty principle) and
quantum phase transition would occur. In Fig. [3.21] we present results
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Figure 3.21: Rescaled particle density ρ(x) of four interacting particles in an infinite
well at zero temperature using width of the well L = 500 (dotted line), L = 100
(dashed line), L = 1 (solid line).

for the calculation of the particle density ρ(x) for different sizes of the well
a = 500, 100, 1 at zero temperature. In order to visualize these results we
re-scale calculated ρ(x) on the interval [0,1]. From Fig. [3.21] it becomes
clear, that with decreasing of the size of the system electron density tends
to be more delocalized, i.e. a kind of “Wigner molecule melting” takes
place in the system.
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3.3. OPTIMAL FIELD FOR CONTROL OF THE PHOTON

ASSISTED TUNNELING BETWEEN QUANTUM DOTS

3.3 Optimal field for control of the photon

assisted tunneling between quantum dots

In this section we present results of our studies on optimal control in nano-
structures in the presence of decoherence. Using the genetic algorithm we
perform a search for the optimal shape of the control field in order to
maximize the transferred charge in the double quantum dot system.

3.3.1 Numerical solution using the genetic algorithm:

the influence of relaxation on the optimal con-

trol

The parameters used in our calculations are given in terms of the tunneling
matrix element d. The energy difference ∆ε = ε2 − ε1 must be much
larger than d to ensure that the ground state of the double quantum dot
is localized on the left side and the excited state is localized on the right
side. This also leads to a sharper resonance behavior. Therefore we set
∆ε = 24d.

In our calculations we use symmetric coupling of the QD to the reser-
voirs Γ1 = Γ2 ≡ Γ and compute optimal field shape for different values
of the coupling constants Γ = 0, 0.01d, 0.05d. It is important to point
out that Γ must be smaller than d, so that the Rabi oscillations do not
become overdamped. If Γ is large the system saturates very rapidly to
ρ11 = ρ22 = 1/2 and no interesting transient dynamics can be observed.
Finally, we choose the control interval T = 100~/d which is large enough
to allow back and forth motion of the electrons between the quantum dots.
Typically T is the same order of magnitude as ~/Γ.

In our calculations we also put a constraint on the minimal width of
the pulse in order to describe pulses which can be achieved experimentally.
In our calculations this minimal width is naturally determined by the
discretization of the time interval and by the smoothness parameters kc
and km of the crossover and mutation operations (see Eqs. [2.33,2.34]).

We discuss first results for U = 0, i.e., neglecting the interdot Coulomb
repulsion. The search for the optimal pulse in the system described in the
Theory section 2.3 is a difficult task. From the elementary analysis of
Eq. [2.43] it is clear that the optimal pulse should first be able to transfer
an electron from left to the right QD (inversion of the occupation) and
then to keep this situation as long as possible. However, there are many
different pulse shapes able to achieve this situation and it is a priori not
clear which one maximizes the transferred charge QT .

For Γ = 0, for example, the system given by Eq. [2.43] can be solved
analytically for some limiting cases. If, for example, the external field
is periodic in time, V (t) = V0 cosωt, with a constant amplitude V0, an
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Figure 3.22: Optimal control field for the isolated double quantum dot (Γ = 0). (a)
Solid line: reference square pulse of duration τ = πΩ−1

max and intensity V0 yielding
the first maximum of J1(V0/~ω) (see text), and having energy E0. Dashed line:
optimal pulse shape for the maximization of the charge transferred from the left
to the right quantum dot. The pulse energy is E0. (b) Corresponding time-
dependence of the occupation ρ22(t) on the second dot for the pulses shown in
(a).

electron placed on one of the dots will oscillate back and forth between
the dots with the Rabi frequency Ω = 2d/~ J1(V0/~ω) [98, 99], J1 being the
Bessel function of order 1, if the system absorbs one photon. The carrier
frequency ω must fulfill the resonance condition ~ω =

√
∆ε2 + 4d2. The

description of the tunneling dynamics for pulses of varying intensity is
much more complicated, because the Rabi frequency changes in time.

Thus, for pulses of constant amplitude there is an upper limit Ωmax for
the Rabi frequency which is obtained when the ratio x = V0/~ω is such
that the function J1(x) has its first maximum. Using this property we
construct a reference pulse of square shape (V (t) = V0 for 0 ≤ t ≤ τ and
V (t) = 0 otherwise) with intensity V0 as defined above and duration τ =
πΩ−1

max. In the following we will use the energy E0 of such reference pulse
as a unit of pulse energies. In principle one would expect that the reference
pulse defined above exactly achieves an inversion of the occupation in the
double quantum dot within the shortest time (assuming only one-photon
absorption). However, as we show below, such a pulse shape is not the
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Figure 3.23: Optimal pulse shape for the maximization of the charge transferred
from the left to the right quantum dot. The pulse energy is E = 0.57E0 and
the coupling to the reservoirs is chosen to be Γ = 10−6d. Inset: corresponding
time-dependence of the occupation ρ22(t) of the right quantum dot.

optimal one.

In Fig. [3.22] we compare the effect that is induced on the isolated
double quantum dot (Γ = 0) by the reference square pulse with that
induced by the optimal one calculated using the GA and having the same
energy E0. As one can see in Fig. [3.22(b)],the GA finds a pulse shape
which induces a slightly faster transfer of the charge. This result inspired
us to perform calculations for more complicated problems. In the following
examples we are searching also for the minimal pulse energy E.

In Fig. [3.23] we show the optimized pulse shape for the maximization
of the charge transfer in the almost isolated double quantum dot (Γ =
10−6). The optimal pulse excites the system at the beginning of the control
time interval inducing an inversion of the occupation. ρ22(t) reaches the
value 1 when the pulse goes to zero. Since Γ is very small, this occupation
remains constant in time. As a consequence the transferred charge QT is
maximized. From the comparison between Figs. [3.22] and [3.23] we see
that a limitation of the minimal pulse width, that we employed for this
calculations, leads to more symmetric and smooth optimal solutions. The
corresponding evolution of the occupation of the second quantum dot is
shown in the inset of Fig. [3.23].

In Fig. [3.24] we show the optimal field envelope and the induced occu-
pation ρ22(t) dynamics in the case of the weak coupling to reservoirs with
coupling constant Γ = 0.01d. Note that the optimal field is structured as a
sequence of two pulses (see Fig. [3.24(a)]). The first one acts at the begin-
ning and has the proper shape to bring the occupation of the second QD
to a value close to 1. However, since Γ 6= 0 (according to Eqs. [2.43]) ρ22(t)
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Figure 3.24: (a) Optimal pulse shape which induces maximal current using Γ = 0.01d.
The pulse energy is E = 4.26E0. (b) Corresponding behavior of ρ22(t).

starts to decrease as soon as the first pulse goes to zero. Shortly before
the end of the control time interval the second pulse brings the occupation
ρ22(t) again to a high value (Fig. [3.24(b)]). The structure of the optimal
pulse can be easily interpreted with the help of the expression of QT as
a functional of ρ22(t) (see Eq. [2.46]). The first pulse tends to keep the

term eΓ2
~
∫ T

0
dt ρ22(t) as large as possible, whereas the second pulse acts to

increase eρ22(T ). As a consequence, QT is maximized. Fig. [3.25] shows
results for the same system, but with larger coupling constant, namely
Γ = 0.05d. As can be seen in Fig. [3.25(a)], in this case the optimal solu-
tion also exhibits pulses at the beginning and at the end of the control
interval, but also a complicated sequence of pulses between them which
prevent ρ22(t) to go to zero. ρ22 is stabilized around the value 1/2, i.e. at
the state where both dots are equally occupied (see Fig. [3.25(b)]).

If the coupling constant Γ is further increased, the structure in the
middle of the time interval becomes more important. In the limit of large
Γ we expect a square pulse to maximize QT , since the system goes into the
saturation regime and in this case the pulse only needs to transfer charge
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Figure 3.25: (a) Optimal pulse shape using Γ = 0.05d. The pulse energy is E =
121E0. (b) Corresponding time-dependence of the occupation ρ22(t).

at some constant rate with a value of the order of Γ.
In order to illustrate the progress achieved by the genetic algorithm

during the optimization process we show (for the case of Γ = 0.05d) in
Fig. [3.26] the shape (envelope) of the fittest pulse at the different stages
of the genetic evolution, . In Fig. [3.26] (1st iteration) one of the pulses of
the initial population (parents) is plotted. As all other parents this pulse
is a Gaussian-like. The best representative, shown in Fig. [3.26], induces
an excitation of the system at the early beginning of the control time
interval. The successive application of the genetic operations improves
the pulse shape and transforms the initial Gaussians in more complicated
pulse sequences. As a result, the envelope of the fittest pulse of the 10th
generation Fig. [3.26], for instance, exhibits several peaks. After 30 itera-
tions the pulse form already exhibits most of the features of the optimal
pulse, and after approximately 50 iterations it converges to the optimal
one.

To illustrate this convergence we show in Fig. [3.27] the evolution of
the transfered charge QT [V (t)] for the best pulse as a function of the
number of iterations of the GA. It is clear that after already 50 iterations
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Figure 3.26: Illustration of the optimization process using genetic algorithms. Evolu-
tion of the “fittest” pulse shape for maximization of the current using Γ = 0.05d.

the pulse induces a transferred charge very close to the optimal one. For
the sake of comparison in Fig. [3.28] we show the optimal pulse shape
which maximizes the mean occupation of the second QD, using as fitness
function the time average of the occupation on the second quantum dot,
P22 =

∫ T

0
dt ρ22(t) (for Γ=0.01d,0.05d). Interestingly, the optimal pulse

has also two peak structure. Indeed, the first pulse pumps one electron
from the left to the right QD. The reason for the position of the second
pulse is that the efficiency to excite the system is maximal when ρ22(t)
reaches its minimum, i.e. at the end of the control interval. This result is
a direct consequence of the nonlinear character of the considered control
problem. One should also mention that the optimal control field has the
same properties for larger relaxation in the system, namely some sequence
of pulses not only at the beginning and at the and of the control interval,
but also some in between.

From this example one can learn that this is a general property of
the control fields for open systems. This property one finds for various
functionals which one wants to optimize.

In order to investigate the influence of the interdot Coulomb repulsion
U we perform calculations similar to those described above, but for the
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Figure 3.27: Evolution of the transfered charge QT for increasing number of iteration
of the GA using Γ = 0.05d.
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Figure 3.28: Optimized pulse shape using Γ = 0.01d (solid line, the pulse energy is
E = 48.4E0), and using Γ = 0.05d (dashed line, the pulse energy is E = 13E0)

for the maximization of the average occupation P22 =
∫ T

0
dt ρ22(t) of the second

quantum dot (see text).

case U → ∞ using the same set of coupling parameters Γ. We found
that the repulsion between QD leads to a relatively smaller net trans-
ferred charge (see Fig. [3.29]). This is due to the fact that U → ∞
prevents double occupancy in the system. Therefore, an electron from the
left reservoir can jump into the double quantum dot system only when
one electron has already left the system and was transferred to the right
reservoir.

Finally, in order to show that pulse shaping can indeed lead to a
remarkable enhancement of the photon assisted current through double
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Figure 3.29: Dependence of the total transferred charge QT (diamonds) induced by
the optimal pulse as a function of the coupling Γ to the reservoirs for U = 0. The
circles represent the value of QT for U →∞.

Table 3.1: The total transferred charge QT [V (t)] induced by different pulses of the
same energy E = 4.26E0. The coupling to the reservoirs is taken as Γ = 0.01d
and the interdot repulsion U = 0.

Pulse shape QT

optimal pulse 1.29
rectangular pulse 0.85
Gaussian pulse 0.74
constant pulse 0.77

quantum dots, we indicate in Table [3.1] the values of the transferred
charge QT for the coupling constant Γ = 0.01d and pulses having dif-
ferent shapes V (t) but carrying the same energy E. As expected, the
optimal pulse found by the GA (already shown in Fig. [3.24]) induces
clearly more transferred charge than pulses having other shapes. It is im-
portant to point out that the rectangular and Gaussian pulses mentioned
in Table [3.1] are the fittest ones among rectangular and Gaussian pulses,
respectively. Thus, the optimal pulse induces 1.74 times more transferred
charge QT than the best Gaussian pulse, and 1.5 times than the best
rectangular pulse.

This shows that the GA is a powerful method for a solution of the
optimal control problem for the quantum systems during a finite time
interval.
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3.4. EXPLOSION OF XEN CLUSTERS

3.4 Explosion of XeN clusters

In this section we present results of our investigations of theXe clusters ex-
plosion. Using a microscopic theoretical approach described in the Theory
section [2.4] we perform quantum dynamical simulations of the ionization
and explosion processes induced by intense femtosecond laser pulses. We
show that the remarkable correlation between kinetic energy and charge
of the produced ions observed in different experiments can be described as
arising from the strongly inhomogeneous charge densities in the clusters,
which are induced by the collective dynamics of the electrons after the
laser excitation. With the help of the obtained results we suggest a simple
classical model that explains known experimental data [17].

In the first subsection ionization and explosion dynamics were invest-
igated. In the second subsection we study size and charge effects on the
ejected ions kinetic energy distribution. In the third subsection we present
a model of inhomogeneously charged cluster explosion in order to give a
simple description of the experimental findings by Lezius et al. [17].

3.4.1 Ionization and explosion dynamics

Using the approach described in the section [2.4], we have performed cal-
culations of the laser induced ionization and explosion dynamics of XeN
clusters excited by intense femtosecond laser pulses.

First, we determine the ground state of the electronic and atomic
structure. For this purpose we used a combined scheme of the Genetic
algorithm [77] and simulated annealing [59] using as a fitness function the
total energy of the system. Then Eqs. [2.53] and [2.54] have been numer-
ically solved on a spatial grid. For the time propagation we use the split
operator technique. For each cluster size we made at least ten runs to
have a statistics related to fluctuations of intensity of the external laser
field. In our simulations we use a square laser pulse with the intensity
I = 3.7 × 1016W/cm2 and the wavelength λ=800 nm, and having the
pulse duration of 80 fs. In our simulations we obtain a strong ionization
of the clusters and highly charged and energetic ions.

To illustrate the explosion dynamics we show in Fig. [3.30] the calcu-
lated electron charge density together with the positive nuclei potential (20
atoms in the cluster) after 20 fs laser excitation. The minima of the nuclei
potential correspond to the positions of the individual nuclei. One can
see that some fraction of the electron density moves outside the cluster.
This is a clear manifestation that the cluster becomes charged. However,
the nuclei position (except on the ”surface” of the cluster, where the Cou-
lomb repulsion is larger) remains unchanged. Fig. [3.31] displays a later
stage of the cluster explosion when a significant fraction of electrons has
left the cluster. The internuclear distance increases rapidly, indicating the
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Figure 3.30: Snapshot of the electronic density (in arbitrary units) and nuclei po-
tential (in arbitrary units) for the 20-atoms Xe cluster 20 fs after the pulse was
applied. The spatial coordinate is given in Bohr radius a0.

explosion of the cluster. One can estimate that the typical time scale for
the cluster explosion is of the order of 100 fs. For our simulations we use
the size of the box L = 2000a0 (a0 = 1 Bohr radius).

In order to characterize the collective motion of electrons we calculate
the time-dependence of the dipole moment of the cluster during the action
of the pulse. In our calculations we used the following definition of the
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Figure 3.31: The same notation, as in Fig. [3.30], but 60 fs after the laser pulse was
applied.
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dipole moment:

d(t) =

∫

|Ψ(x, t)|2(x− x0)dx, (3.13)

where x0 is the coordinate of the cluster’s center of mass. The integra-
tion is performed over the whole region of simulations. In Fig.[3.32] we
show the result of calculations for the cluster size N = 8. Note the
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Figure 3.32: Oscillations of the dipole moment d(t) of the cluster in time. The cluster
size is N = 8. Note clear evidence of the resonance appears about 60 fs.

rapid increase of the amplitude of oscillations approximately at the mo-
ment corresponding to 60 fs after beginning of the excitation. Since the
pulse amplitude is chosen to be a constant, one can assume that at 60
fs collective motion of electrons becomes resonant with oscillations of the
external field.

3.4.2 Dependence of the kinetic energy distribution

on the cluster size

In Fig. [3.33] we show the calculated mean and maximal kinetic energies
of the ions after explosion as a function of cluster size.

Both energies exhibit a significant increase from few keV for relatively
small clusters (with N = 3 − 6) up to few tens of keV for large clusters
(N = 25 − 30). These results are a in qualitative agreement with the
experimental findings [18]. Interestingly, the length of a Xe17 cluster is
`17 ≈ 70Å, which corresponds approximately to the diameter of the XeN
clusters for which the experimental signal also start to exhibit high ener-
getic ions [16]. Note, that there is a saturation of the maximal and mean
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kinetic energies for cluster sizes N ≈ 20− 25 and then for larger clusters
both energies start to decrease. The reason of the saturation effect is that
larger clusters N ≥ 17 explode more slowly and the resonance condition
is satisfied after the pulse stops (after 80 fs). This effect was also observed
experimentally [18].
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Figure 3.33: Calculated maximal (circles) and mean (triangles) kinetic energy of Xeq+

ions produced upon explosion of linear XeN clusters as a function of number of
atoms N in the cluster. The size of the clusters is also indicated.

This is an indication that the 1D model yields a qualitatively correct
description. However, the magnitude of our calculated energies is con-
siderably smaller than were observed in experiments. This quantitative
discrepancy is due to the 1D approximation, since a linear cluster of length
` contains much less atoms than the corresponding 3D cluster of diameter
`, which gives rise, when charged, to a much stronger repulsive potential.

Let us now study the correlation between the kinetic energy of the
ejected ions and their charge state. We estimate charge of the ion using
the following approximation. Shortly before the ion leaves the region of
numerical simulations, we calculate the integral

Q =

∫ x0+∆R

x0−∆R

|Ψ(x, t0)|2dx, (3.14)

where x0 is a current position of the ion at the time moment t0 and we
choose ∆R = 4.2a0 that yields the value Q = 54 for each nucleus in the
Xe2 molecule at the equilibrium.

In Fig. [3.34(a)] we plot the kinetic energy Ekin of the produced ions as
a function of their charge q for a cluster (chain) ensemble ranging in size
from N = 3 to 26. In general, the most energetic ions are those coming
from the surface of the cluster. Notice the remarkably strong correlation
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Figure 3.34: (a) Kinetic energy Ekin versus charge state q for Xeq+ ions emitted
upon laser excitation of a distribution of XeN clusters. (b) Ekin versus q after
explosion of a Xe16 cluster obtained from the full quantum mechanical simulation
(circles) and from a classical pure Coulomb explosion model (triangles). Note the
difference in the kinetic energy for large q referring to surface atoms originates
from the electron pressure.

between the energies and charges of the produced ions for various cluster
sizes as is found in experiment [17]. Note also, that the dependence of Ekin

on q is neither linear as predicted by the pure ”hydrodynamic” model nor
quadratic as predicted by the pure Coulomb explosion approach. In fact
Fig. [3.34(a)] shows much a more rapid nonlinear increase.

In order to quantify the contribution of the electron dynamics to the
kinetic energy of the emitted ions (so called hydrodynamic mechanism) we
performed test runs in which we analyzed the pure Coulomb explosion of
the pre-charged cluster. As input for these simulations we used the charge
distribution within the cluster obtained from the integration of equations
of motion (see Eqs. [2.53] and [2.54]) until shortly before explosion, i.e.
until stage (iii). In Fig. [3.34(b)] we show for Xe16 the resulting dependence
of the kinetic energy Ekin vs the charge state q for pure Coulomb explosion
calculations and for the case resulting from using Eqs. [2.53] and [2.54]

87



CHAPTER 3. RESULTS

over the whole time-range.
From our simulations we found that the electron pressure does not

accelerate ions which are close to the center of the cluster. In Fig. [3.34(b)]
these ions have lower energy and charge state. A possible explanation
of this result is that all forces which act on ions in the center of the
cluster cancel each other. The pressure of hot electrons is much more
efficient for the acceleration of highly charged ions at the surface. As
seen in Fig. [3.34(b)] these ions have higher energy and charge state. The
contribution of the electron pressure has clearly a nonlinear dependence on
ion ion charge. The initial position of the ion in the cluster is significant.
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Figure 3.35: Charge q of the different ionized atoms in a Xe25 cluster immediately
before the explosion. The solid and dotted lines refer to slightly different pulse
intensities used in the simulations. Note the increase of the ionization from the
center (c) to the surface (s).

From Fig. [3.34(b)] it becomes clear that in the last stage of the explo-
sion process the quantum electron dynamics, which is absent in the pure
Coulomb model, does only yield a contribution of about 20% to Ekin (see
Fig. [3.34(b)]). This indicates that this dependence is completely determ-
ined during the stages (i) and (ii) (see Theory section [2.1]) and is a direct
consequence of the charge distribution inside the cluster. Thus, our results
for the 1D model show that the laser induced collective electron dynamics
inside the cluster gives rise to a characteristic charge distribution in the
cluster, which is responsible for the functional dependence of Ekin(q).

In Fig. [3.35] we show a typical example of this characteristic charge
distribution inside the cluster immediately before the explosion. The effect
of the electron dynamics is to produce an inhomogeneous charge profile of
the ionized atoms, which exhibits a minimum at the center and increases
strongly for atoms close to the surface of the cluster. Such a charge distri-
bution is an indication of strong nonlinear effects and might be produced
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either by excitation of plasmons which decay via Landau damping at the
surface, or by field induced electron tunneling, or by both mechanisms. For
the case of 3D clusters we expect a similar effect of the electron dynamics
on the charge distribution. It is important to point out, that although the
electrons move mainly along the polarization-axis, there will be a strong
coupling between the density oscillations along the different directions in
this extremely nonlinear regime. As a consequence the charge distribution
inside the cluster should become less anisotropic after stage (ii).

3.4.3 Isotropic inhomogeneous 3D Coulomb model

The previous discussion suggested that we can use the following simple
3D spherical model to describe the last explosion stage. We assume that a
nonuniform, but isotropic charge distribution ρ(r) has been created during
the steps (i) and (ii) ρ(r) gives rise to a Coulomb potential UCoul(r) at the
distance r from the center of the cluster (see Fig. [3.36]):

E kin
r

(r)ρ

Figure 3.36: A simple model of the Coulomb explosion of the spherically symmetric
charged cluster with the charge profile ρ(r).

UCoul(r) = 4π/r

∫ r

0

dr′ r′2ρ(r′). (3.15)

It must hold that

4π

∫ R

0

r′
2
dr′ ρ(r′) = βNatQ, (3.16)

where R is the cluster radius and β ≈ 0.4 is the fraction of remaining
electrons in the cluster, Q is the charge of the Xenon nucleus (Q=+54)
and Nat the total number of atoms in the cluster. This will lead to a
kinetic energy distribution of the form

Ekin(r) = UCoul(r)ρ(r)V/Nat, (3.17)

where V = 4/3πR3 is the volume of the cluster shortly before explosion.
Using Eq. [3.17] we can now determine ρ(r) from fitting the experi-

mentally observed dependence Ekin(q) for the highly energetic ions with
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Figure 3.37: Charge profile inside a 3D spherical cluster derived from the experi-
mental kinetic energy distribution of the highly energetic ions. Inset: fit of the
experimental data measured in [17] assuming the inhomogeneous Coulomb explo-
sion model.

Ekin > 103eV [17]. The result is shown in Fig. [3.37] . Note, that the ionic
charge seems perfectly screened at the center of the cluster.

Interestingly the ρ(r) derived from the experimental results shows the
features predicted by the 1D model, namely strong inhomogeneous ioniz-
ation and concentration of the ion charge near the surface.

The charge profile ρ(r) in Fig. [3.37] exhibits also a surprising property.
Since the positive charge is sufficiently large for r > 3 nm, this means that
only clusters having initial diameter larger than 6 nm can contribute to
the tail of the highly charged and energetic ions. This conclusion is in
very good agreement with the observations of T. Ditmire and co-authors
[16].
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