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Notation and Conventions

We use the following notations:

Sets:

∅ Empty set
N Set of all natural numbers
N0 N ∪ {0}
R Set of all real numbers
R+ {x ∈ R | x ≥ 0}
R− {x ∈ R | x ≤ 0}
intM Interior of a setM ⊂ Rn

M Closure of a setM ⊂ Rn

∂M Boundary of a setM ⊂ Rn

|M | Lebesgue measure ofM ⊂ Rn

spanM Linear hull of the setM ⊂ Rn

diamM Diameter of a setM ⊂ Rn

Domain:

Ω ⊂ R2 Bounded, polygonal, Lipschitzian domain
Γ Boundary of Ω
n Outer normal vector

v



Functions andmappings:

f+ Positive part of a function f , f+ = sup{f, 0}
f− Negative part of a function f , f− = sup{−f, 0}
|f | Absolute value of a function f , |f | = f+ + f−

f ◦ g Composition of the functions f and g
f |M Restriction of f to the setM
dom(f) Domain of a function f

Function spaces:

C(Ω,Rm) Space of the continuous Rm-valued functions on Ω

X := H1(Ω,Rm) Space of allH1 functions with values in Rm

Y := L2(Ω,Rm) Space of Rm-valued square-integrable functions on Ω

W := X ∩ L∞(Ω,Rm)

X∗ Dual ofX
b Compact embedding
〈·, ·〉X Dual pairing inX

Derivatives:

∇f Gradient of a function f
∇ · h Divergence of a vector field h
∂tf Partial derivative of a function f with respect to t
∂nf Normal derivative
∂F (u) Subdifferantial of the Functional F at u
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Quantities in the state equations:

m Number of species
Xν ν-th species
uν Density of the ν-th species
Uν Initial density of the ν-th species
uν Reference density of the ν-th species
vν Chemical potential of the ν-th species
aν Chemical activity of the ν-th species
Dν Diffusion coefficient of the ν-th species
R Finite set of reactions
α,β Stoichiometric coefficients
R(α,β) Reaction rates
kα, kβ , k(α,β) Kinetic coefficients
S Stoichiometric subspace
S⊥ orthogonal complement in Rm of S
A Set of all equilibriums in a suitable parametrization
F (u(t)),Ψ(u(t)) Free energy, relative free energy at state u(t)
D(v(t)) Dissipation rate of the system at state v(t)

Discretized quantities (Sec. 3)

P,V, E , T Family of points, Voronoi volumes, edges, triangles
M = (P,V, E) Voronoi mesh
NV(K) Neighboring volumes ofK ∈ V
Eint Set of all interior faces
fK Value of f in the Voronoi volumeK ∈ V
|K| Lebesgue measure ofK ∈ V
F̂ (u), Ψ̂(u) Discrete free energy and relative free energy at state u
D̂(u) Discrete dissipation rate at state u
fh Piecewise constant functions onM
fd Piecewise constant functions on Donald boxes
fl Piecewise linear functions on the triangles
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Abbreviations

Fig. Figure
resp. respectively
i.e. id est
f.a.a. for almost all
w.l.o.g. without loss of generality
p. page
e.g. exempli gratia
a.e. almost every

Other conventions

We use the following notations and conventions which are not listed before. In some sections we
introduce specific symbols which are not listed here. In the work, Ω ⊂ R2 is a bounded polygonal
Lipschitz domain, unless otherwise stated. As long as the meaning is clear we shortly write Lp

instead of Lp(Ω) andH1 instead ofH1(Ω).
In the treatment of evolution equations we need the following spaces: Let V be a Banach space and

S a unbounded resp. bounded interval ofR+. We denote byLp
loc(S, V ) resp. Lp(S, V ), p ∈ [1,∞],

the space of all equivalence classes of all Bochner measurable functions u : S → Y such that
‖u(·)‖V ∈ Lp

loc(S) resp. ‖u(·)‖V ∈ Lp(S). The spaces will be equipped with their usual norm
resp. seminorm. The space H1

loc(S, V ) is defined as the space of all u ∈ L2
loc(S, V ) such that

u′ ∈ L2
loc(S, V ), where u′ denotes the derivative of u in the sense of V -valued distributions. The

spaceH1(S, V ) is defined analogously.
We set x+ = max(x, 0) and x− = max(−x, 0) for x ∈ R the positive and negative part of x and

mention the following relationships

x = x+ − x−, |x| = x+ + x−, x+ =
|x|+ x

2
, x− =

|x| − x

2
,

x ≤ x+, x ≥ −x−, x+x− = 0.

Concerning vectors v ∈ Rm we use: Writing v ≥ 0 resp. v > 0 we mean vi ≥ 0 resp. vi > 0

for i = 1, . . . ,m. By lnv we denote (ln vi)mi=1, by e
v the vector (evi)mi=1 and by vα with α ∈ Q

we understand (vαi )
m
i=1. For (xiyi)

m
i=1 resp. (xi/yi)

m
i=1 we shortly write xy resp. x/y. The usual

scalar product in Rm is denoted by xTy. Together withα ∈ Zm
+ the symbol vα means

∏m
i=1 v

αi
i .

The zero matrix inRm×m is denoted by 0m and the identity matrix by Im. Under [v] for v ∈ Rm

we understand the diagonal matrixD ∈ Rm×m with elements di,i = vi, i = 1, . . . ,m, on the main
diagonal. The rank of a matrixA ∈ Rm×m is denoted by rkA. The transpose and inverse of a matrix
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A ∈ Rm×m is denoted with AT and A−1 resp. The Kronecker product and the direct sum of two
matricesA,B ∈ Rm×m is denoted byA⊗B andA⊕B resp.

In all proofs, real constants c with different meaning are numbered consecutively. The constants
only depend on the data and not on the discretization, unless otherwise stated. Moreover the symbols
S1, S2, and S3 have a local meaning and differ from time to time. Generally, these terms arise from
testing the problem by test functions and discussing the expressions for the time-derivative (S1),
diffusion term (S2), and reaction term (S3) separately. As long as the meaning is clear we neglect
the actual time step tn and we shortly write uνK instead of uνK(tn).
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1

Introduction

1.1 Zusammenfassung

Die Modellierung von Prozessen der chemischen Verfahrenstechnik, wie sie zum Beispiel bei der
Herstellung von Halbleitern in der Fotolithografie [95] auftreten, führt auf Reaktions-Diffusionsys-
teme, die durch im Orte nicht glatte Daten gekennzeichnet sind. Vom besonderem Interesse ist
dabei ein chemischer Prozess, der Strukturen für die Halbleiterherstellung ausbildet und in zwei
Materialien stattfindet, siehe [41].

Gegenstand der Arbeit sollen Systeme von parabolischen partiellen Differentialgleichungen sein,
welche die Umwandlung von chemischen, elektrisch neutralen Spezies in heterogenen Materialen
beschreiben, welche durch Diffusion und Reaktionen getrieben werden. Vor diesem Hintergrund
sind Schwierigkeiten in der numerischen Analyse zu erwarten, welche durch die starke Kopplung
der Gleichungen, die nicht glatte Ortsabhängigkeit der Reaktions- undDiffusionskoeffizenten, sowie
das Nichtvorhandensein des Maximumprinzips hervorgerufen werden.

Im Speziellen wird auf einer beschränkten Teilmenge Ω ⊂ R2 ein System vonm (elektrisch neu-
tralen) Spezies betrachtet. Die Konzentration einer einzelnen Spezies Xν sei mit uν , ihr chemisches
Potenzial mit vν , und ihre Referenzdichte mit uν , ν = 1, . . . ,m, bezeichnet. Der Zusammenhang
zwischen der Konzentration einer Spezies und ihrem chemischen Potential sei durch die Boltzmann-
Statistik uν = uν evν beschrieben. Das Model besteht ausm Evolutionsgleichungen

jν = −Dνuν∇vν
∂uν
∂t

+∇ · jν = Rν in R+ × Ω

und den homogenen Neumann-Randbedingungen ∂njν = 0 auf ∂Ω, ν = 1, . . . ,m. Die Quellter-
meRν resultieren aus Kombinationen der Reaktionsraten von reversiblen chemischen Reaktionen
der Form

α1X1 + α2X2 + · · ·+ αmXm 
 β1X1 + β2X2 + · · ·+ βmXm,

1



1 Introduction

wobeiα = (α1, . . . , αm) und β = (β1, . . . , βm) die zugehörigen stöchiometrischen Koeffizienten
sind. Die endliche TeilmengeR ⊂ Zm

+ × Zm
+ enthält nR = #R Paare (α,β) zu den im Gebiet Ω

stattfindenden Reaktionen. Entsprechend demMassenwirkungsgesetz sind die Nettoreaktionsraten
durch

Rν :=
∑

(α,β)∈R

k(α,β)

(
e
∑m

i=1 αivi − e
∑m

i=1 βivi
)
(βν − αν)

definiert. Aufgrund der heterogenen Materialien sind die Referenzdichten uν , die Diffusionskoeffi-
zentenDν , und die Reaktionskoeffizienten k(α,β) (möglicherweise in nicht glatter Form) vom Orte
abhängig. Zudem können die Koeffizienten Dν und k(α,β) vom Zustand aller Spezies abhängen.
Ferner sind Reaktionen zugelassen, die nur auf Teilgebieten existieren. Gegenstand der Arbeit sol-
len nur Reaktionssysteme sein, die einen positiven Gleichgewichtszustand besitzen, der durch den
stöchiometrischen Teilraum und den Anfangswert bestimmt ist. Es stellt sich heraus, dass diese
stationäre Lösung das einzige thermodynamische Gleichgewicht des Systems ist.

Der Beitrag dieser Arbeit betrifft die örtliche Voronoi Finite-Volumen und die zeitliche implizite
Euler Diskretisierung solcher Reaktions-Diffusionssysteme. Für den Beweis von Aussagen über die
Stabilität von Lösungen und von a priori-Abschätzungen für die diskreten Lösungen werden Tech-
niken in die diskrete Welt übertragen, die sich bereits beim Studium des kontinuierlichen Problems
als zielführend herausgestellt haben. Der Ausgangspunkt sind dabei Abschätzungen der diskreten
freien Energie

F̂ (u) =
m∑

ν=1

∑
K∈V

|K|
(
uνK(ln

uνK
uνK

− 1) + uνK

)
,

die entlang von Trajektorien des diskreten Problems monoton und exponentiell gegen ihren Gleich-
gewichtswert F̂ (u∗) fällt. Unter zusätzlichen Annahmen an die Reaktionsordnung (Reaktionen mit
maximal quadratischen Quelltermen) können aus dieser Aussage a priori-Abschätzungen für die
Konzentrationen gewonnen werden. Ein neues Resultat betrifft die uniforme zeitliche globale Be-
schränktheit von oben der Konzentrationen, welche mit Moser Iteration gezeigt wurde. Im Beweis
wird ein diskretes Analogon der Gagliardo–Nirenberg Ungleichung benutzt, das im Abschnitt A.2
bereitgestellt wird.

Mittels des exponentiellen Fallens der freien Energie konnte auf die zeitliche globale Beschränkt-
heit der chemischen Potentiale in L1(Ω) geschlossen werden. Wiederum mit Hilfe einer Moser
Iteration konnte die uniforme globale Beschränktheit der Konzentrationen von Null weg gezeigt
werden. Ausdrücklich sei darauf hingewiesen, dass in beiden Fällen die auftretenden Konstanten
unabhängig von der Güte des Voronoi-Gitters und vom Zeitschritt sind, womit auch anisotrope
Gitter nicht ausgeschlossen sind.

Die lokale Existenz von Lösungen des diskreten Problems konnte unter den natürlichenVorausset-
zungen der Quasipositivität der Reaktionsterme und der Erhaltung der Atomzahl bewiesen werden.
Ein Einzigkeitsresultat konnte nur für vom Zustand unabhängige DiffusionskoeffizientenDν und

2



1.1 Zusammenfassung

für kleine Zeitschritte erzielt werden. Zusammenfassend konnten alle qualitativen Eigenschaften
des kontinuierlichen Systems (thermodynamisches Gleichgewicht, monotones und exponentielles
Fallen der freien Energie, globale obere und untere Schranken) auch für das diskretisierte Problem
nachgewiesen werden.

Ein weiteres neues Resultat betrifft die Konvergenz des Schemas. Unter Zuhilfenahme der globa-
len Beschränktheit der Konzentrationen von unten und oben konnten Kompaktheitsaussagen für
die Konzentrationen und die chemischen Aktivitäten für eine Folge von Diskretisierungen erzielt
werden. Damit kann auf konvergente Teilfolgen von Konzentrationen und Aktivitäten geschlossen
werden, deren Grenzwerte eine schwache Lösung der kontinuierlichen Aufgabe sind.

Eine prototypische Implementierung des Schemas für das Beispiel der Michaelis-Menten-Henry-
Kinetik wird im Abschnitt 4 aufgezeigt. Hierbei wird großer Wert auf die Erhaltung der theoretisch
erzielten Eigenschaften über große Zeitintervalle gelegt.

Um die Stabilität und Anwendbarkeit der Methode auf reale Probleme zu demonstrieren, werden
im Abschnitt 5 verschiedene Beispiele mit Michaelis-Menten-Henry-Kinetik betrachtet. Sie widmen
sich speziellen Eigenschaften der implementierten Methode. In allen Beispielen sind während der
Rechnungen die physikalischen Eigenschaften des Schemas bis auf Rundungsfehler auch über lange
Zeitintervalle erhalten. Darüber hinaus löst das analysierte Verfahren die verschieden Zeitskalen des
Systems auf, wenn auch wandernde Reaktionsfronten oder starke Gradienten in der Nachbarschaft
von Materialübergängen nur grob durch das Gitter approximiert sind.

3



1 Introduction

1.2 Résumé

The modeling of a process in photolithography [95] leads to reaction-diffusion systems with spa-
tially dependent (nonsmooth) data. Of particular interest is a chemical process [41], which creates
structures in semiconductor manufacturing and takes place in two materials.

We consider systems of parabolic partial differential equations which model the relocation of
chemical, electrically neutral species in heterogeneous materials induced by diffusion processes and
chemical reactions. In this setting we expect difficulties in the numerical analysis caused by strongly
coupled systems, nonsmooth spatially dependent reaction and diffusion coefficients, and the absence
of the maximum principle.

In detail, on a bounded subset Ω ⊂ R2 a system consisting ofm electrically neutral species is
examined. The concentration of the species Xν , ν = 1, . . . ,m, is denoted by uν , their reference
density by uν , and their chemical potential by vν . The connection between their concentration and
their chemical potential is given by Boltzmann statistics uν = uν evν . The model consists of m
continuity equations

jν = −Dνuν∇vν
∂uν
∂t

+∇ · jν = Rν in R+ × Ω

with Neumann boundary conditions ∂njν = 0 on ∂Ω. The reaction rates Rν describe reversible
chemical reactions of the form

α1X1 + α2X2 + · · ·+ αmXm 
 β1X1 + β2X2 + · · ·+ βmXm,

where α = (α1, . . . , αm) and β = (β1, . . . , βm) denote vectors of stoichiometric coefficients.
According to the mass action law, the reaction rates are given by

Rν :=
∑

(α,β)∈R

k(α,β)

(
e
∑m

i=1 αivi − e
∑m

i=1 βivi
)
(βν − αν).

Due to the heterogeneous materials, the reference densities uν , the diffusion coefficientsDν , as well
as the reaction coefficients k(α,β) are spatially dependent in a nonsmooth way. The coefficients
Dν and k(α,β) may also depend on the state of all species. Moreover we allow that reactions can
vanish on subdomains. In this work we consider only the case, where the reaction system possesses
a positive stationary state, determined by the stoichiometric subspace and the initial state. This
stationary state turned out to be the only thermodynamic equilibrium of the system.

Our investigations are related to the Voronoi finite volume discretization in space and backward
Euler discretization in time of such reaction-diffusion systems. In order to obtain a priori bounds and
stability results of the discrete problemwe apply techniques which are well established in the analysis
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1.2 Résumé

of the continuous problem. The origin of studying the discrete evolution problem are physically
inspired estimates of the discrete free energy

F̂ (u) =

m∑
ν=1

∑
K∈V

|K|
(
uνK(ln

uνK
uνK

− 1) + uνK

)
,

which decays along trajectories of the discrete evolution system monotonously and exponentially
to its equilibrium value F̂ (u∗). These statements deliver a priori estimates on the concentrations
under additional assumptions on the reaction order (reactions with at most quadratic source terms).
In a first new result we conclude from the global boundedness of the free energy, the global in time
boundedness of the species concentrations from above by Moser iteration. During the proof, a
discrete version of the Gagliardo–Nirenberg inequality is required, which is provided in Section A.2.

Exploiting the exponential decay of the free energy, we obtain the global in time boundedness of
the chemical potentials in L1. Again using Moser iteration we prove the global boundedness of the
species concentrations from below by some positive constant only depending on the data and not
on the mesh.

Local existence of solutions of the discrete system is obtained under the natural assumption of
quasi-positivity and conservation of number of atoms. A uniqueness result was achieved under
the assumption that the diffusion coefficients are independent of the state variables and under the
restriction of small time steps.

In an additional new result, the convergence of the scheme is proven in Section 3.12. Using the
global bounds from above and below we conclude compactness of the concentrations and chemical
potentials for a sequence of discretizations. Hence there exist converging subsequences such that
the limit is a weak solution of the continuous problem. At the end of the chapter, all qualitative
properties relating to the continuous problem are also true for the discrete problem (steady states,
thermodynamic equilibrium, monotonous exponentially decay of the free energy, global upper and
lower bounds).

In Chapter 4 we present a prototypical implementation of the method for the Michaelis-Menten-
Henry reaction kinetic. Our aim is to preserve the physical properties of the calculated solution up
to rounding errors over large time intervals.

The stability of the method is illustrated by means of examples in the subsequent Chapter 5. The
examples are devoted to different phenomena of the scheme. During the calculations the properties
of the scheme are valid up to rounding errors. Moreover, all timescales are resolved by the method,
even if the front movement or the strong gradients in the direct neighborhood of interfaces are only
roughly resolved.
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1 Introduction

1.3 Application in photolithography

The investigation of stable discretizations for reaction-diffusion systems in heterogeneous materials
is motivated by two processes for the manufacturing of structures in optical lithography.

Higher integration of electronic components provides a mean to reduce the cost per component
and to increase the performance in the electronic industry. The development of integrated circuits is
driven by the Moore’s law [76, 95]. Every 24months the number of transistors on a chip is doubled.
Modern circuits from Intel are manufactured at 22 nm structure size and the fabrication of 15 nm
structure size is under development, [25, 76]. In Figure 1.1, the forecast of the structure size (half
pitch1) is depicted. Optical lithography is a standard technology to transfer a pattern from a mask
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Figure 1.1: Forecast of the structure size (half pitch) of DRAM’s and Flash memory. The data are listed in [76]

onto the resist-coated wafer2 and continue onto a integrated circuit, see Figure 1.2 and [95, 118]. The
standard process consist of nine steps, see [95, 118]:

• Since an absolute cleanwafer is essential for the lithography process thewafer surface is cleaned
by mechanical scrubbing, high pressure water stream, or nitrogen blow-off.

• Afterwards the photoresist, which is a suspension of polymers and additives in a solvent, is
spin-coated onto the wafer. For the following exposure step it is necessary that the thin film
of photoresist is defect free and uniform.

1 This denotes the half of the distance of two neighboring lines.
2 Two types are possible: Using a positive resist the soluble increases during exposure. Using a negative resist the
solubility decreases during exposure.
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1) Cleaning 2) Spin−coating 3) Prebake

6) Development5) Post−exposure bake4) Exposure

7) Hardbake 8) Etching 9) Stripping

Photoresist

Silicon

Silicon dioxide

Figure 1.2: The optical lithography process steps to transfer a structure onto a integrated circuit

• During the pre-brake the waver is heated up on a hot plate. Most of the solvent is diffused
out and the photoresist becomes a mechanically stable film. The remaining solvent has an
influence on the optical properties and the diffusion constant of the acid and base during post
exposure bake.

• One of the main steps is the exposure, where the image of a photomask is transferred into
the photoresist and causes the spatially selective generation of acid from photo acid generator
molecules. The resolution of the projection system is essential for the performance of the
process and is characterized by two quality criteria. The first criteria is the resolution R
defining the minimal distance between two neighboring features that can still be resolved.
The resolutionR of the method is limited by the Rayleigh quotient

R = k1
λ

AN
.

In this equation λ is the wavelength of the light, AN denotes the numerical aperture and k1
denotes a process constant of the used lithography devices. A common value of k1 is 0.3 and
the theoretical minimum is 0.25. The numerical aperture is given byAN = n sin θ, wheren is
the refractive index of the medium between the photoresist and projection lens and θ denotes
the half maximum illumination angle between the exit lens of the projection system and the
image plane. The second criteria is the depth of focusDOF which characterizes the tolerable
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defocus for printing the features within the process specifications. TheDOF is approximately
given by the second Rayleigh criterion

DOF = k2
nλ

A2
N

,

where k2 is a technology parameter. Obviously reducing the R with a shorter wavelength λ
or by an higherAN is in contradiction to obtaining a goodDOF .

• During the post exposure (PEB) step, the photo acid molecules, generated during exposure,
catalyze the decomposition of the polymer dissolution inhibitor groups. In unexposed regions
small amounts of acid are neutralized by base molecules, which are added to the photoresist.
This fast neutralization prevents from significant cumulative inhibitor deprotection in stray
light regions. Additional reactions of the byproducts can be neglected, since most of them are
gaseous and evaporate from the wafer. The process carried out on a hot plate by a temperature
of 120°C for a time of 90s. Therefore the acid and base molecules begin to diffuse, which
reduces the amplitudes of standing wave patterns in the latent acid profiles, generated during
exposure. Themain purpose of the PEB step is to transfer the exposed image of the photo acid
generator with some small modifications due to the diffusion and the acid-base neutralization
into the deprotected, highly soluble, polymer chains. Unexposed regions of the photoresist
stay insoluble, due to the fast neutralization of acid and base.

• The propose of the development step is to transform the latent photomask image, represented
after PEB by a varying degree of inhibitor deprotection, into a three-dimensional relief struc-
ture. This means regions with a low concentration of dissolution inhibitor and high devel-
opment rates are dissolved. The main chemical reaction is a acid-base neutralization, which
ionized Acidic polymer sites, deblocked during PEB, by the alkalic developer and dissolve in
the developer liquid. Usually the developer liquid is sprayed on the waver and after a certain
time the dissolved photoresist and the developer liquid is removed by spin-drying.

• The propose of the hardbake step is similar to the prebake step. The waver is heated up on an
plate and remaining solvents or polymers are diffuses out, which improves the adhesion and
the mechanical resilience for the following etching step.

• Using dry etching the pattern is transferred from the photoresist into the substrate. Using
gasses the uncovered parts of the silicon dioxide layer are removed. Silicon dioxide regions
with photoresist on top are protected against the etching gasses. In the last step, the remaining
photoresist on top of the silicon dioxide is removed by dry or wet chemical stripping.

New challenges arise by the projection of smaller and smaller structures with optical lithography and
from rapid developments in this business. A modification of the values k1 and λ has a big impact
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1.3 Application in photolithography

on the process performance. Using modern immersion lithography3 with a wavelength of 193 nm
even makes it possible to shrink the structures to a size of 45 nm half-pitch, see [127].

By reducing the wave lengthλ or the process constant k1 it is possible to achieve smaller structures
of a size less than 45 nm. The following two processes decrease the process constant k1.

1.3.1 Double patterning

Using double exposure technologies it is possible to reduce the factor k1. The idea is to superimpose
two or more images on the wafer, see Figure 1.3. The process consists of many complex substeps

     

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Developt and freezed resist 1
ARC
Layer
Substrate

Overcoating of resist 2

Second exposure and baking

Development and hardbake

Etching

     

   

   

New Lines

Figure 1.3: Substeps of the double exposure process: 1.) L1 structure + freezing, 2.) L2 resist over coated 3.)
L2 exposure and baking, 4.) L2 development, 5.) Etch

which are extremely hard to control. The advantage is that only common materials are used which
are also applicable in the standard procedure. If all substeps are under control it is possible to create
structures of 32 nm size and below.

After the development step of the standard lithography sequence a second standard lithography
sequence is done to create lines with half the distance of the first sequence, see Fig 1.3. During the
exposure and development step a so called post exposure bake [95] takes place to smooth the exposed
image using diffusion and to stop the catalytic reaction, which was started during the exposure step.

3 Water droplets are inserted between the silicon wafer and the exposure lens.
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The post exposure bake during the first lithography step (L1) can be modeled by theMeta-model
[74, 96, 118], i.e., the following reactions take place

M+ A 
 X 
 A+ P, (1.3.1)

A+ B 
 AB. (1.3.2)

The dissolved parts of the resist M being catalytically decomposed into a product P using an acid A.
The symbol X denotes an intermediate with a short life time. Using a second reaction the acid A is
neutralized by a base B. It is assumed that the species can diffuse accordingly to Fick‘s law and the
diffusion coefficients are assumed to be constant.

Starting from the Meta-model, we developed a new variant including resist interactions between
the first structure created by L1 and the new second structure L2, see [30, 39]. In detail, we assume
that in the first structure of L1 an additional acid base neutralization

A+ B 
 AB

with species A and B takes place. The symbol AB denotes a decomposition product. Moreover it is
allowed that the species can diffuse from the L2 into the L1 region. Using this models it is possible
to study resist interactions between different lithography steps. For example we investigate the
footing effect which was experimentally observed for different resist formulations, see Figure 1.4.
One explanation of the footing is a loss of acid A caused by the existence of a standing lightwave

(a) smaller acid diffusion length (b) higher acid diffusion length

Figure 1.4: Scanning electron microscope (SEM) picture of the observed footing effect for different acid
diffusion coefficients. Images are from [30, Talk at SPIE]

created during the exposure step. Using the new variant of the Meta-model another explanation
of the footing effect was found. In numerical simulations we could show that the diffusion length
in L1 of the involved species has an impact on the resist footing, i.e., the acid A diffuses from the
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L2 structure into the L1 structure and is not available for the catalytic reaction in L2, see [30, 39]
and Figure 1.5. The acid loss in the L2 region and the associated footing effect can be reduced by

(a)DlAL1/L2 = 4/12 nm (b)DlAL1/L2 = 10/12 nm (c)DlAL1/L2 = 10/20 nm

Figure 1.5: Footing-effect of the structure after development for different L1/L2 acid diffusion constants, see
[30]

a certain amount of acid inside L1 or a protective layer with small diffusion length on the top of
the L1 structure, see [30, 39]. The simulations were done with the lithography simulator Dr.LiTHO
4 in combination with the module WiasPeb 5. The code Dr.LiTHO calculates the exposure step
from which the module WiasPeb calculates the post exposure bake step. The result of WiasPeb
serves as input for the calculation of the development step in Dr.LiTHO. The coupling of the two
codes was done using the scripting language Python [114] and the utility Swig [8]. The problem is
characterized by three-dimensional geometries and heterogeneous materials. In every subregion of
L1, L2, the reaction rates and diffusion coefficients may vary.

1.3.2 Pattern doubling

A new possibility to create structures less than 45 nm is the so called self-limiting residual acid
diffusion process, see [40, 41]. The advantage of this approach is that it is relatively easy to control.
It does not require multiple shifted exposure and development steps compared to the process of
Subsection 1.3.1. The starting point of the process is a primary structure containing a deposit of acid
A. In a second step (2), the primary structure is over-coated by a new non-attacking solvent. During
a bake process, the acid diffuses from the primary structure into the over-coated region and starts a
catalytic cross-linking reaction with precursor C. The end time of the cross-linking reaction can be
controlled by the neutralization of A and a base B. After the cross-linking reaction is finished, the
non cross-linked material is developed using standard developer, and etched away together with the
original pattern see step (4) and (5). A schematic of the process together with SEM pictures of the
step (1) and (3) is shown in Figure 1.6.
4 Developed at the Fraunhofer IISB [38].
5 Themodule based on the toolbox pdelib2 [123] of the WIAS.
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HH++  HH++  HH++  H+H
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+

H+H
+H

+

H+H
+H
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H+H
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Step 2:

Step 3:

Step 4:

Step 5:

Resist 1
ARC
Layer
Substrate
Overcoating of resist 2,
bake to cause H+-catayzed
crosslinking of 2
New lines

Removal of resist 1 
by etch

Etching

(a) pattern doubling process steps

First annual review - 06/02/2009 15CONSORTIUM CONFIDENTIAL

Task 3.3.1 - Main achievements

Pattern doubling process  

Schematic process flow SEM photos of intermediate 
steps (RHEM, WP2)

(b) SEM of the 1. and 3. step (courtesy Rohm and
Haas Electronic Materials [41])

Figure 1.6: Qualitative description of a pattern doubling process using deprotection and cross-link chemistry
resists

In [40, 41] the process is modeled using reaction-diffusion equations. In the over-coated region,
a two-step catalytic reaction with an acid A as a catalyst is assumed. During a first reaction step
it is assumed that a intermediate AC is formed by combining the acid A and the precursor C. In a
second step, the intermediate AC attaches to a cross-linked polymer X, releasing the acid A. This
catalytic cycle leads to a moving reaction front from the primary region into the over-coated region,
i.e. the thickness of the reaction front of the cross-linked polymer X grows in the over-coated region.
In order to control the spread of the cross-linked area, a small amount of base B is added, which
neutralizes a part of the free acid A released during the catalysis process. If the base concentration is
chosen in such a way that after a finite interval of frontmoving, all the catalyzing acid A is neutralized,
the reaction front might stop, leaving a certain part of the spacer unaffected. Formally this can be
expressed by

C+ A 
 AC 
 X+ A,

A+ B 
 AB.

In the primary region, the base B can diffuse into this region, and can neutralize the acid A, i.e. the
neutralization reaction

A+ B 
 AB
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takes place. The acid A and the base B are assumed to be mobile. All other species are assumed to be
immobile. The reaction rates may depend on the space variable, and the diffusion coefficients of A
and B depend on the amount of C and X, i.e., the diffusion coefficient of A is of the form

DA(uC , uX) = D0 exp
(
−γαuC + (1− α)uX

βuC + (1− β)uX

)
,

where α, β, γ are constants and uC , uX denote the concentration of C and X, see [40]. The diffusion
coefficient of B is modeled analogously. The process strongly depends on the ratio of the reaction

CB = 0.1 · 10�6

CB = 0.3 · 10�6

CB = 0.5 · 10�6

CB = 0.7 · 10�6

CB = 1.0 · 10�6

Figure 4. Concentration of crosslinked species (left) and L2 lines after development (right) for di↵erent base concentrations

on level 4 grid.

Figure 1.7: Dependence of the concentration of species X (left) and the profile of the L2 line (right) after
development on the concentration of species B

rates of the two steps of the catalytic cross-linking reaction in the primary region. Assuming that the
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backward reactions are very slow we observe a reaction front if the first forward reaction is much
greater than the second cross-linking reaction step. This means that within the over-coated zone, a
certain amount of intermediate AC is built up before it is used for cross-linking (building of P) in the
second step. The acid base neutralization drops out the acid of the catalytic reaction and can not be
”recycled” for the first step. If the base concentration is chosen appropriately, it is possible to stop
the reaction front after a finite time.

With the aid of numerical simulations we can show that the concentration of B has an influence
on the profile of the cross-linked polymer X and causes a bigger line after development, see Figure 1.7.
Themodule WiasPeb calculates the cross-linking step 2 and the programDr.LiTHO uses the profile
of the cross-linked polymer X to compute the development of the line. The difficulty in the numerical
treatment lies in the existence of heterogeneous materials and the resolution of the dynamic reaction
fronts by the mesh. A not well resolved front leads to a direct impact on the profile of the new line
after development, see [40].

Remark 1.3.1. Applying in Subsection 1.3.1 an additional exposure, bake and development sequence
after step 4 (see Figure 1.3), it is possible to create structures of 10 nm size. The resulting sequence
is called triple patterning or multi patterning, see [50, 93, 94]. Such processes may lead to complex
interactions between the different patterns during the exposure and post exposure bake step.

Remark 1.3.2. The modeling in the papers [30, 39–41] uses the concentration as primary variable.
Due to the different materials of the L1 and L2 structure this choice is not appropriate and leads to
an thermodynamically inconsistent model, see Remark 1.4.4. The proposed model of Section 1.4 takes
this into account by using the chemical potential as primary variable. Except vanishing diffusion
coefficients, the model also includes all difficulties of the application: nonsmooth spatially dependent
coefficient functions, dependents of the reaction rate and diffusion coefficients on the state of all species,
and vanishing reactions on subdomains. The different examples provided in Chapter 5 deal with all
these dependences.

Remark 1.3.3. Using local grid refinement it might be able to resolve the dynamic reaction fronts.
For this purpose stable error estimators and interpolation algorithms are required which preserve the
physical properties of the equations. The study of the usability of these methods for reaction-diffusion
equations with heterogeneous materials is not subject of this work. We refer to the literature of local
grid refinement for reaction-diffusion systems, see [37, 73, 75, 88, 89].
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1.4 Formulation of model equations

In this section, a model for reaction-diffusion systems including heterogeneous materials is intro-
duced, see [26, 51, 53, 64]. We considerm species Xν with initial densitiesUν which undergo chemical
reactions and underly diffusion processes in a domain Ω ⊂ R2 with boundary Γ = ∂Ω. The rela-
tion between the densities uν : R+ × Ω → R+ of the species Xν and the corresponding chemical
potentials vν : R+ × Ω → R is assumed to be given by Boltzmann statistics,

uν = uν evν , ν = 1, . . . ,m, (1.4.3)

where the reference densities uν : Ω → R+ may depend on the spatial position and express the
possible heterogeneity of the system under consideration. For a more elaborated description of the
chemical potentials we refer to [68, 86].

For the fluxes jν we make the ansatz

jν = −Dνuν∇vν ,= −Dν ūν evν ∇vν , ν = 1, . . . ,m, (1.4.4)

with diffusion coefficientsDν : Ω × Rm → R+ which may depend on the space variable and on
the state variables. If the reference densities uν are constant, the relation jν = −Dν∇uν holds.

To describe chemical reactionswe assume thatR ⊂ Zm
+×Zm

+ is a finite subset. A pair (α,β) ∈ R
represents the vectors of stoichiometric coefficients of reversible reactions, usually written in the
form

α1X1 + α2X2 + · · ·+ αmXm 
 β1X1 + β2X2 + · · ·+ βmXm.

According to the mass action law, the reaction rate for a pair (α,β) ∈ R is given by

R(α,β) = R(α,β)(·, a1, . . . , am) = k(α,β)(a
α − aβ), (1.4.5)

where k(α,β) : Ω× Rm → R+ is the reaction coefficient, aν := exp(vν) is the chemical activity of
Xν , and aα :=

∏m
ν=1 a

αν
ν . The net production rate of species Xν corresponding to all reaction rates

is
Rν :=

∑
(α,β)∈R

k(α,β)(a
α − aβ)(βν − αν). (1.4.6)

The stoichiometric subspace S is defined by

S = span{α− β : (α,β) ∈ R} (1.4.7)

and its orthogonal complement in Rm is denoted by S⊥.
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We consider a closed isothermal process, i.e., the temperature and the pressure are treated as con-
stant parameters. In this notation our reaction-diffusion system consists ofm continuity equations
with Neumann boundary conditions:

∂uν
∂t

+∇ · jν = Rν in R+ × Ω, n · jν = 0 on R+ × Γ,

uν(0) = Uν in Ω, ν = 1, . . . ,m.

(1.4.8)

In Remark 2.1.1 some examples illustrate the included dependencies.

Example 1.4.1. In order to illustrate some basic facts of the model in the thesis, the Michaelis-Menten-
Henri reaction mechanism (MMH) [17] is introduced. The reaction step is well known in chemistry and
biology and is a model for many fundamental reactions, see [15, 106]. The mechanism is also present in
the modeling of a pattern doubling process, see Section 1.3.

It involves a substrate X1 binding to a catalyst X2 to form a intermediate X3 which decomposes into
X2 and a product X4. The mechanism can be symbolically expressed by

X1 + X2 
 X3 
 X2 + X4. (1.4.9)

Correspondingly, the set R consists of two pairs of vectors, namely α1 = (1, 1, 0, 0) and β1 =

(0, 0, 1, 0) for the first reaction, andα2 = (0, 0, 1, 0) and β2 = (0, 1, 0, 1) for the second reaction.
Due to the definition of the reaction term (1.4.6), the net production rates of the species are given by

R1(a) = −k(α1,β1)
(a1a2 − a3),

R2(a) = −k(α1,β1)
(a1a2 − a3) +k(α2,β2)

(a3 − a2a4),

R3(a) = +k(α1,β1)
(a1a2 − a3) −k(α2,β2)

(a3 − a2a4),

R4(a) = +k(α2,β2)
(a3 − a2a4).

The stoichiometric subspace S and its orthogonal complement S⊥ are spanned by

S = span{(1, 1,−1, 0), (0,−1, 1,−1)}, S⊥ = span{(1, 0, 1, 1), (0, 1, 1, 0)}.

Remark 1.4.2. TheMMHmechanism (1.4.9) is a catalytic reaction and has a higher reaction rate than
an uncatalyzed reaction

X1 
 X4.

at same environmental conditions. Catalytic reactions start at a lower activation energy than the
corresponding uncatalyzed reactions. The MMH reaction step was first deduced for the splitting of
sucrose into glucose and fructose, see [17]. In the year 1913, Michaelis and Menten assumed that the
intermediate X3 is in equilibrium and gave an explicit formula for the concentration of the intermediate
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X3, see [16, 99]. An interesting review of MMH kinetics in the context of ordinary differential equations
is given in [119]. Steady-state approximations for different relations between reaction and diffusion time
scales in one space dimension are formulated in [80].

Remark 1.4.3. If the temperature of an ideal gas (at given pressure) is sufficiently small, Boltzmann
statistic becomes invalid. In this special situations, it is common to replace Boltzmann statistics by
Fermi-Dirac statistics, i.e.,

uν = uνF1/2(vν), F1/2(s) =
2√
π

∫ ∞

0

√
r

1 + er−s
dr,

in order to calculate the particle distribution from the energy, see [86].

Remark 1.4.4. In contrast to the reactions without heterogeneous materials the concentrations may
jumpat the interface between twomaterials, see Chapter 5. Therefore the chemical potentials or activities
are the primary variables to describe a system with a thermodynamic equilibrium. Using the potentials
as variables it is also possible to include other effects, like pressure, temperature, or the electric and
magnetic field, see [46, 68, 86].

Remark 1.4.5. We are primarily interested in the study of elementary chemical reactions. Reactions of
this kind, which model real life molecular events, are always reversible. Since the model must be able
to describe fully mixed steady states, it is necessary to impose the full reversibility of the reactions. We
refer to [51, Sec. 2.4.] for a more detailed discussion about that topic. The simplification of elementary
chemical reaction networks may lead to irreversible reactions, which do not represent real molecular
events.
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1.5 Relevant literature

The literature about reaction-diffusion systems is very comprehensive. Therefore we only discuss
the papers containing results or methods which are relevant for proceeding in this thesis.

Reaction-diffusion systems in homogeneous materials The question of global existence of strong
and weak solutions of special reaction-diffusion systems without heterogeneous materials is treated,
e.g., in [11, 12, 22, 23, 82, 111, 113]. The papers [111, 113] give an interesting review about the topic of
global existence under the assumptions that the mass of the system is preserved and the reaction
terms are quasi-positive and fulfilling a growth condition. The authors provide a global existence
result of strong solutions for reaction-diffusion systems with quadratic reactions, constant diffusivi-
ties, and bounded initial data in space dimensionN ≤ 5. The results strongly rely on anL2 estimate
which uses maximal regularity theory on the dual equation and requires the linearity of the diffusion
operators. In [113], the approach is extended to smooth, two times differentiable diffusion coeffi-
cients. Moreover the global existence of strong solutions for reaction-diffusion systems including
advection-migration is studied. The fast reaction limit (rate coefficient tends to infinity) of concrete
systems and the resulting limit system is studied in [12, 13, 113]. Especially for a reaction system close
to the MMH-kinetic, the limit for a short lifespan of the intermediate X3 is studied in [12].

Reaction-diffusion systems in heterogeneous materials In the case of reaction-diffusion systems
including heterogeneous materials, electrically charged species, and drift terms we mention the
papers [46, 47, 53, 63, 65, 67] and references therein. The authors explore and study properties
of an energy functional (free energy) which turns out to be a Lyapunov functional of the system.
Under an assumption on the source terms of the reaction (at most quadratic source terms in 2d),
they provide global well-posedness and stability, i.e., all bounded solutions converge to a uniquely
determined thermodynamic equilibrium solution as time goes to infinity. Moreover the free energy
decays monotonously and exponentially along trajectories. The work of [46, 47, 61] additionally
deals with more general state equations than Boltzmann statistics (1.4.3). In Chapter 3 we adapt
these techniques in order to prove global well-posedness of the discretized problem.

There is a new direction – considering reaction-diffusion systems as a gradient-flow problem. The
gradient-structure was initially mentioned in [90, 100, 101]. In [102] this structure was exploited in
order to provide explicit bounds for the exponential decay of the relative free energy. The authors
allow for some vanishing species diffusion coefficients and consider different energy functionals.

Finite volume methods for reaction-diffusion systems Finite volume schemes were introduced by
engineers for the study of equations with conservation laws and have been studiedmathematically for
over 20 years now. In the recent years finite volume schemes for linear diffusion problems involving

18



1.5 Relevant literature

the Laplace equation have been proven to be convergent on admissible meshes, that are meshes such
that the line segment joining the centers of neighboring cells is orthogonal to the edge between the
two cells, see [32, 33].

Finite volume methods for nonlinear parabolic systems, especially global existence of solutions
and convergence of such schemes, are an ongoing research topic, see [7, 9, 33, 81]. Obtaining uniform
global L∞-bounds on the concentration, concluding compactness and then passing to the limit is
the standard approach for proving convergence of a scheme to a weak solution of the continuous
system, see [7, 34]. In the case of nonlinear systems, where maximum principles and upper and
lower solutions method are not applicable, the proof of L∞ bounds is difficult.

In the setting of finite volume methods it is common to adapt continuous functional analysis
techniques in order to prove known properties of the continuous problem also for the discretized
problem, see [10, 32, 60]. For example in the papers [54, 56, 57] energy estimates for reaction-diffusion
systemswith quadratic source termswith or without electrically charged species are established using
a discrete Poincaré inequality.

Van Roosbroeck-equation We mention the special case of a reaction-drift-diffusion system with
two electrically charged species. The Van Roosbroeck system models the carrier transport in semi-
conductor devices and consists of two continuity equation for the electron density p and the hole
density n coupled with a Poisson equation combining the carrier density with the electrostatic po-
tential. In the context of semiconductor devices more general boundary conditions are of interest
in order to model applied voltages and other phenomena. The Van Roosbroeck system is well ana-
lyzed and we refer to the articles [45, 115]. In Chapter 4 we pick up ideas coming from the field of
semiconductor devices simulation for the assembly of the equations and the adaptive time stepping,
see [48].
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2

The continuous problem

AbstractThis chapter is devoted to the precise statement of the mathematical problem. We rephrase
general assumptions concerning the data of the continuous problem and present a weak formulation,
which is suitable when dealing with heterogeneous materials. A subsequent part gives a summary
on results obtained so far for the continuous problem. The main ideas are physically motivated
estimates, invariants, and a bootstrapping technique introduced by Moser [104]. Such techniques
are common in the analysis of nonlinear parabolic PDEs, see [78, 79, 115, 125].

2.1 General assumptions on the data

In this section we formulate basic assumptions with respect to the data of the problem, see [46, 47,
53, 56, 64]. The problem is studied under the following assumptions:

Assumption A1. Ω ⊂ R2 is a bounded polygonal domain, Γ := ∂Ω.
Let m ∈ N be given and R be a finite subset of Zm

+ × Zm
+ . For all (α,β) ∈ R the reaction

rate coefficients k(α,β) : Ω × Rm → R+ satisfy the Carathéodory condition1 and k(α,β)(x, ·) are
locally Lipschitz continuous (uniform in x). There exist a real constant ck < ∞ and a function
b(α,β) ∈ L∞(Ω)with b(α,β) ≥ 0 and

∥∥b(α,β)

∥∥
L1(Ω)

> 0 such that b(α,β)(x) ≤ k(α,β)(x,y) ≤ ck

f.a.a. x ∈ Ω, ∀y ∈ Rm.
The diffusion coefficients Dν : Ω × Rm → R+ satisfy the Carathéodory condition and there

exist constants 0 < cD, cD < ∞ such that cD ≤ Dν(x,y) ≤ cD, f.a.a. x ∈ Ω, ∀y ∈ Rm and
ν = 1, . . . ,m.

Finally, uν , Uν ∈ L∞(Ω) and there exist constants 0 < cu, cu < ∞ and 0 < cU , cU < ∞ such
that cu ≤ uν(x) ≤ cu, and cU ≤ Uν(x) ≤ cU , resp., f.a.a. x ∈ Ω and ν = 1, . . . ,m.

In some results we need an assumption on the reaction order.
1 A function f : Ω× Rm → R+ is called Carathéodory function iff z 7→ f(x, z) is continuous in Rm f.a.a. x ∈ Ω and
x 7→ f(x, z) is measurable for all z ∈ Rm.
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2.2 Weak formulation

Assumption A2 (Reaction order, cf. [46]). A source term of a reaction (α,β) ∈ R is of order n, iff
there exists a smallest number n ∈ N such that there exists a constant c > 0 with

max
ν=1,...,m

{
(βν − αν)

(
aα − aβ

)}
≤ c

(
1 +

m∑
ν=1

anν

)
∀a ∈ Rm

+ .

(2.1.1)

We assume that the source terms of all reactions are at most quadratic.

Remark 2.1.1. These technical assumptions allow us to handle a general class of reaction-diffusion
systems, including heterogeneous materials and nonlinear diffusion processes. Heterogeneous materials
can be found quite often in themodeling of biological or chemical processes involving different phases (see
[19]). Therefore, we assume the dependence of the diffusion coefficients and the reaction rate coefficients
on the spatial variable. For example, a different state of matter or a different background material leads
to coefficients which are spatially dependent in a maybe nonsmooth way.

The dependence of the diffusion coefficients on the state variable is motivated by problems like those
considered in Section 1.3. For example, recombination reactions of Shockley-Read-Hall, Auger type,
andmole fractions, see [46, 51, 72, 121], contain reaction rate coefficients depending on the state variable.
Sometimes enzymes havemore than one binding site where the reactivity of a docking place is influenced
by the number of free bindings (in biochemistry the behavior is called allosteric regulation). From
the modeling point of view this leads to reaction coefficients which depend on the concentration of a
regulating molecule, see [106]. Especially with regard to the application in Section 1.3 we assume that
some reactions can vanish on subdomains. This means that the reaction rate constant becomes zero.

The assumptions on the space dimension and on the reaction order are technical to obtain existence
and boundedness results in a general class of problems as in [46] for the continuous problem. Note, that
only the source terms of the reaction terms are restricted, the sink terms may be large.

2.2 Weak formulation

The weak formulation of (1.4.8) is written in the variables

v = (v1, . . . , vm) : R+ × Ω → Rm, (potentials),

a = (a1, . . . , am) : R+ × Ω → Rm
+ , (activities),

u = (u1, . . . , um) : R+ × Ω → Rm
+ , (densities).

The (chemical) potentials and (chemical) activities lie in a space of sufficiently smooth functions.
Since the reference densities may have jumps in the space the corresponding densities are elements of
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2 The continuous problem

the dual space, see also Section 5.3. Therefore, we work with the Gelfand tripleX b Y ∼= Y ∗ b X∗,
where

X := H1(Ω,Rm), Y := L2(Ω,Rm), W := X ∩ L∞(Ω,Rm). (2.2.2)

Moreover, we define the operatorsA :W → X∗, E : X → X∗ by

〈Av,w〉 :=
∫
Ω

(
m∑

ν=1

Dν(·, ev)uν evν ∇vν · ∇wν −Rν(·, ev)wν

)
dx ∀w ∈ X,

〈Ev,w〉 :=
m∑

ν=1

∫
Ω
(uν evν w) dx ∀w ∈ X.

(2.2.3)

The operatorA contains the reaction and diffusion terms of (1.4.8) and the operatorE incorporates
the statistical relation (1.4.3). In the setting of Assumption A1, a weak formulation of (1.4.8) can be
stated as follows: Find (u, v) such that:

u′(t) +Av(t) = 0, u(t) = Ev(t) f.a.a. t ∈ R+, u(0) = U,

u ∈ H1
loc(R+, X

∗),

v ∈ L2
loc(R+, X) ∩ L∞

loc(R+, L
∞(Ω,Rm)).

 (2.2.P)

2.3 Summary of known results

The problem (2.2.P) has been investigated in various papers, see e.g. [46, 53, 62, 67]. We shortly
summarize results for the continuous reaction-diffusion system (1.4.8) obtained in the cited papers.
For an extended summary of continuous results obtained so far we refer to [46, 53]. The starting
point in proving the existence of solutions to (2.2.P) are physical motivated a priori estimates. The
stoichiometric subspace implies some invariance property of the solutions to (2.2.P). These invariants
play a role during the investigation of the long time behavior of the solution. First we introduce
the two convex functionals Φ : X → R and F : X∗ → R, which are known from chemical
thermodynamics (see e.g. [46, 110]), by

Φ(v) :=

m∑
ν=1

∫
Ω
uν(evν −1) dx and F (u) := sup

v∈X
{〈u, v〉 − Φ(v)} .
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2.3 Summary of known results

The value F (u(t)) can be interpreted as free energy of solutions (u(t), v(t)) of the problem (2.2.P)
and has the explicit representation

F (u) =

∫
Ω

m∑
ν=1

{
uν

(
ln
uν
ūν

− 1
)
+ ūν

}
dx.

Since we consider isothermal processes we expect the monotonous decay of the free energy along
trajectories. This means for two times 0 ≤ t1 ≤ t2 the estimate F (u(t2)) ≤ F (u(t1)) < ∞
holds, see [46, Theorem 4.1]. From this explicit representation one can derive global in time a priori
estimates in L1(Ω).

For the invariance property of the solutions we define the set

U = {u ∈ X∗ : (〈u1, 1〉H1 , . . . , 〈um, 1〉H1) ∈ S} ,

with 〈uν , 1〉H1 =
∫
Ω uν dx for u ∈ X∗ ∩ L1(Ω,Rm). It is well known that solutions (u, v) to

(2.2.P) stay in the affine subspace U + U , meaning

u(t) ∈ U + U ∀t ∈ R+, (2.3.4)

see [46, 62]. Therefore, if u∗ := lim
t→∞

u(t) exists, then necessarily u∗ ∈ U + U . According to [46,
61] there exists a unique stationary solution (u∗, v∗) to

Av∗ = 0, u∗ = Ev∗, u∗ ∈ U + U , v∗ ∈W. (2.3.S)

We are only interested in problems having no steady states with zero density components.

Assumption A3. Let

A :=
{
a ∈ Rm

+ : aα = aβ ∀(α, β) ∈ R, u = ua ∈ U + U
}

(2.3.5)

be defined and let
A ∩ ∂Rm

+ = ∅

be fulfilled.

On the one hand, if (u, v) is a solution to (2.3.S) then a = (evν )mν=1 ∈ A. On the other hand if a ∈
A and a > 0 then (u, v) defined by v = lnu, u = u ev is a steady state of (2.2.P), that is a solution
to (2.3.S). Thus Assumption A3 implies A = {a∗} and therefore (u∗, v∗) is a thermodynamic
equilibrium of the system.
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2 The continuous problem

The free energy along solutions to (2.2.P) decays monotonously and exponentially to its equilib-
rium value F (u∗) [57, 67]. This means there exist a constant λ > 0 such that the relative free energy
Ψ(u(t)) := F (u(t))− F (u∗) decays exponentially

Ψ(u(t)) ≤ e−λtΨ(U) ∀ t ≥ 0.

Considering regularized problems, finding a priori estimates which do not depend on the regular-
ization level the existence of solutions to (2.2.P) is shown in [46, 63]. In detail, let q ∈ R+ such that
uν e−q ≤ Uν ≤ uν eq for ν = 1, . . . ,m. Introducing Pq : R → [−q, q] by

Pq(y) :=


q, if y > q,

y, if y ∈ [−q, q],

−q if y < −q

(2.3.6)

the regularized versions of the operators E andA are defined by

〈Eqv, w〉 :=
m∑

ν=1

∫
Ω
uν ePqvν wν dx ∀w ∈ X,

〈Aqv, w〉 :=
m∑

ν=1

∫
Ω

(
D(·, ePqv)uν∇ evν

)
· ∇wν − λq(v)Rν(·, ev) · w dx ∀w ∈ X,

where λq ∈ C(Rm; [0, 1]) is a fixed function with the following property

λq(ξ) =

0, if |ξ|∞ ≥ q,

1, if |ξ|∞ ≤ q/2,
, |ξ|∞ := max

ν=1,...,m
|ξν |.

The regularized problem of (2.2.P) reads as follows: Find a tuple (u, v) such that

u′(t) +Aqv(t) = 0, u(t) = Eqv(t) f.a.a. t ∈ R+, u(0) = U,

u ∈ H1
loc(R+, X

∗) and v ∈ L2
loc(R+, X) ∩ L∞

loc(R+, L
∞(Ω,Rm)).

}
(2.3.Pq)

The solvability of (2.3.Pq) can be proven by the help of Rothe method (discretizing (2.3.Pq) in time)
and a result of operators of variational type in the sense of Lions [91, Ch. 2., Sec. 2.5], see [46, 62].
The local existence result and a priori estimates which do not depend on the regularization level
imply global existence. Then a solution to (2.3.Pq) is a solution to (2.2.P) if the regularization level
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2.3 Summary of known results

is large enough. Under Assumption A2 the uniform a priori estimates are obtained by means of a
technique introduced by [104]. Testing problem (2.3.Pq) with test functions

p et(zp−1
1 , . . . , zp−1

m ), zν = (aν − κ)+, κ = max
ν=1,...,m

‖Uν/uν‖L∞

for p = 2k, k ≥ 1, one can obtain bounds in ‖u‖
L∞(R+,L2k (Ω,Rm))

which are independent of the
regularization level. Uniform lower bounds on the densities or the negative part of the chemical
potentials can be proven by testing (2.3.Pq) with test functions

−p et(zp−1
1 /a1, . . . , z

p−1
m /am), zν = (vν + κ)−, κ = max

ν=1,...,m

∥∥(lnUν/uν)
−∥∥

L∞

and using the exponential decay of the free energy obtained under Assumption A3. For the very
technical details we refer to [62, 63] and in the discrete setting to Section 3.8 and Section 3.10.

Uniqueness of solutions to problem (2.2.P) can be proven by standard arguments, if the diffusion
coefficients do only depend on the space variable and not on the state variables, see [62, 63]. In cases
where the diffusion coefficients depend on the state variable we refer to [46]. In this work the flux
term has the form jν = −dν(·, vν ,∇vν), in order to include other physical effects, e.g., an electric
or magnetic field. Uniqueness is then proven under the assumption that the diffusion function dν
can be written in two parts dν(·, y, w) = ey γν(·, w), where γν is a strongly monotone, Lipschitz
continuous Carathéodory function. The proof exploits a special distance % between two solutions
(u1, v1) and (u2, v2) of (2.2.P), i.e.,

%(u1(t), u2(t)) := F (u1(t)) + F (u2(t))− 2F

(
u1(t) + u2(t)

2

)
(2.3.7)

and shows that
∥∥u1 − u2

∥∥2
L2(S,Y )

can be estimated by (2.3.7) and this distance can be bounded from

above by
∥∥u1 − u2

∥∥2
L2(S,Y )

. Hence, from Gronwall’s lemma the result follows.

Remark 2.3.1.

• For other results about global existence of global weak and classic solution of reaction-diffusion
systems in the setting of linear diffusion or reactions with at most quadratic source terms in higher
space dimensions we refer to [111, 113] and the references therein. The starting point is an a priori
estimate in L1 obtained by the invariance property (2.3.4) of the solution. Using this estimate
one applies bootstrapping arguments by duality to get estimates in higherLp (with p > 1) spaces.
This approach strongly relies on the smoothness and linearity of the diffusion operators. Such
assumptions exclude practically relevant geometries and heterogeneous materials.

• In special cases, using the concrete structure of the underlying reaction system also some systems
not fulfilling the general formulated condition of source terms of maximal order 2 can be handled,
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2 The continuous problem

e.g., under the ’intermediate sum condition’ (see [103]), where a priori estimates for positive linear
combinations of densities are obtained or in the case of cluster reactions of higher order (see [53,
65]) where in the proof of the a priori estimates simultaneously different powers of the chemical
activities of the different species are used as test functions.

• For special systems the explicit rates λ of the exponential decay toward equilibrium is exploited
in [23]. The papers [44, 46, 61–63] treat also electrically charged species, such that the flux terms
additionally contain drift contributions and a Poisson equation for the self consistent calculation
of the electrostatic potential has to be added. The papers [46, 47, 61] additionally deal with more
general state equations than (1.4.3).

• The problem of initial values with zero densities is intensively discussed in [53]. Moreover, the
work considered couplings with ordinary differential reaction equations and reactions living only
on the boundary of Ω.
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3

The discretized problem

AbstractThe numerical simulation of reaction-diffusion systems is a very difficult task. The nonlin-
ear nature and the different timescales lead to phenomena like reaction fronts, strong gradients and
concentrations which are nearly zero. Taking heterogeneous materials into account increases these
difficulties. An essential feature of the continuous problem is the fact that it allows a thermodynam-
ical equilibrium, where all driving forces vanish. As a consequence, a stable discretization of the
equations is necessary, which preserves the dissipative structure and the properties of the continuous
problem (2.2.P) independent of the mesh and the time step. At the end of the chapter, we provide
the same results which are stated in Section 2.3 for the continuous problem also for the discretized
problem. All restrictions (reaction order), which are known for the continuous problem are present
on the discrete level (except the time step limitation in the uniqueness result).

3.1 Introduction

In this chapter, we study the properties of a finite volume discretization on Voronoi meshes for the
continuous problems.

We first introduce an implicit Euler in time and Voronoi finite volume in space discretization
and define the discrete version of the continuous problem (2.2.P) in Section 3.2 and 3.3. Then, we
present the first results concerning the invariance property of the solutions (2.3.4) and the asymptotic
behavior of solutions, see [56].

In the analysis of finite volume discretizations it is common to adapt techniques which are well
suited for investigating the continuous problem. In Section 3.4, we explore some invariance property
of the solutions reflecting the stoichiometric subspace of the set of all considered reactions. In
contrast to the continuous setting the local existence in Section 3.5 rest on the conservation of the
number of atoms. For elementary reversible chemical reactions this property is naturally fulfilled.
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3 The discretized problem

Moreover the invariance property plays an important role in the proof of the existence of a ther-
modynamic equilibrium in Section 3.7, and also in the study of the long time behavior of the solution
in Section 3.9. In addition in Section 3.6, we show that physically motivated arguments lead to a
priori estimates which are important in the proof of global upper and lower bounds in the Sections
3.8 and 3.10.

In Section 3.8, we present a Moser iteration for the discrete problem in order to achieve (inde-
pendent of the mesh quality and the time step) uniform global upper bounds. For this purpose we
establish a discrete version of a Gagliardo-Nirenberg inequality in Appendix A.2. The proof of the
lower bounds in Section 3.10 rests heavily on results of the thermodynamic equilibrium and the
asymptotic behavior as time goes to infinity in Section 3.9. The lower bounds for the concentrations
are obtained by the Moser iteration technique and are independent of the mesh quality and the time
step. In Section 3.11 we provide a uniqueness result in the case of only spatially dependent diffusion
coefficients and a restriction on the time step. Starting from the results on the global stability of the
discretization, we prove strong convergence of the discretized nonlinear evolution problem (3.3.PD)
to a weak solution of the continuous problem (2.2.P).

3.2 Voronoi finite volume discretization

In the following, we work with boundary conforming Delaunay-Voronoi meshes (see [122]), which
represent one class of admissible finite volume meshes [32]. The Voronoi meshM is derived as dual
grid of the boundary conforming Delaunay triangulation T .

Our notation is basically taken from [56] and visualized in Figure 3.1.

K

LxK

xL

xM

d�

m�

Figure 3.1: Notation of Voronoi meshesM = (P,V, E). The lines represent the edges of the triangles of the
Delaunay mesh and the gray areas represents the Voronoi control volumes

Let Ω be an open, bounded, polygonal subset of R2. A Voronoi mesh is defined as tripleM =

(P,V, E). Here,P denotes a family of grid points in Ω̄, V denotes a family ofVoronoi control volumes
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3.2 Voronoi finite volume discretization

and E denotes a family of faces. A face is a interval of R. The number of grid points is denoted by
M = #P .

The corresponding control volumeK of each grid point xK ∈ P is defined by

K = {x ∈ Ω : |x− xK | < |x− xL| ∀xL ∈ P, xL 6= xK} .

The set of all neighboring control volumes ofK is denoted by NV(K). The Lebesgue measure of
each control volumeK is denoted by |K| and the mesh size ofM by

size(M) = sup
K∈V

diam(K).

For two different K, L ∈ V the one-dimensional Lebesgue measure of K ∩ L is either zero or
K ∩ L = σ for one σ ∈ E . Here the symbol σ = K|L denotes the one-dimensional face between
the control volumesK and L andmσ is its Lebesgue measure.

We introduce the subset Eint ⊂ E containing all interior faces. Further, we introduce for all
K ∈ V the subset EK ⊂ Eint, such that ∀σ ∈ EK ∃L ∈ NV(K) : σ = L ∩K .

The Euclidian distance between two neighboring grid points xK , xL ∈ P over the face σ =

K|L ∈ Eint is denoted by dσ .

Remark 3.2.1 (see Definition 1. and Remark 1. [48]). LetM = (P,V, E) be a Voronoi mesh. The
dual (P, T ) of a Voronoi mesh consists of a family P of grid points in Ω̄ and a family T of triangles
T = (xK , xL, xM ) ∈ P3 and is calledDelaunay triangulation ifΩ = ∪T∈T T and iff the circumcircle
of each triangle does not contain any other vertices xN ∈ P with xN ∈ T in its interior. If in addition
each triangle T ∈ Ω has its circumcenter in Ω, then a Delaunay triangulation is called boundary
conforming Delaunay.

A Voronoi mesh is usually constructed from a Delaunay triangulation by the intersection of
half spaces in R2 and hence each Voronoi cell is convex. If the domain consists of more than one
subdomain (material) and the interfaces are aligned to the triangle edges of the Delaunay mesh, then
all subdomain triangulations have to be boundary conforming, i.e. the circumcenter of a triangle
consisting to one subdomain (material) have to be inside the subdomain, see [48].

Definition 3.2.2 (Discrete Norms, see [56]).
Let Ω be an open bounded, polygonal subset of R2 andM = (P,V, E) a Voronoi mesh.

• The symbolXV(M) denotes the set of all piecewise constant functions from Ω to R which are
constant on every Voronoi control volumeK ∈ V . The constant value of wh ∈ XV(M) on the
control volumeK ∈ V is denoted by wK .
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3 The discretized problem

• Let p ≥ 1. The discrete Lp- norm of wh ∈ XV(M) is defined by

‖wh‖Lp =

(∑
K∈V

|K||wK |p
)1/p

.

• The discreteH1-seminorm of wh ∈ XV(M) is defined by

|wh|2H1,M =
∑

σ=K|L∈Eint

Tσ|wK − wL|2, Tσ :=
mσ

dσ
.

HerewK andwL are the constant values ofwh in the control volumesK and L. The term Tσ is
the so called transmissibility across the face σ = K|L ∈ Eint. The discreteH1- norm is given
by ‖wh‖2H1,M = |wh|2H1,M + ‖wh‖2L2 .

We prescribe the approximation of a function f : Ω× Rm → R by

fK(·) := 1

|K|

∫
K
f(x, ·) dx,

whereK ∈ V . In this context we introduce the approximation of the diffusion coefficients and the
reaction terms on a Voronoi cellK ∈ V by

DνK(·) = 1

|K|

∫
K
Dν(x, ·) dx, RνK(·) = 1

|K|

∫
K
Rν(x, ·) dx, (3.2.1)

and analogously the approximation of k(α,β).

The corresponding piecewise constant function can be estimated from above and below by the
upper and lower bound of the continuous function. We define the reference density uνK and the
density uνK being constant on a control volumeK ∈ V , and the mass u(K)

ν of the ν- th species in
K ∈ V by

uνK =
1

|K|

∫
K
uν(x) dx, uνK = uνK evνK and u(K)

ν = |K|uνK .

For every species Xν , ν = 1, . . . ,m, we introduce the discrete initial values by

U (K)
ν :=

∫
K
Uν(x) dx, K ∈ V.
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3.3 Time discretization

The space-discrete version of the continuous problem (2.2.P) is formally obtained by testing with
the characteristic function ofK . Using Gauss theorem, we derive the approximated flux term∫

K
∇ · jν dx =

∫
∂K

jν · nKdΓ ≈
∑

σ=K|L∈EK

−TσY σ
ν Z(vνL, vνK)(vνL − vνK),

where

Z(x, y) =

 ex − ey
x−y , for x 6= y,

ex, for x = y
, x, y ∈ R, (3.2.2)

represents the logarithmic mean value of ex in the interval [x, y]. In the following we write Zσ
ν =

Z(vνL, vνK) for σ = K|L ∈ Eint andDνK = DνK(ev1K , . . . , evmK ). With this definition of Zσ
ν

it is possible to switch between a gradient in potentials and activities, i.e., the discrete version of
∇aν = aν∇vν holds. The symbol Y σ

ν defines some averaging of Dνuν over the edge σ = K|L,
which is symmetric inK and L. Possible averagings are, e.g.,

Y σ
ν =

DνKuνK +DνLuνL
2

, Y σ
ν =

DνK +DνL

2

uνK + uνL
2

, σ = K|L.

For another averaging which is exact along an aligned face we refer to [31]. In the sequel all results
are independent of the particular chosen Y σ

ν .

Following [54] we use the notation

uν = (u(K)
ν )K∈V , u = (u1, . . . , um), uK = (uνK)mν=1,

vν = (vνK)K∈V , v = (v1, . . . , vm), vK = (vνK)mν=1,

Uν = (U (K)
ν )K∈V , U = (U1, . . . , Um),

aK = (evνK )mν=1, aν = (evνK )K∈V , ν = 1, . . . ,m.

Furthermore, we define the scalar products

〈uν ,vν〉RM =
∑
K∈V

u(K)
ν vνK , 〈u,v〉RMm =

m∑
ν=1

〈uν ,vν〉RM .

3.3 Time discretization

Since we deal with an evolution problem, we need a discretization of the time interval. By doing this,
we can formulate a fully discretized version of the continuous problem (2.2.P). We use the implicit
Euler method, which respects the dissipative structure of parabolic equations [28]. It is well known,
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3 The discretized problem

that the implicit Euler method is A-stable1 therefore there exist no limitations on the time step size
to ensure numerical stability.

Definition 3.3.1 (Time discretization).
A time discretization of R+ is defined as a strictly increasing sequence of real numbers (tn)n∈N ⊂ R+

with t0 = 0 and tn → ∞ for n→ ∞. The time step is defined by

t
(n)
δ = tn − tn−1 <∞, for n ∈ N.

A discretization of the whole domainQ = R+ × Ω is defined by the tuple D = (M, (tn)n∈N).
To indicate the relation to the continuous problem (2.2.P) we give a variational form of the discrete
problem. We introduce the operator Ê : RMm → RMm

+ by

Êv =
(
(ūνK evνK |K|)ν=1,...,m

)
K∈V

,

which maps in every control volume the chemical potential of the species to its mass. Furthermore
we define Â : RMm → RMm by

Âv =

( ∑
σ=K|L∈EK

−TσY σ
ν Z

σ
ν (vνL − vνK)− |K|RνK(evK )

)
K∈V,

ν=1,...,m

. (3.3.3)

Using these definitions we can state the discrete version of (2.2.P) by: Find a pair (u,v) such that

u(tn)−u(tn−1)

t
(n)
δ

+ Âv(tn) = 0, u(tn) = Êv(tn), n ≥ 1

u(0) = U .

 (3.3.PD)

As long as the meaning is clear, we will neglect the current time step tn and shortly write uνK
instead of uνK(tn). Using this notation, for every time step, in every control volumeK ∈ V and
ν = 1, . . . ,m we have to solve the following fully implicit system of nonlinear equations

|K|uνK(tn)− uνK(tn−1)

t
(n)
δ

=
∑

σ=K|L∈EK

−TσY σ
ν Z

σ
ν (vνL − vνK)− |K|RνK(evK )

1 A numerical method for the solution of an initial value problem is called A-stable iff the method applied to the
Dahlquist’s test equation ẏ = λy, y(0) = 1 creates for all λ ∈ C with negative real part a monotone decreasing
sequence of approximated solutions independent of the time step, i.e., the stability region of the method covers the
complete left half-plane, see [24, 71, 124].
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3.4 Invariants of the system

with uνK(tn) = uνK evνK . The discrete variational form of Â is given by

〈
Âv,w

〉
RMm

=

m∑
ν=1

∑
σ=K|L∈Eint

TσY
σ
ν Z

σ
ν (vνL − vνK)(wνL − wνK)

−
m∑

ν=1

∑
K∈V

|K|RνK(evK )wνK ∀v, w ∈ RMm.

(3.3.4)

For n ∈ N we associate the discrete (vectorial) solutions (u(tn),v(tn)) to (3.3.PD) to piecewise
constant functions (uh(tn), vh(tn)) and call them also solutions to (3.3.PD).

3.4 Invariants of the system

In analogy to the continuous setting we define the subspaces

Û =
{
u ∈ RMm : (〈uν ,1〉RM )mν=1 ∈ S

}
(3.4.5)

and
Û⊥ =

{
v ∈ RMm : 〈u,v〉RMm = 0 ∀u ∈ Û

}
. (3.4.6)

An equivalent characterization of Û⊥ is given by

Û⊥ =
{
v ∈ RMm : vνK = v̂ν ∀K ∈ V, ν = 1, . . . ,m, (v̂ν)

m
ν=1 ∈ S⊥

}
, (3.4.7)

i.e., Û⊥ consists of vectors that are constant on all control volumes for every species. Every element
of S⊥ generates an invariant of the reaction-diffusion system. From the definition of Â it follows
immediately that 〈

Âv,w⊥
〉
RMm

= 0 ∀w⊥ ∈ Û⊥ and v ∈ RMm. (3.4.8)

Lemma 3.4.1 (Invariance property, see [56, Lemma 3.2]).
We assume A1. Any solution (u,v) of the discrete Problem (3.3.PD) fulfills

u(tn) ∈ Û +U ∀n ≥ 1.
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3 The discretized problem

Proof. Let (u,v) be a solution of (3.3.PD). Testing (3.3.PD) with an arbitraryw⊥ ∈ Û⊥ and using
(3.4.8) we find

〈
u(tN )−U ,w⊥

〉
RMm

=

N∑
n=1

〈
u(tn)− u(tn−1),w

⊥
〉
RMm

= −
N∑

n=1

t
(n)
δ

〈
Âv,w⊥

〉
RMm

= 0.

Since (3.4.8) holds the desired result follows.

3.5 Local existence

Next we define the operator B̂ : RMm → RMm, by

B̂u =

 ∑
σ=K|L∈EK

−TσY σ
ν

(
uνL
uνL

− uνK
uνK

)
− |K|RνK

(
uνK
uνK

)
K∈V,ν=1,...,m

,

for all u ∈ RMm. The solvability of (3.3.PD) can be proved by the investigation of the solvability of
the following problem: Find a positive u ∈ RMm such that

u(tn)−u(tn−1)

t
(n)
δ

+ B̂u(tn) = 0, n ≥ 1,

u(t0) = U

 . (3.5.P
D̃
)

The relation between Â and B̂ is given by

B̂u = Â(ln(u/u)) ∀0 < u ∈ RMm. (3.5.9)

In particular, it follows from (3.4.8) that〈
B̂u,w⊥

〉
RMm

= 0 ∀w⊥ ∈ Û⊥ and u ∈ RMm. (3.5.10)

Existence of local solutions is proven under additional assumptions with respect to the reaction
terms. We assume that:

Assumption A4. We assume the quasi positivity of the reaction terms, i.e., for all positive a ∈ Rm

RνK(·, (a1, . . . , aν−1, 0, aν+1, . . . , am)) ≥ 0 ∀ν = 1, . . . ,m andK ∈ V (3.5.11)
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3.5 Local existence

holds, see [12, 111]. Furthermore we assume conservation of the number of atoms

∃ s⊥ ∈ S⊥ : s⊥ > 0, (3.5.12)

see [51, (Th2)].

From the quasi positivity we deduce if uνK = 0 for oneK ∈ V and one ν = 1, . . . ,m that

(B̂u)νK =
∑

σ=K|L∈EK

−TσY σ
ν

(
uνL
uνL

− 0

)

− |K|RνK

(
·,
(
u1K
u1K

, . . . ,
uν−1K

uν−1K
, 0,

uν+1K

uν+1K
, . . . ,

umK

umK

))
≤ 0.

(3.5.13)

Therefore from (3.5.P
D̃
) we find uνK(tn)− uνK(tn−1) ≥ 0, which means that zero concentrations

are increased by the system to positive concentrations.

u2K

u1K

C

ũK
ũK − τ(B̂u)K

Figure 3.2: Illustration of the definition (3.5.15) and θ(u, s) for the reaction X1 
 X2 in a cellK ∈ V . If we
are on the boundary one of the components U1K or U2K must be zero

Remark 3.5.1. The quasi positivity assumption of the reaction terms is naturally fulfilled by reversible
mass action type reactions as defined in (1.4.6). SinceRν is symmetric inα and β, we assume without
loss of generality αν ≥ βν ≥ 0. Then βν − αν ≤ 0 and

R(α,β)(a) = k(α,β)

 m∏
j=1

a
αj

j −
m∏
j=1

a
βj

j

 ≤ 0,

holds if aν = 0 and αν ≥ βν > 0. HenceRν(a) ≥ 0 holds since the reaction rate coefficients k(α,β)

are nonnegative.

Lemma 3.5.2. We assume A1 and A4. Let ũ ∈ Û +U with ũ > 0. Then for all s > 0, there exists
an u ∈ RMm such that

u = ũ− sB̂u, (3.5.14)
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3 The discretized problem

and u > 0. Furthermore u ∈ Û +U .

Proof. In the following, we use Brouwer’s fixed point theorem to deduce the existence of a solution.
We define the set of all densities which fulfill the same invariants as the initial concentrationU

C :=
{
u ∈ RMm : u ≥ 0 ∧ u ∈ Û +U

}
, (3.5.15)

see Figure 3.2. The main point of the proof is to show that the fixed point is positive. Since C is the
intersection of an affine space withMm half spaces of nonnegative densities, the set C is convex.
By construction, C is also a closed set. Because of the nonnegativity of the elements of C and the
fulfillment of the invariants, it follows the boundedness of C. Also by construction, the boundary of
C possesses at least one component that is zero. From (3.5.12), we deduce the existence of a vector
s⊥ ∈ S⊥, with only positive entries. As a consequence of the definition of Û⊥, we conclude the
existence ofw⊥ ∈ Û⊥ with w⊥

νK = s⊥ν for allK ∈ V , ν = 1, . . . ,m. Since ũ ∈ Û +U we obtain
from (3.5.10) that

〈
u−U ,w⊥〉

RMm = 0 for all u ∈ C and particular with (3.5.10) that〈
ũ− τB̂u,w⊥

〉
RMm

=
〈
U ,w⊥

〉
RMm

∀w⊥ ∈ Û⊥.

We define θ : C × [0,∞) → R by

θ(u, s) := sup
τ∈[0,s]

{
τ : ũ− τB̂u ∈ C

}
.

Since ũ ∈ C holds, and C is bounded, the function θ is well defined. Using the convexity of C, we
deduce the continuity of θ. Hence, the function ϕs : C → C with

ϕs(u) = ũ− θ(u, s)B̂u (3.5.16)

is continuous for every s > 0, and the function θ(u, s) ensures that all components of ϕs(u) are
nonnegative, i.e., ϕs(u) ∈ C holds. Using Brouwer’s fixed point theorem, we conclude the existence
of a nonnegative fixed point u of ϕs for all s > 0. Assuming one or more components of u are zero,
then by (3.5.13) we find that these components of −θ(u, s)B̂u are nonnegative, which leads to a
contradiction together with ũ > 0. Therefore, the fixed point is not only nonnegative, but positive.
But then, the fixed point is not on the boundary of C and from that it follows that θ(u, s) = smust
hold. This means that the fixed point of (3.5.16) is also fixed point of (3.5.14).

By induction we conclude:

Theorem 3.5.3. We assume A1 and A4. LetU = u(t0) > 0. Then for all tn > 0 there exists at least
one solution u(tn) > 0 with u(tn) ∈ Û +U of the nonlinear equation (3.5.P

D̃
).
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3.6 Physically motivated estimates

This implies:

Theorem 3.5.4 (Local existence).
Let the Assumptions A1 and A4 be fulfilled. Then for every initial valueU = u(t0) > 0, there exists
a solution (u(tn),v(tn)), n > 0, of the discrete Problem (3.3.PD).

Proof. FromTheorem (3.5.3) we conclude the existence of a 0 < u(tn) ∈ RMm which is a solution
of (3.5.P

D̃
). Sinceu(tn) > 0 and v(tn) = ln(u(tn)/u) this delivers by (3.5.9) a solution to (3.3.PD),

Remark 3.5.5. Local existence results for reaction-diffusion systems not fulfilling (3.5.11) and (3.5.12)
can be proven by investigating a ”regularized” problem which arises from (3.3.PD) by cutting off the
nonlinearities in a suitable way at a certain level and using the theory of pseudomonotone operators,
see [46, 63, 128]. Similarly, in the proof of Lemma 3.5.2 we cut off the time step s by using the function
θ(·, ·).

3.6 Physically motivated estimates

We show that physical motivated arguments provide a priori estimates for solutions to (3.3.PD). In
analogy to the continuous problem the (discrete) free energy is a Lyapunov function of the discrete
problem and the dissipation of (3.3.PD) is introduced. The considered process is isolated therefore
the decay of the free energy along trajectories is expected. The dissipative structure is the starting
point in establishing a priori estimates in L1 which provide the first step in the proof of global upper
bounds on the solutions to (3.3.PD) in Section 3.8.

In the literature the term free energy is often denoted as entropy [22, 23]. All results are based on
the articles [56, 57]. In Section A.4 we rephrase basic definitions and properties from convex analysis
which we used in this part. We also refer to the classical textbooks [27, 77, 115, 128] for basic notation
and results.

First we define the discrete potential Φ̂ : RMm → R by

Φ̂(v) =
m∑

ν=1

∑
K∈V

ūνK(evνK −1)|K|. (3.6.17)

From [56] we rephrase that Φ̂ is proper, continuous, and strictly convex, hence subdifferentiable and
{Êv} = ∂Φ̂(v) holds.

The conjugate functional of Φ̂ is defined by F̂ : RMm → R,

F̂ (u) := sup
w∈RMm

{
〈u,w〉RMm − Φ̂(w)

}
. (3.6.18)
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3 The discretized problem

It is proper, lower semicontinuous, and convex (in u) and u = Êv ∈ ∂Φ̂(v) holds iff v ∈ ∂F̂ (u).
Together with u = Êv the value of F̂ at u can be explicitly calculated by

F̂ (u) =
〈
Êv,v

〉
RMm

− Φ̂(v) =

m∑
ν=1

∑
K∈V

(uνK(vνK − 1) + ūνK) |K|.

For a given argument u ∈ RMm the value of F̂ (u) can be interpreted as the free energy of the state
u. Using the elementary inequality ln s ≥ 1− 1/s, s > 0 we observe the nonnegativity of the free
energy

F̂ (u) =
m∑

ν=1

∑
K∈V

(
uνK

(
ln
uνK
ūνK

− 1

)
+ ūνK

)
|K| ≥ 0. (3.6.19)

Finally the discrete dissipation as functional D̂ : RMm → R is introduced by

D̂(v) :=
〈
Âv,v

〉
RMm

, v ∈ RMm. (3.6.20)

As a consequence of (3.3.4), the definition of the reaction terms (1.4.6), the nonnegativity of Y σ
ν and

Zσ (see also Assumption A1) we observe by (ex− ey)(x− y) ≥ 0 for x, y ∈ R the nonnegativity
of the dissipation, i.e., for all v ∈ RMm holds

D̂(v) =
〈
Âv,v

〉
RMm

=

m∑
ν=1

∑
σ=K|L∈Eint

TσY
σ
ν Z

σ(vνL − vνK)2

+
∑
K∈V

|K|
∑

(α,β)∈R

k(α,β)K

(
eα·vK − eβ·vK

)
(α · vK − β · vK) ≥ 0,

(3.6.21)

see [56, 57]. Together with the nonnegativity of the dissipation the following result can be stated:

Lemma 3.6.1 (Monotonicity of the free energy, see [56, Lemma 3.1]).
We assume A1. Let D = (M, (tn)n∈N) be a discretization of Ω × R+ and (u,v) be a solution to
(3.3.PD). Then

F̂ (u(tn2)) +

n2∑
n=n1+1

t
(n)
δ D̂(v(tn)) ≤ F̂ (u(tn1)) ≤ F̂ (U) for 0 ≤ tn1 < tn2

holds, i.e., the free energy decays monotonously along all solutions to (3.3.PD). Moreover, it holds

m∑
ν=1

‖uν,h(tn)‖L1 ≤ 2

(
F̂ (U) +

m∑
ν=1

‖uν,h‖L1

)
∀n ≥ 1.

38



3.6 Physically motivated estimates

Proof. For u = Êv with v ∈ RMm we have v ∈ ∂F̂ (u) and u ∈ ∂Φ̂(v) hold. Therefore, using
the subdifferential property of F̂ it holds

F̂ (w)− F̂ (u) ≥
〈
∂F̂ (u),w − u

〉
RMm

∀w ∈ RMm, (3.6.22)

see [54, Eq. (3.9)]. By (3.3.PD) and the nonnegativity of the dissipation (3.6.21) we obtain

F̂ (u(tn2))− F̂ (u(tn1)) =

n2∑
n=n1+1

F̂ (u(tn))− F̂ (u(tn−1))

≤
n2∑

n=n1+1

〈u(tn)− u(tn−1),v(tn)〉RMm

= −
n2∑

n=n1+1

t
(n)
δ

〈
Âv(tn),v(tn)

〉
RMm

≤ 0,

which means that the free energy decays monotonously along trajectories. By using the elementary
inequalities

(x/2− y) ≤ (
√
x−√

y)2 ≤ x ln(x/y)− x+ y ∀x ≥ 0, y > 0, (3.6.23)

(The value of x ln(x/y) at x = 0 is understood as limx→0 x ln(x/y) = 0) we get

F̂ (U) ≥ F̂ (u(tn)) =

m∑
ν=1

∑
K∈V

|K|
{
uνK(tn)

(
ln
uνK(tn)

uνK
− 1

)
+ uνK

}

≥
m∑

ν=1

{
1

2
‖uν,h(tn)‖L1 − ‖uν,h‖L1

}
.

Remark 3.6.2. Conservation of atoms (3.5.12) implies another possibility to obtain a priori bounds
in L1 without using the free energy of the system. From (3.5.12), we deduce the existence of a vector
s⊥ ∈ S⊥, with only positive entries. From the definition (3.4.7) of Û⊥ we conclude the existence of
w⊥ ∈ Û⊥ with w⊥

νK = s⊥ν > 0 for allK ∈ V and ν = 1, . . . ,m. By (3.4.8) and (3.3.PD) we find

0 = −
N∑

n=1

t
(n)
δ

〈
Âv,w⊥

〉
RMm

=

N∑
n=1

〈
u(tn)− u(tn−1),w

⊥
〉
RMm

=
m∑

ν=1

s⊥ν
∑
K∈V

|K| (uνK(tN )− UνK) =
m∑

ν=1

s⊥ν
(
‖uν,h(tN )‖L1 − ‖Uν,h‖L1

)
.
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3 The discretized problem

For the example in Subsection 1.4.1 conservation of atoms hold with s⊥ = (1, 1, 2, 1). We refer to [111]
for more examples of systems which fulfill the property (3.5.12) and for generalizations.

3.7 Thermodynamic equilibrium

As a consequence of Lemma 3.4.1 and Lemma 3.6.1 we want to answer the question if there exists a
unique (thermodynamic) equilibrium solution (u,v) to the discrete Problem (3.3.PD) which fulfills
the invariance property of Lemma 3.4.1. This is equivalent to solving the problem

Âv = 0, u = Êv, u ∈ Û +U , v ∈ RMm. (3.7.SD)

Remark 3.7.1. Theproofs of the following results are a special case of [54], if no anisotropies and charged
species are taken into account, and [56] if the coefficients are not depending on the state variable. But
due Assumption A1, our diffusion coefficients, reaction rate coefficients, and reference densities are
L∞(Ω) functions and may depend on the state variable. Therefore for the sake of completeness we
modify the proofs here.

Lemma 3.7.2 (see [54, Lemma 3.3]). We assume A1. Let Φ̂0 : RMm → R be the functional, defined
by

Φ̂0(v) = Φ̂(v) + IÛ⊥(v)− 〈U ,v〉RMm , v ∈ RMm,

where IÛ⊥(v) is the characteristic function of the set Û⊥, i.e.,

IÛ⊥(v) =

0 for v ∈ Û⊥,

+∞ for v /∈ Û⊥.

If (u,v) is a solution to (3.7.SD) then v is the unique minimizer of Φ̂0. On the other hand if v is a
minimizer of Φ̂0 then (Êv,v) is a solution to (3.7.SD).

Proof. Following [54], the functional Φ̂0 is proper, lower semicontinuous and strictly convex and by
the Moreau-Rockafeller theorem (see [27])

∂Φ̂0(v) = Êv + ∂IÛ⊥(v)−U , v ∈ RMm.

Let (u,v) be a solution to (3.7.SD) then D̂(v) = 0 hence v ∈ Û⊥. Therefore Φ̂0(v) < ∞ and
∂Φ̂0(v) = Û . Additionally u = Êv and ũ = u−U ∈ Û holds and 0 = u− ũ−U ∈ ∂Φ̂0(v)

ensures Φ̂0(v) = minw∈RMm Φ̂0(w).
Now assume thatv is aminimizer of Φ̂0 thenv ∈ Û⊥, 0 ∈ ∂Φ̂0 and there exists a ũ ∈ ∂IÛ⊥(v) =

Û such that Êv − U = ũ ∈ Û . By v ∈ Û⊥ (see (3.4.7)) we conclude D̂(v) = 0 and Âv = 0.
Hence (Êv,v) is a solution to (3.7.SD).
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3.7 Thermodynamic equilibrium

Theorem 3.7.3 (Thermodynamic equilibrium, see [56, Theorem 3.2]).
We assume A1, A3 and A4. Then there exists a unique thermodynamic equilibrium solution (u∗,v∗)

to the discrete Problem (3.3.PD). The solution satisfies v∗ ∈ Û⊥ and u∗ > 0.

Proof. In this proof the alphabet c denotes (possibly different) constants and ‖·‖2 the 2-norm of
RMm. According to Lemma 3.7.2 it suffices to show that Φ̂0(v) → ∞ if ‖v‖2 → ∞. Suppose that
this growth condition is violated. Then there exist aK > 0 and vn ∈ Û⊥ such that ‖vn‖2 → ∞
and

Φ̂0(vn) = Φ̂(vn)− 〈U ,vn〉RMm < K.

By the definition of Φ̂ (see (3.6.17)) we obtain

c

m∑
ν=1

∑
K∈V

|K|
∣∣(vnνK)+

∣∣2 − 〈U ,v〉RMm ≤ K + c. (3.7.24)

Letwn := vn/‖vn‖2, thenwn → w̃ ∈ RMm at least for a subsequence and

c
m∑

ν=1

∑
K∈V

|K|
∣∣(wnνK)+

∣∣2 ≤ K + c

‖vn‖22
+

‖U‖2
‖vn‖2

.

This leads to (wnνK)+ → 0 for n → ∞ and wnνK = (wnνK)+ − (wnνK)− → w̃nνK gives
−w̃nνK ≥ 0, K ∈ V , ν = 1, . . . ,m. Since wn ∈ Û⊥ and Û⊥ is closed it follows that w̃ ∈ Û⊥.
Therefore w̃νK = s⊥ν with s⊥ = (s⊥ν )

m
ν=1 ∈ S⊥ for allK ∈ V and ν = 1, . . . ,m. From ‖wn‖ = 1

we conclude s⊥ 6= 0 and by exploiting (3.7.24) again we obtain

0 = lim
n→∞

K + c

‖vn‖22
≥ − lim

n→∞
〈U ,wn〉RMm = −〈U , w̃〉RMm

= −
m∑

ν=1

∑
K∈V

|K|UνKs
⊥
ν = −

m∑
ν=1

s⊥ν ‖Uν‖L1(Ω)

which gives a contradiction to Assumption A4 together withU > 0.

The connection between the discrete and continuous thermodynamic equilibrium is given by the
following corollary.

Corollary 3.7.4 (see [56, Corollary 3.3]). We assumeA1,A3 andA4. Let (u∗,v∗) be the unique ther-
modynamic equilibrium solution to (3.7.SD). The corresponding piecewise constant functions (u∗h, v

∗
h)

are related to the continuous thermodynamic equilibrium solution (u∗, v∗) of Problem (2.3.S) by

u∗ν,h =
uν,h
uν

u∗ν , v
∗
ν,h = v∗ν , a

∗
ν,h = a∗ν , ν = 1, . . . ,m.
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3 The discretized problem

Proof. In the case of diffusion coefficients only depending on the space variable and not on the state
variables the result was proven in [56, Corollary 3.3].

If (u∗,v∗) solution to (3.7.SD) then D̂(v∗) = 0 and therefore v∗ν,K = wν with (wν)
m
ν=1 ∈ S⊥

for allK ∈ V . Hence aν,h(x) = ewν = ev
∗
ν,K = aνK for all x ∈ K ∈ V . Moreover

a∗h ∈ Rm
+ , (a

∗
h)

α = (a∗h)
β ∀(α,β) ∈ R.

Using u∗ = Êv∗ ∈ Û +U we find u∗h − U ∈ U and for all s⊥ ∈ S⊥ the identity

0 =
m∑

ν=1

s⊥ν

∫
Ω
u∗ν,h − Uν dx =

m∑
ν=1

s⊥ν

∫
Ω
a∗ν,huν,h − Uν dx =

m∑
ν=1

s⊥ν

∫
Ω
a∗ν,huν − Uν dx

holds. Hence a∗h ∈ A (see (2.3.5)) and by Assumption A3A = {a∗} which ensures that a∗h = a∗,
v∗h = v∗, and u∗ν,h =

uν,h

uν
u∗ν for all ν = 1, . . . ,m.

Remark 3.7.5. It is essential to use a dissipative discretization scheme. A non-dissipative scheme may
lead to an increase of the free energy. As a consequence, the computed equilibrium solution of the
discrete problem could be far apart from the exact minimum of the free energy. A violation of the
invariance property of Lemma 3.4.1 behaves in the same way, see Subsection 5.2.

3.8 Global upper bounds

In this section we want to prove upper bounds for the densities that are uniform in time and space.
We start with a simple example:

Example 3.8.1. Conservation of atoms (3.5.12), implies the existence of a vector s⊥ ∈ S⊥, and from
(3.3.PD) we deduce

m∑
ν=1

s⊥ν
u
(K)
ν (tn)− u

(K)
ν (tn−1)

t
(n)
δ

−
m∑

ν=1

s⊥ν
∑

σ=K|L∈EK

TσY
σ
ν (aνL − aνK) = 0 ∀K ∈ V.

Assuming a homogeneous material and constant diffusion coefficients Dν = D for ν = 1, . . . ,m

implies Y σ
ν (aνL− aνK) = D(uνL−uνK) and by introducingw(tn) =

∑m
ν=1 s

⊥
ν uν(tn) we obtain

w(K)(tn)− w(K)(tn−1)

t
(n)
δ

−D
∑

σ=K|L∈EK

Tσ(wL − wK) = 0 ∀K ∈ V.

This is a discretized homogeneous heat equation and by using discrete maximum principle [32] we
obtain the L∞ estimate

‖wh(tn)‖L∞ ≤ c‖Wh‖L∞ ∀n > 0
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3.8 Global upper bounds

with a constant c > 0 and initial value W =
∑m

ν=1 s
⊥
ν Uν . Here wh ∈ XV(M) denotes the

corresponding piecewise constant function ofw. Such strong assumptions on the diffusion coefficient
exclude practical relevant examples.

Themaximum principle is only applicable to systems having a special structure, e.g., systems of
triangle form. Therefore we use a technique introduced by Moser [104] to show global boundedness
of discrete solutions to (3.3.PD). For the continuous problem this was done in [45, 64].

Remark 3.8.2. Conservation of qualitative properties like local and global mass conservation, max-
imum principles, positivity or more generally, L∞ bounds is known to be difficult for finite element
discretizations, see e.g. [21, 97]. One important reason for that is that finite element methods do usually
not allow to test the discrete equations with the positive part of a finite element function, since it does
not lie in the discrete test space, in general. On the contrary, finite volume methods allow such test
functions [34, 48], and we will show how the use of appropriate discrete test functions will deliver us
the desired conservation of qualitative properties.

In order to establish the new results in the following sections we need the additional assumption:

Assumption A5. There exists a constant tδ < ∞ such that the largest possible time step is bounded
bymax

n∈N
t
(n)
δ ≤ tδ for all considered time discretizations.

For obtaining the global bounds, we use a bootstrapping technique introduced byMoser, see [104],
and apply it to the discretized problem.

Theorem 3.8.3 (Upper bounds).
We assume A1 and A2. LetD = (M, (tn)n∈N) be a class of discretizations fulfilling the Assumptions
A5. Then there exists a constant c1 > 0 only depending on the data and not on D such that for any
solution (uh, vh) to (3.3.PD)

m∑
ν=1

‖uν,h(tN )/uν,h‖L2 ≤ c1 ∀N ≥ 1

holds uniformly for all discretizations D. Furthermore there exists a second constant c2 > 0 only
depending on the data and not onD such that

‖uν,h(tN )/uν,h‖L∞ ≤ c2 ∀N ≥ 1, ν = 1, . . . ,m

holds uniformly for all discretizationsD.

Remark 3.8.4. In the continuous case, the continuous problem (2.2.P) is tested with functions

p et(zp−1
1 , . . . , zp−1

m ), zν = (aν − κ)+, κ = ‖Uν/uν‖L∞
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3 The discretized problem

for p = 2k, k ≥ 1 in order to obtain global upper bounds of the solutions, see [63, Lemma 4.1 and
Theorem 4.2]. The discrete proof follows the continuous counterpart. However, since we have a time
discretization, the test functions have to be modified and we have to estimate some error terms coming
from the discretization of the diffusion term.

Proof. First we mention that

etn−1 ≤ etn − etn−1

t
(n)
δ

≤ etn = etn−1+t
(n)
δ ≤ etδ etn−1 (3.8.25)

with tδ given in Definition 3.3.1. We introduce zν,h = (evν,h −κ)+ with

κ := max
ν=1,...,m

ess supx∈Ω Uν(x)

ess infx∈Ω uν(x)

andwν,h = z
p/2
ν,h , p ≥ 2. The constantκ is chosen in such a way that zν,h(t0) = (Uν,h/uν,h−κ)+ =

0. Now, we test (3.3.PD) with test functions petn−1zp−1
ν,h (tn), p ≥ 2, and obtain

S1 :=

N∑
n=1

t
(n)
δ p etn−1

〈
u(tn)− u(tn−1)

t
(n)
δ

, zp−1(tn)

〉
RMm

= −
N∑

n=1

t
(n)
δ p etn−1

〈
Âv(tn), z

p−1(tn)
〉
RMm

= S2 + S3

with

S2 := −
m∑

ν=1

N∑
n=1

pt
(n)
δ etn−1

∑
σ=K|L∈Eint

TσY
σ
ν Z

σ
ν (vνL − vνK)(zp−1

νL − zp−1
νK ),

S3 :=
N∑

n=1

t
(n)
δ p etn−1

∑
K∈V

|K|
m∑

ν=1

zp−1
νK (tn)RνK(evK(tn)).

Next, the expressions for the time-derivative (S1), diffusion term (S2) and reaction term (S3) are
estimated separately.
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3.8 Global upper bounds

Time derivative: Straightforward calculations, using that the product of the positive and negative
part of a function vanishes, yield

S1 =p

m∑
ν=1

N∑
n=1

etn−1
∑
K∈V

|K|zp−1
νK (tn)(uνK(tn)− uνK(tn−1))

=p

m∑
ν=1

N∑
n=1

etn−1
∑
K∈V

|K|uνKzp−1
νK (tn)

(
(zνK(tn)− zνK(tn−1)) + (evνK(tn−1)−κ)−

)
.

Using (C.27) and the fact that zp−1
νK (tn)(evνK(tn−1)−κ)− ≥ 0 holds, we get

S1 ≥
m∑

ν=1

N∑
n=1

etn−1
∑
K∈V

|K|uνK(zpνK(tn)− zpνK(tn−1))

=

m∑
ν=1

N∑
n=1

∑
K∈V

|K|uνK
{(
etnzpνK(tn)− etn−1 zpνK(tn−1)

)
− (etn − etn−1)zpνK(tn)

}

≥
m∑

ν=1

{
etN cu‖zν,h(tN )‖pLp −

N∑
n=1

t
(n)
δ etδ etn−1 ‖uν,h‖L∞‖zν,h‖pLp

}
.

(3.8.26)

In the last line we used zν,h(t0) = 0 and (3.8.25).

Diffusion term: Now, we consider the diffusion term S2. Applying the definition (3.2.2) to

Zσ
ν (vνL − vνK)zp−1

νK = (zνL − zνK)zp−1
νK − ((evνL −κ)− − (evνK −κ)−)zp−1

νK

= (zνL − zνK)zp−1
νK − (evνL −κ)−zp−1

νK

≤ (zνL − zνK)zp−1
νK ,
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3 The discretized problem

using the lower bound of the reference densities and the diffusion coefficients, inequality (C.26),
the notation wν,h = z

p/2
ν,h , and the extension of theH1-seminorm to the fullH1-norm, we find for

p ≥ 2

S2 =
m∑

ν=1

N∑
n=1

pt
(n)
δ etn−1

∑
K∈V

∑
σ=K|L∈EK

TσY
σ
ν Z

σ
ν (vνL − vνK)zp−1

νK

≤ −
m∑

ν=1

N∑
n=1

pt
(n)
δ etn−1

∑
σ=K|L∈Eint

TσY
σ
ν (zνL − zνK)(zp−1

νL − zp−1
νK )

≤
m∑

ν=1

N∑
n=1

t
(n)
δ etn−1

4(p− 1)cDu

p

{
−‖wν,h‖2H1,M + ‖zν,h‖pLp

}
≤

m∑
ν=1

N∑
n=1

t
(n)
δ etn−1

{
−2cDu‖wν,h‖2H1,M + pcDu‖zν,h‖

p
Lp

}
.

In the last two lines we set cDu = cDcu and use 2 ≤ 4(p− 1)/p ≤ p for p ∈ [2,∞).

Reaction terms: Together with (2.1.1), the inequalities

e2vνK ≤ (zνK + κ)2 ≤ 2(z2νK + κ2),

Muirhead’s inequality (see [105])

m∑
ν,j=1

z2jKz
p−1
νK ≤ m

m∑
ν=1

zp+1
νK ,

and xp ≤ xp+1 + 1 for x ≥ 0 and p ≥ 1 we can estimate the reaction terms (1.4.6) with at most
quadratic source terms (see Assumption A1 and (2.1.1)) by

S3 ≤C1

m∑
ν=1

N∑
n=1

pt
(n)
δ etn−1

∑
K∈V

|K|zp−1
νK

1 +

m∑
j=1

e2vjK


≤2C1

m∑
ν=1

N∑
n=1

pt
(n)
δ etn−1

{
(1 +mκ2)‖zν,h‖p−1

Lp−1 +

m∑
j=1

∑
K∈V

|K|z2jKz
p−1
νK

}

≤C2

N∑
n=1

t
(n)
δ p etn−1

m∑
ν=1

(
‖zν,h‖p+1

Lp+1 + 1
)

with constants C1, C2 > 0.
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3.8 Global upper bounds

The tested equation: Using the obtained estimates of the three terms together with S1 = S2 + S3,
leads to

S4 :=

m∑
ν=1

etN cu‖zν,h(tN )‖pLp

≤
N∑

n=1

t
(n)
δ etn−1

m∑
ν=1

{
−2cDu‖wν,h‖2H1,M + pC3(‖zν,h‖p+1

Lp+1 + 1)
} (3.8.27)

with a constant C3 > 0 which can be chosen such that it depends on the largest possible time step
(see Definition 3.3.1 and (3.8.26)) and the data, but not on p.

Bounds inL2: For obtaining the L2 bound, we set p = 2. The last term in (3.8.27) (the L3- norm
of zν,h) can be controlled by the discrete Gagliardo-Nirenberg inequality (B.24), i.e., we find for all
ε > 0 a cε,3 > 0 such that

‖zν,h‖3L3 ≤ 2ε‖zν,h ln zν,h‖L1‖zν,h‖2H1,M + cε,3‖zν,h‖L1 . (3.8.28)

We continue (3.8.27) by

S4 ≤
N∑

n=1

t
(n)
δ etn−1

m∑
ν=1

{
g1(ε)‖wν,h‖2H1,M + 2cε,3C3‖zν,h‖L1

}
,

where g1(ε) := −2cDu + 4εC3‖zν,h ln zν,h‖L1 . To choose the constant ε we have to control the
L1- norm of zν,h ln zν,h and zν,h. From Lemma 3.6.1 and zν,h ≤ aν,h we deduce the boundedness
of ‖zν,h‖L1 . Since |(x− µ) ln(x− µ)| ≤ x lnx+ 1 holds for x ≥ µ ≥ 0 and by Lemma 3.6.1 we
obtain

‖zν,h ln zν,h‖L1 =
∑
K∈V,

uνK>κuνK

|K||(aνK − κ) ln(aνK − κ)|

≤ 1

cu

∑
K∈V,

uνK>κuνK

|K|
(
uνK ln

uνK
uνK

+ uνK − uνK + uνK

)

≤ 1

cu

(
F̂ (U) + ‖uν,h‖L1

)
, ν = 1, . . . ,m.

We fix the constant ε > 0, coming from the Gagliardo-Nirenberg inequality such that g1(ε) ≤ 0

holds. From (3.12.78) we get

N∑
n=1

t
(n)
δ etn−1 ≤

N∑
n=1

etn − etn−1 = etN − 1
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3 The discretized problem

and from (3.8.27) for p = 2 we can derive the boundedness of

cu

m∑
ν=1

‖zν,h(tN )‖2L2 ≤ C4, N ≥ 1 (3.8.29)

with a constant C4 > 0. The first result of the theorem follows by using the inequality uνK/uνK ≤
zν,K + κ.

Moser iteration for p ≥ 4: For p ≥ 4 let r = 2(p+1)
p be introduced. Note that r ∈ (2, 5/2] for

p ∈ [4,∞). Using wν,h = z
p/2
ν,h , the estimate (3.8.27) can be written as

S4 =

m∑
ν=1

etN cu‖wν,h(tN )‖2L2

≤
N∑

n=1

t
(n)
δ etn−1

m∑
ν=1

{
−2cDu‖wν,h‖2H1,M + pC3(‖wν,h‖rLr + 1)

}
.

(3.8.30)

By the discrete Gagliardo-Nirenberg inequality (B.19) we obtain

‖wν,h‖rLr ≤ crgn,r‖wν,h‖L1‖wν,h‖r−1
H1,M, crgn,r = 2(r−1)/2Cr.

For r ∈ (2, 5/2] the constants appearing in the Gagliardo-Nirenberg inequality (B.19) can be uni-
formly bounded by

crgn,r ≤ cr := max
{
1, max

s∈[2,5/2]
{cgn,s}

}5/2

.

Using Young’s inequality with q = 2p
p+2 , q

′ = 2p
p−2 , and ε > 0 we get

‖wν,h‖L1‖wν,h‖r−1
H1,M ≤ ε

q
‖wν,h‖2H1,M +

ε−q′/q

q′
‖wν,h‖q

′

L1 .

Inserting this in (3.8.30) we find

S4 ≤
N∑

n=1

t
(n)
δ etn−1

m∑
ν=1

{
g2(ε)‖wν,h‖2H1,M + pC3

(
cr
ε−q′/q

q′
‖wν,h‖q

′

L1 + 1

)}

with g2(ε) = −2cDu + C3crε
p
q . The constant ε is fixed such that g2(ε) = 0, i.e.,

ε =
2cDu

C3cr

q

p
.
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3.8 Global upper bounds

Then the term in front of the L1 norm can be decomposed into two factors

cr
ε−q′/q

q′
≤

(
cr

(
C3cr
2cDu

) p+2
p−2

)(
p− 2

2p

(
p+ 2

2

) p+2
p−2

)
.

The first factor is bounded and for the second factor we find for p ≥ 4 by monotonicity

p− 2

2p

(
p+ 2

2

) p+2
p−2

= p
1− 4/p2

4

(
p+ 2

2

) 4
p−2

≤ 27

16
p.

Therefore we define

C4 := C3max

(
1,

27 cr
16

(
max

(
1,
C3cr
2cDu

))3
)

and we proceed with

e−tN S4 =
m∑

ν=1

cu‖zν,h(tN )‖pLp

≤
N∑

n=1

e−tN t
(n)
δ etn−1

m∑
ν=1

p2C4

(
‖wν,h‖q

′

L1 + 1
)

≤ p2C4

m∑
ν=1

sup
n=1,...,N

(
‖zν,h(tn)‖

p2/(p−2)

Lp/2 + 1
)
.

Therefore, with some constant C5 > 1 we get

e−tN S4 + 1 ≤ p2C5

{
m∑

ν=1

sup
n=1,...,N

(
‖zν,h(tn)‖

p/2

Lp/2 + 1
)}2p/(p−2)

.

Iteratively using this inequality and setting p = 2k, k ≥ 2 and

bk :=

m∑
ν=1

sup
n=1,...,N

‖zν,h(tn)‖2
k

L2k + 1, k ≥ 1,

we find for k ∈ N+, k ≥ 2 the recursion formula bk ≤ (4)kC5(bk−1)
2 2k−1

2k−1−1 . This can be written
as

bk ≤
(
(4)ζ(c5)

η(b1)
2k−1

)∏k−1
j=1 qj
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3 The discretized problem

with qj = 2j

2j−1
and

ζ =

(
k +

k−2∑
i=1

(k − i)2i
k−1∏
l=k−i

ql

)
k−1∏
j=1

q−1
j = k

k−1∏
j=1

q−1
j +

k−2∑
i=1

(k − i)2i
k−i−1∏
j=1

q−1
l ≤

k−2∑
i=0

(k − i)2i,

η =

(
1 +

k−2∑
i=1

2i
k−1∏
l=k−i

ql

)
k−1∏
j=1

q−1
j =

k−1∏
j=1

q−1
j +

k−2∑
i=1

2i
k−i−1∏
j=1

q−1
l ≤

k−2∑
i=0

2i

because of q−1
l ≤ 1. By induction follows

k−2∑
i=0

2i ≤ 2k−1 ≤ 2k,
k−2∑
i=0

(k − i)2i ≤ 2k+1, k ≥ 2, (3.8.31)

see [63, p. 217]. The product θ =
∏∞

j=1 qj is finite. Therefore we obtain

bk ≤
[
(4)2

k+1
(C5)

2k−1
b2

k−1

1

]∏k−1
j=1 qj

≤ (16C5b1)
θ2k . (3.8.32)

Since b1 is bounded from above by (3.8.29) we obtain for k ≥ 2

m∑
ν=1

‖zν,h(tN )‖
L2k ≤

√
m

{
16C5

(
m∑

ν=1

sup
n=1,...,N

‖zν,h(tn)‖2L2 + 1

)}θ

and finally with [84, Theorem 2.11.5]

m∑
ν=1

‖zν,h(tN )‖L∞ ≤
√
m

{
16C5

(
m∑

ν=1

sup
n=1,...,N

‖zν,h(tn)‖2L2 + 1

)}θ

for k → ∞. From uν,h/uν,h ≤ zν,h + κ the result follows.

3.9 Asymptotics

In this section we will extend the result of Lemma 3.6.1. We mention the result of [56] where it is
proved that the free energy decays exponentially along trajectories. We also note that in special
situations an explicit rate of convergence is proven, see [22].

Definition 3.9.1. Let (u∗,v∗) be the unique thermodynamic equilibrium of the discrete Problem
(3.3.PD). For every (u,v) with u = Êv, the relative free energy of (3.3.PD) is introduced by

Ψ̂(u) := F̂ (u)− F̂ (u∗).
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3.9 Asymptotics

Lemma 3.9.2 (see [56, Lemma 3.4]). Let the Assumptions of A1, A3, and A4 be fulfilled and let
D = (M, (tn)n∈N) be a class of discretizations fulfilling the Assumptions A5. Let u = Êv ∈ Û +U

and let (u∗,v∗) be the discrete thermodynamic equilibrium according to Theorem 3.7.3. Moreover, let
(uh, vh) and (u∗h, v

∗
h) the corresponding piecewise constant functions. Then, there exist constants c1,

c2 > 0 not depending onM such that

c1
∥∥√uh −√u∗h∥∥2Y ≤ Ψ̂(u) ≤ c2‖uh − u∗h‖

2
Y .

Proof. From 〈u− u∗,v∗〉RMm = 0 and (3.6.18) we obtain

Ψ̂(u) = 〈u,v〉RMm − Φ̂(v)− 〈u∗,v∗〉RMm + Φ̂(v∗)

= 〈u,v − v∗〉RMm − Φ̂(v) + Φ̂(v∗)

=
m∑

ν=1

∑
K∈V

|K|uνK
(
evνK (vνK − v∗νK)− evνK + ev

∗
νK

)
=

m∑
ν=1

∫
Ω
uν,h

(
evν,h(vν,h − v∗ν,h)− evν,h + ev

∗
ν,h

)
dx

=
m∑

ν=1

∫
Ω

(
uν,h ln

uν,h
u∗ν,h

− uν,h + u∗ν,h

)
dx.

Using the elementary estimates

(
√
x−√

y)2 ≤ x ln
x

y
− x+ y ≤ 1

y
(x− y)2 ∀x, y > 0 (3.9.33)

and Corollary 3.7.4 the result of the lemma follows.

Theorem 3.9.3 (Estimate of the relative free energy, see [56, Theorem 3.5]).
We assume A1, A3, and A4. LetD = (M, (tn)n∈N) be a class of discretizations fulfilling the Assump-
tions A5. Let (u∗,v∗) be the unique thermodynamic equilibrium of the discrete Problem. Then for
every ρ > 0 there exists a constant cρ > 0 such that for all Voronoi meshes and all

v ∈ N̂ρ :=
{
v ∈ RMm : Ψ̂(Êv) ≤ ρ, u = Êv ∈ Û +U

}
the inequality

Ψ̂(u) ≤ cρD̂(v) (3.9.34)

is fulfilled.

Remark 3.9.4. The proof is given in [56] in case of strictly positive reaction rate coefficients and for all
meshes with size less then a constant determined by the data of the problem. Instead of using the discrete
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3 The discretized problem

Sobolev-Poincare inequality [59, Theorem 2.2] we use Lemma B.4 in order to relax an assumption on
the mesh needed by the discrete Sobolev-Poincare inequality [59, Theorem 2.2]. In contrast to [56], in
our result nonnegative reaction rate coefficients are allowed (see AssumptionA1) and the estimate holds
true for meshes with arbitrary mesh size.

Proof. In this proof the alphabet c denotes (possibly different) constants.

1. Let ρ > 0 be arbitrary given. Using the elementary inequality

(x− y) ln
x

y
≥ (

√
x−√

y)2 ∀x, y > 0 (3.9.35)

we obtain for v = lna, a ∈ Rm
+ and for all (α,β) ∈ R the estimate(

ev·α − ev·β
)
(α− β) · v ≥

(√
aα −

√
aβ
)2

=: r(α,β)(a). (3.9.36)

Therefore with Assumption A1 the discrete dissipation rate can be estimated for v ∈ RMm

by

D̂(v) ≥ c

m∑
ν=1

∑
σ=K|L∈Eint

TσZ
σ
ν |vνL − vνK |2 + c

∑
(α,β)

∫
Ω
b(α,β),hr(α,β)∈R(evh) dx

=: D1(v)

with
b(α,β),h(x) = b(α,β)K =

1

|K|

∫
K
b(α,β)(y) dy ∀x ∈ K ∈ V.

Hence it suffices to prove
Ψ̂(u) ≤ CD1(v) ∀v ∈ N̂ρ (3.9.37)

with some positive constant C independent on the meshM.

2. Assume (3.9.37) would be false, then there exist a sequence of (admissible) Voronoi meshes
Mn with vn ∈ N̂ρ, un = Êvn ∈ Û +U such that

Ψ̂(un) ≤ CnD1(vn) > 0, lim
n→∞

Cn = +∞. (3.9.38)

For eachMn we have corresponding quantities aν,hn , vν,hn , uν,hn , U , Ê, F̂ , D̂,…and sets
Eint, Û , N̂ρ and indicate limits of sequencesMn by n→ ∞. In order to simplify the notation
we don’t write them with an index n and call these sequence non-labeled. Let aνK = evνK ,
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3.9 Asymptotics

K ∈ V and with aν,h, vν,h, uν,h we denote the corresponding piecewise constant function.
Since aν = a∗ν and by Lemma 3.9.2 we find

∥∥√ah −√a∗h∥∥2Y ≤ c
∥∥√uh −√u∗h∥∥2Y ≤ c

c1
Ψ̂(u) ≤ c(ρ) (3.9.39)

and by Corollary 3.7.4 for allM the estimate

‖
√
ah‖Y ≤ c(ρ) (3.9.40)

with a constant c only depending on ρ, and on the data.

3. For σ = K|L ∈ Eint we obtain with (3.9.35) the estimate (
√
aνL − √

aνK)2 ≤ Zσ
ν (vνL −

vνK)2 and therefore
∑m

ν=1

∣∣√aν,h∣∣2H1,M ≤ cD1(v) → 0. Applying the discrete Sobolev-
Poincaré inequality (B.21) we find for the function√

aν,h ∈ XV(M), ν = 1, . . . ,m that

∥∥√aν,h −mΩ(
√
aν,h)

∥∥
L2(Ω)

→ 0 withmΩ(
√
aν,h) :=

1

|Ω|

∫
Ω

√
aν,h dx. (3.9.41)

Furthermore with the discrete Sobolev-Poincaré inequality (B.21) we obtain

∥∥√aν,h −mΩ(aν,h)
∥∥
Lq(Ω)

≤ cq
∣∣√aν,h∣∣H1,M → 0 (3.9.42)

with a positive constant cq not depending onM for q ∈ [1,∞).

Since mΩ(
√
aν,h)|Ω| =

∥∥√aν,h∥∥L1 ≤ c
∥∥√aν,h∥∥L2 ≤ c(ρ) and by (3.9.40) we obtain for

â ∈ RMm
+ and a non-labeled subsequence

mΩ(
√
aν,h) →

√
âν in R. (3.9.43)

All further investigations are restricted to this subsequence. Using∣∣∣√aν,h −√âν∣∣∣ ≤ ∣∣√aν,h −mΩ(
√
aν,h)

∣∣+ ∣∣∣mΩ(
√
aν,h)−

√
âν

∣∣∣
we obtain

√
aν,h →

√
âν in Lq, q ∈ [1,∞), ν = 1, . . . ,m. (3.9.44)

Using binomial formula we get

‖aν,h − âν‖L2 ≤
∥∥∥√aν,h −√âν∥∥∥2

L4
+ 2
√
âν

∥∥∥√aν,h −√âν∥∥∥
L2

→ 0. (3.9.45)
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3 The discretized problem

4. Let â = (âν)
m
ν=1. Thanks to

∥∥b(α,β),h

∥∥
L1 =

∥∥b(α,β)

∥∥
L1 , (3.9.43), and (3.9.45) we obtain

0 ≤
∥∥b(α,β)r(α,β)(â)

∥∥
L1 =

∥∥b(α,β),hr(α,β)(â)
∥∥
L1

≤
∥∥b(α,β),hr(α,β)(ah)− b(α,β),hr(α,β)(â)

∥∥
L1 +

∥∥b(α,β),hr(α,β)(ah)
∥∥
L1

≤
∥∥b(α,β),h

∥∥
L∞

∥∥r(α,β)(ah)− r(α,β)(â)
∥∥
L1 + cD1(v) → 0

(3.9.46)

as n→ ∞ for all (α,β) ∈ R. Thus it results necessarily that

âα = âβ ∀(α,β) ∈ R. (3.9.47)

5. Let ûν = uν âν and w ∈ U⊥. Using uh ∈ U + U , (3.9.45), and

‖uν,h‖L∞ ≤ ‖uν‖L∞ , ν = 1, . . . ,m (3.9.48)

we find the estimate

|〈û− U,w〉X | =

∣∣∣∣∣
m∑

ν=1

∫
Ω
(uν âν − Uν)wν dx

∣∣∣∣∣
≤|〈uh − Uh, w〉X |+

∣∣∣∣∣
m∑

ν=1

∫
Ω
uν,h(âν − aν,h)wν dx

∣∣∣∣∣→ 0

(3.9.49)

as n→ ∞ and thus û ∈ U + U . From (3.9.47) we conclude â ∈ A (see (2.3.5) in Section 2.3)
and therefore together with Assumption A3 we get â = a∗, hence û = u∗.

6. Due to u∗ν,h = uν,hâν , (3.9.45), and (3.9.48) we obtain

λ2n := Ψ̂(u) ≤ c2‖uh − u∗h‖
2
Y ≤ c2‖uh(ah − â)‖2Y → 0 as n→ ∞ (3.9.50)

and by (3.9.38) we get
1

Cn
=

1

λn
D1(v) → 0 as n→ ∞. (3.9.51)

7. For ν = 1, . . . ,m we introduce

bν,h =
1

λn

(√
aν,h/âν − 1

)
∈ XV(M),

then by (3.9.35) we deduce (bνK − bνL)
2 ≤ 1

λ2
nâν

Zσ
ν (vνK − vνL)

2 for all σ = K|L ∈ Eint
and thus

m∑
ν=1

|bν,h|2H1,M ≤ c

λ2
D1(v) → 0.
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3.9 Asymptotics

Applying to bν,h ∈ XV(Mn) the discrete Poincaré and Sobolev-Poincaré inequality leads to

‖bν,h −mΩ(bν,h)‖Lq ≤ cq|bν,h|H1,M → 0, ν = 1, . . . ,m, (3.9.52)

with cq > 0 not depending onM for q ∈ [1,∞) ifN = 2. Using âν = a∗ν = a∗ν,h, (3.9.39)
and (3.9.50) we find

|mΩ(bν,h)||Ω| ≤
1

λn
√
âν

∥∥∥√aν,h −√âν∥∥∥
L1

≤ 1

λn
√
a∗ν,h

∥∥∥√aν,h −√a∗ν,h∥∥∥
L1

≤ c

λn

∥∥∥√aν,h −√a∗ν,h∥∥∥
L2

≤ c

λn

√
Ψ̂(u) ≤ c

λn
λn = c.

Thus for b̂ ∈ RMm
+ and a non-labeled subsequence, we obtainmΩ(bν,h) → b̂ν in R. Using∣∣∣bν,h − b̂ν

∣∣∣ ≤ |bν,h −mΩ(bν,h)|+
∣∣∣mΩ(bν,h)− b̂ν

∣∣∣
we deduce

bν,h → b̂ν in Lq(Ω), q ∈ [1,∞), ν = 1, . . . ,m. (3.9.53)

8. For ν = 1, . . . ,m we define ŷν := 2b̂νu
∗
ν = 2b̂νuν âν . Because of

2bν,hâνuν,h = bν,h(
√
aν,h +

√
âν)
√
âνuν,h + g1

=
uν,h
λn

(
√
aν,h −

√
âν)(

√
aν,h −

√
âν) + g1

=
uν,h − u∗ν,h

λn
+ g1

with g1 = bν,h(
√
âν −

√
aν,h)

√
âνuν,h we obtain for all w ∈ U⊥

|〈ŷ, w〉X | =2

∣∣∣∣∣
m∑

ν=1

∫
Ω
bν,hâνuν,hwν dx

∣∣∣∣∣
≤2

∣∣∣∣∣
m∑

ν=1

∫
Ω
bν,hâνuν,hwν dx

∣∣∣∣∣+ 2

∣∣∣∣∣
m∑

ν=1

∫
Ω
(̂bν − bν,h)âνuν,hwν dx

∣∣∣∣∣
≤
∣∣∣∣〈uh − u∗h, w〉X

λn

∣∣∣∣+ c‖bh‖Y
∥∥∥√ah −√

â
∥∥∥
Y
+ c
∥∥∥bh − b̂

∥∥∥
Y
‖â‖Y .
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3 The discretized problem

Since uh, u∗h ∈ U + U the first term converges to zero as n → ∞. Due to (3.9.44) and
‖bh‖Y ≤ c

λ2
n
Ψ̂(U) the second term converges to zero as n→ ∞. Finally because of (3.9.53)

and the boundedness of
∥∥∥√â∥∥∥

Y
the third term converges to zero and therefore ŷ ∈ U and

(〈ŷν , 1〉)mν=1 ∈ S. (3.9.54)

By the definition of bν,h and â we obtain for all (α,β) ∈ R

â−α

(
m∏

ν=1

a
αν/2
ν,h −

m∏
ν=1

a
βν/2
ν,h

)2

=

(
m∏

ν=1

(λnbν,h + 1)αν −
m∏

ν=1

(λnbν,h + 1)βν

)2

=

(
λn

m∑
ν=1

bν,h(αν − βν)

)2

+Qn,

(3.9.55)

where

|Qn| ≤ cλ3n(|bh|+ 1)p0 , 0 ≤ p0 ≤ 2 max
(α,β)∈R

max

{
m∑

ν=1

αν ,
m∑

ν=1

βν

}
. (3.9.56)

Using λn → 0 as n→ ∞ we conclude

1

λ2n
‖Qn‖L1 ≤ cλn‖|bh|+ 1‖p0Lp0 → 0 as n→ ∞.

Together with (3.9.51) and (3.9.55) and arguments similar to Step 4 this leads to

lim
n→∞

∫
Ω
b(α,β),h

(
m∑

ν=1

bν,h(αν − βν)

)2

dx = 0 ∀(α,β) ∈ R,

and therefore
b̂ = (̂bν)

m
ν=1 ∈ S⊥. (3.9.57)

Using the definition of ŷν in Step 8 and together with (3.9.54) and (3.9.57) we conclude

0 =
〈
ŷ, b̂
〉
X

= 2

m∑
ν=1

u∗ν b̂
2
ν

and thus b̂ = 0, and ŷ = 0.
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3.9 Asymptotics

9. From the definition of λn (see (3.9.50)) it results

1 =
1

λ2n
Ψ̂(u) ≤ c

m∑
ν=1

‖uν,h‖L∞

∥∥∥∥aν,h − âν
λn

∥∥∥∥2
L2

≤ c
m∑

ν=1

∫
Ω

(
√
aν,h −

√
âν)

2

λ2n

(√
aν,h +

√
âν

)2
dx

≤ c

m∑
ν=1

∫
Ω
b2ν,hâν

(
âν +

∣∣∣√aν,h −√âν∣∣∣2) dx

≤ c

m∑
ν=1

‖bν,h‖2L4

(
1 +

∥∥∥√aν,h −√âν∥∥∥2
L4

)
.

Due to (3.9.53) with b̂ = 0 and (3.9.44) we find 1 = 1
λ2
n
Ψ̂(u) → 0 as n → ∞. This gives

a contradiction and thus the assumption in the second step of the proof was wrong. Hence
(3.9.37) holds and the proof is complete.

Corollary 3.9.5 (Exponential decay, see [56, Theorem 3.6]).
Let the Assumption A1, A3, and A4 be fulfilled. LetD = (M, (tn)n∈N) be a class of discretizations
fulfilling the Assumptions A5. Then there exist constants λ > 0 and c > 0 only depending on the
data and not onD such that for every solution (uh, vh) to (3.3.PD) the relative free energy Ψ̂(u(tN ))

decays exponentially, i.e.,

Ψ̂(u(tn)) ≤ e−λtn Ψ̂(U), n ≥ 1,∥∥∥∥√uν,h(tn)−√u∗ν,h∥∥∥∥
L2

≤ c e−λtn/2, n ≥ 1, ν = 1, . . . ,m,

holds uniformly for all discretizationsD.

The proof is given in [56]. In consequence of Remark 3.9.4 we rephrase the proof here. The only
difference is the use of Theorem 3.9.3 instead of [56, Theorem 3.5].
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3 The discretized problem

Proof. From Lemma 3.4.1 we conclude u(tn)−U ∈ Û . Using (3.6.22) we obtain for n2 > n1 ≥ 0

and λ ≥ 0 the estimate

S1 = eλtn2 Ψ̂(u(tn2))− eλtn1 Ψ̂(u(tn1))

=

n2∑
r=n1+1

{(
eλtr − eλtr−1

)
Ψ̂(u(tr)) + eλtr−1

(
F̂ (u(tr))− F̂ (u(tr−1))

)}
≤

n2∑
r=n1+1

{
eλtr−1

(
eλt

(r)
δ −1

)
Ψ̂(u(tr)) + eλtr−1 〈u(tr)− u(tr−1),v(tr)〉RMm

}
≤

n2∑
r=n1+1

eλtr−1 t
(r)
δ

(
eλtδ λΨ̂(u(tn2))− D̂(v(tr))

)
.

(3.9.58)

Using D̂(v) ≥ 0 for v ∈ RMm and setting λ = 0 in (3.9.58) results in

F̂ (u(tn2)) ≤ F̂ (u(tn1)) ≤ F̂ (U) ∀n2 > n1 ≥ 0. (3.9.59)

Using the results of Corollary 3.7.4 and Lemma 3.9.2 we obtain

Ψ̂(u) ≤ c2‖Uh − u∗h‖
2
Y ≤ c2

m∑
ν=1

max
{
‖Uh‖2L∞ , ‖u∗h‖

2
L∞

}
|Ω|

≤ c2

m∑
ν=1

max
{
‖U‖2L∞ , max

ν=1,...,m

ess supx∈Ω uν,h(x)
ess infx∈Ω uν(x)

‖u∗ν‖
2
L∞

}
|Ω| =: ρ

The constant depends on the data but not onM and therefore Ψ̂(u) ≤ ρ,u(tr) = Êv(tr) ∈ Û+U

and v ∈ N̂ρ. Lemma 3.9.3 implies the existence of a constant cρ > 0 such that (3.9.34) holds for
all admissibleM. Now choosing λ > 0 such that λ eλtδ cρ < 1 (see A5) again independent of the
mesh and n1 = 0, the estimate (3.9.58) together with Lemma 3.9.2 proves the lemma.

Using the L∞ bounds fromTheorem 3.8.3 we can prove the following result.

Corollary 3.9.6 (Asymptotics of the solution).
We assume A1, A2, A3, and A4. Let D = (M, (tn)n∈N) be a class of discretizations fulfilling the
Assumptions A5, moreover let (u∗h, u

∗
v) be the thermodynamic equilibrium to (3.3.PD), see Lemma

3.7.3. Then there exist constants λp > 0 and c > 0 only depending on the data and not onD such that
for every solution (uh, vh) to (3.3.PD) and p ∈ [1,∞) the estimate

m∑
ν=1

∥∥uν,h(tn)− u∗ν,h
∥∥
Lp ≤ c e−λptn , n ≥ 1 (3.9.60)

holds uniformly for all discretizationsD.
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3.10 Global lower bounds

Proof. Using Hölder’s inequality we find

∥∥uν,h(tn)− u∗ν,h
∥∥p
Lp ≤

∥∥uν,h(tn)− u∗ν,h
∥∥
L1

∥∥uν,h(tn)− u∗ν,h
∥∥p−1

L∞ .

First, we note that

∥∥uν,h(tn)− u∗ν,h
∥∥
L1 ≤

∥∥∥∥√uν,h(tn)−√u∗ν,h∥∥∥∥
L2

∥∥∥∥√uν,h(tn) +√u∗ν,h∥∥∥∥
L2

. (3.9.61)

As a consequence of Theorem 3.8.3, we obtain with two positive constants c1, c2 the boundedness of

∥∥uν,h(tn)− u∗ν,h
∥∥p−1

L∞ ≤ cp−1
1 ,

∥∥∥∥√uν,h(tn) +√u∗ν,h∥∥∥∥
L2

≤ c2

and find by Corollary 3.9.5 the desired estimate (3.9.60).

3.10 Global lower bounds

Now, we intend to show global lower bounds of the densities or in other words upper bounds of the
negative part of the chemical potentials. In the continuous setting, this was done in [46] and [63, p.
18]. In a first step we need lower bounds in L1 which provide a suitable start for the Moser iteration.

Lemma 3.10.1 (Lower bounds in L1(Ω)).
We assume A1, A2, A3, and A4. Let D = (M, (tn)n∈N) be a class of discretizations fulfilling the
Assumptions A5. Then there exists a constant c1 > 0 only depending on the data and not onD such
that for every solution (uh, vh) to (3.3.PD)∥∥∥v−ν,h(tN )

∥∥∥
L1

≤ c1 ∀N ≥ 1, ν = 1, . . . ,m

holds uniformly for all discretizationsD.

Proof. Following [63, p. 18] we define the convex and lower semicontinuous functional Θ̂ : Rm →
R̄ by

Θ̂(w) =
∑
K∈V

|K|u∗νKϑ(wK), ϑ(y) :=

− ln(1− y), for y ≤ 0,

∞ for y > 0,

and its conjugate convex functional

Ĝ(uν) = sup
w∈RM

{〈uν ,w〉 − Θ̂(w)}, (3.10.62)
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3 The discretized problem

which may be written in the explicit form

Ĝ(uν) =
∑
K∈V

|K|
{
u∗νK

(
ln
uνK
u∗νK

)−
− (uνK − u∗νK)−

}
. (3.10.63)

Hereu∗ is the unique stationary solution to (3.3.PD) according to Lemma 3.7.3. We introduce zν :=

((1− u∗νK/uνK)−)K∈V and the corresponding zν,h ∈ XV(M), and observe that−zν ∈ ∂Ĝ(uν).
Testing the discrete problem (3.3.PD) with the test function (0, . . . , 0,−zν , 0, . . . , 0) results in
S1 =

∑N
n=1 t

(n)
δ (S2 + S3) with

S1 := −
N∑

n=1

t
(n)
δ

〈
uν(tn)− uν(tn−1)

t
(n)
δ

, zν

〉
RM

,

S2 :=
∑

σ=K|L∈Eint

TσY
σ
ν Z

σ
ν (vνL − vνK)(zνL − zνK),

S3 := −
∑
K∈V

|K|RνK(evK )zνK .

Using the subdifferential property of Ĝ we find

Ĝ(uν(tN ))− Ĝ(Uν) =

N∑
n=1

Ĝ(uν(tn))− Ĝ(uν(tn−1)) ≤ S1. (3.10.64)

Both terms S2 and S3 will be estimated on the subsets

Ω+(tn) = {K ∈ V : uνK(tn) ≥ u∗νK}, Ω−(tn) = {K ∈ V : uνK(tn) < u∗νK}.

Diffusion: In a first stepwe show that the diffusion termS2 is nonpositive. We remark that zνK = 0

for allK ∈ Ω+(tn). Using (3.2.2) and a∗νK = a∗νL ∀K, L ∈ V , we find S2 = S21 − S22 with

S21 :=
∑

σ=K|L∈Eint

K,L∈Ω−(tn)

TσY
σ
ν (aνL − aνK)(1/aνL − 1/aνK)a∗νK ,

S22 :=
∑

σ=K|L∈Eint

K∈Ω−(tn),L∈Ω+(tn)

TσY
σ
ν ((aνL − a∗νL) + (a∗νK − aνK))zνK .

Using (x − y)(1/x − 1/y) ≤ 0 for all x, y > 0 we get S21 ≤ 0. IfK ∈ Ω−(tn) holds, the term
a∗νK − aνK is positive. On the other hand if L ∈ Ω+(tn) we have aνL − a∗νL ≤ 0 and therefore
S22 ≥ 0 and finally S2 ≤ 0.
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3.10 Global lower bounds

Reactions: On Ω+ reaction terms multiplied by the test function vanish. Since (α− β) · v∗
K = 0

∀K ∈ V , we find on Ω−(tn)

S3 =
∑

K∈Ω−

|K|
∑

(α,β)∈R

k(α,β)K eα·v∗
K

 m∏
j=1

(
ujK
u∗jK

)αj

−
m∏
j=1

(
ujK
u∗jK

)βj
 (αν − βν)zνK

=
∑

K∈Ω−

|K|(S31K + S32K)

with

S31K = −
∑

(α,β)∈R

k(α,β)K eα·v∗
K

 m∏
j=1

(
ujK
u∗jK

)αj

−
m∏
j=1

(
ujK
u∗jK

)βj
 (αν − βν),

S32K =
∑

(α,β)∈R

k(α,β)K eα·v∗
K

 m∏
j=1

(
ujK
u∗jK

)αj

−
m∏
j=1

(
ujK
u∗jK

)βj
 (αν − βν)

u∗νK
uνK

.

The terms in the parentheses of S31K are Lipschitz continuous in (uK/u∗
K) on [0, R]m,R > 0 and

have at (1)mν=1 the value 0. Together with the global (upper) boundedness of (uK/u∗
K) we obtain

S31K ≤ C1

m∑
ν=1

∣∣∣∣uνKu∗νK
− 1

∣∣∣∣.
We consider two cases: Note that 1 < u∗νK/uνK for allK ∈ Ω−(tn). For αν > βν the summands
in S32K can be estimated by

(
uνK
u∗νK

)αν−1 m∏
j=1,
j 6=ν

(
ujK
u∗jK

)αj

−
m∏
j=1

(
ujK
u∗jK

)βj

.

This term is also Lipschitz continuous in (uK/u∗
K) on [0, R]m,R > 0, and has at (1)mν=1 the value

0. Together with the global boundedness of (uK/u∗
K) we obtain the bound

C3

m∑
ν=1

∣∣∣∣uνKu∗νK
− 1

∣∣∣∣.
The case αν < βν can be handled analogously. Therefore there exists a constant C4 > 0 such that

S3 ≤ C4

m∑
ν=1

∥∥uν,h/u∗ν,h − 1
∥∥
L1 .
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3 The discretized problem

L1-estimate: From (3.10.64) together with S1 =
∑N

n=1 t
(n)
δ (S2+S3) and the estimates of S2 and

S3 we conclude

Ĝ(uν(tN )) ≤ Ĝ(Uν) + C4

N∑
n=1

m∑
ν=1

t
(n)
δ

∥∥uν,h(tn)/u∗ν,h − 1
∥∥
L1 .

From Corollary 3.9.6 and Lemma 3.9.5 we conclude that∥∥∥∥∥uν,h(tn)u∗ν,h
− 1

∥∥∥∥∥
L1

≤ C5 e−λtn/2 ∀n ≥ 0,

with the constant λ > 0 given in Lemma 3.9.5. Hence there exists a constant C6 > 0 such that
Ĝ(uν(tN )) ≤ C6. Let cu∗ = minν=1,...,m ess infx∈Ω u∗ν(x). Together with∥∥(uν,h(tn)− u∗ν,h)

−∥∥
L1 ≤

∥∥u∗ν,h∥∥L1 ∀n ≥ 0

and the explicit form of Ĝ in (3.10.63) we find for allN ≥ 0

∥∥(vν,h(tN )− v∗ν,h)
−∥∥

L1 =

∥∥∥∥∥
(
ln
uνK(tN )

u∗νK

)−
∥∥∥∥∥
L1

≤ 1

cu∗

(
Ĝ(uν(tN )) +

∥∥u∗ν,h∥∥L1

)
from which the uniform bound in L1 for every species ν = 1, . . . ,m and all consideredD follows.

Now, we show global lower bounds for the chemical potentials by Moser iteration.

Theorem 3.10.2 (Lower bounds in L∞).
We assume A1, A2, A3, and A4. Let D = (M, (tn)n∈N) be a class of discretizations fulfilling the
Assumptions A5. Then there exists a constant c > 0 only depending on the data and not on D such
that for every solution (uh, vh) to (3.3.PD)∥∥∥v−ν,h(tN )

∥∥∥
L∞

≤ c ∀N ≥ 1, ν = 1, . . . ,m

holds uniformly for all discretizationsD.

Remark 3.10.3. The proof is based on Moser iteration, too. In [63, Lemma 4.2 andTheorem 4.3] this
technique was applied to the continuous case. For p = 2k, k ≥ 1 one takes the test function which
has the ν-th component−p et zp−1

ν e−vν(t) with zν = (vν + κ)−, κ = maxν=1,...,m ‖(vν(0))−‖L∞ ,
the other components are zero. As already mentioned, in the discrete case the test functions have to be
modified.

62



3.10 Global lower bounds

Proof. Let zν,h = (vν,h + κ)− and wν,h = z
p/2
ν,h . The constant κ is defined by

κ := max
ν=1,...,m

(
ln

ess infx∈Ω Uν(x)

ess supx∈Ω uν(x)

)−

and therefore zν,h(t0) = 0 holds. For p ≥ 2we test the discrete Problem (3.3.PD) with test functions
which have the ν-th component

−p etn−1 zp−1
ν,h (tn) e−vν,h(tn),

the other components are zero. Doing this we derive S1 = S2 + S3 with

S1 := −p
N∑

n=1

t
(n)
δ etn−1

〈
u(tn)− u(tn−1)

t
(n)
δ

, zp−1(tn) e−vν,h(tn)

〉
RM

,

S2 :=
N∑

n=1

t
(n)
δ p etn−1

∑
σ=K|L∈Eint

TσY
σ
ν Z

σ
ν (vνL − vνK)(zp−1

νL e−vνL −zp−1
νK e−vνK ),

S3 := −p
∑
K∈V

|K|
N∑

n=1

t
(n)
δ etn−1 zp−1

νK (tn) e−vνK(tn)RνK(evK ).

We estimate the different parts separately:

Timederivative: Since ex− ey = eξ(x−y) holds for some ξ ∈ [x, y] ⊂ R and zp−1
νK (tn)(vνK(tn)+

κ)+ = 0 we find

IνK(tn) := −p etn−1 zp−1
νK (tn) e−vνK(tn) (uνK(tn)− uνK(tn−1))

≥ p etn−1 zp−1
νK (tn)uνK eξνK−vνK(tn) (zνK(tn)− zνK(tn−1)) .

In the following we consider the two cases:

1. From uνK(tn) > uνK(tn−1) we get zνK(tn) ≤ zνK(tn−1) and eξνK < evνK(tn), hence

IνK(tn) ≥ p etn−1 zp−1
νK (tn)uνK (zνK(tn)− zνK(tn−1)) .

2. From uνK(tn) < uνK(tn−1) we find zνK(tn) ≥ zνK(tn−1) and eξνK > evνK(tn), hence

IνK(tn) ≥ p etn−1 zp−1
νK (tn)uνK (zνK(tn)− zνK(tn−1)) .
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3 The discretized problem

Together with (C.27) and (3.8.25) we estimate S1 by

S1 =

N∑
n=1

∑
K∈V

|K|IνK(tn)

≥
N∑

n=1

∑
K∈V

|K|uνK
{
(etn zνK(tn)

p − etn−1 zνK(tn−1)
p) − (etn − etn−1)zνK(tn)

p
}

≥ etN cu‖zν,h(tN )‖pLp −
N∑

n=1

t
(n)
δ etδ etn−1 ‖uν,h‖L∞‖zν,h(tn)‖pLp ,

where the second line is a telescoping sum. Here tδ denotes the largest time step of all considered
discretizations, see Assumption A5.

Diffusion term: A short calculation gives for σ = K|L and xνKL := vνL − vνK

Zσ
ν (vνL − vνK)(zp−1

νL e−vνL −zp−1
νK e−vνK ) = A+B

with

A :=
(exνKL −1)(e−xνKL +1)

2xνKL
xνKL(z

p−1
νL − zp−1

νK ),

B :=
(exνKL −1)(e−xνKL −1)

x2νKL

x2νKL

2
(zp−1

νL + zp−1
νK ).

Using LemmaC.2, inequality (C.26) and the following auxiliary calculation (with xνL := (vνL+κ)
+

and xνK := (vνK + κ)+)

(vνL − vνK)(zp−1
νL − zp−1

νK ) =(xνL − xνK)(zp−1
νL − zp−1

νK )− (zνL − zνK)(zp−1
νL − zp−1

νK )

=− (xνLz
p−1
νK + xνKz

p−1
νL )− (zνL − zνK)(zp−1

νL − zp−1
νK )

≤− (zνL − zνK)(zp−1
νL − zp−1

νK ),

we can estimate the termA from above by

A ≤ −4(p− 1)

p2

(
z
p/2
νL − z

p/2
νK

)2
.

Together with Lemma C.2, inequality (C.28) and the auxiliary calculation

x2νKL = (vνL − vνK)2 = ((xνL − xνK)− (zνL − zνK))2

= (xνL − xνK)2 + 2(xνLzνK + xνKzνL) + (zνL − zνK)2

≥ (zνL − zνK)2,
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3.10 Global lower bounds

we can bound the termB by

B ≤ −(zνL − zνK)2
(zp−1

νL + zp−1
νK )

2
≤ − 1

(p+ 1)2

(
z

p+1
2

νL − z
p+1
2

νK

)2

.

Therefore we can bound S2 with some constant cDu = cDcu by

S2 ≤ −
N∑

n=1

t
(n)
δ etn−1 4cDu

(
p− 1

p

∣∣∣zp/2ν,h

∣∣∣2
H1,M

+
p

4(p+ 1)2

∣∣∣∣z p+1
2

ν,h

∣∣∣∣2
H1,M

)

≤
N∑

n=1

t
(n)
δ etn−1 cDu

{
−2‖wν,h‖2H1,M + p‖zν,h‖pLp

}
.

The last term in the first line of the above inequalities can be neglected, since only the firstH1-semi-
norm is needed in the following estimate. In the last line we extend theH1-seminorm to the full
H1-norm and use 1/2 ≤ 1− 1/p < 1 and 0 < (p− 1)/p2 ≤ 1/4 for p ∈ [2,∞).

Reaction terms: The reaction terms multiplied by the test function can be written as

−RνK(evK )zp−1
νK e−vνK =

∑
(α,β)∈R

k(α,β)K(aα
K − aβ

K)(αν − βν)z
p−1
νK e−vνK .

Using the L∞ bounds of Theorem 3.8.3 we deduce for αν > βν that

(aα
K − aβ

K)(αν − βν) e−vνK = (αν − βν)

a(αν−1)
νK

m∏
j=1
j 6=ν

a
αj

νK − a
(βν−1)
νK

m∏
j=1
j 6=ν

a
βj

νK

 ≤ C1.

A corresponding estimate holds for αν < βν and therefore we get with C2 > 0

S3 ≤ C2

N∑
n=1

pt
(n)
δ etn−1 ‖zνK‖p−1

Lp−1 .

Moser iteration: From S1 = S2 +S3 together with xp−1 ≤ xp +1 for x ≥ 0 andwν,h = z
p/2
ν,h for

p ≥ 2 we conclude with some constant C3 > 0

S4 := etN cu‖zν,h(tN )‖pLp

≤
N∑

n=1

t
(n)
δ etn−1

{
−2cDu‖wν,h‖2H1 + pC3(‖wν,h‖2L2 + 1)

}
.
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3 The discretized problem

Using Gagliardo-Nirenberg’s inequality (B.19) and Young’s inequality with (p = 2) we can estimate

‖wν,h‖2L2 ≤ c2gn,2‖wν,h‖L1‖wν,h‖H1

≤
c2gn,2
2

(
ε‖wν,h‖2H1 + ε−1‖wν,h‖2L1

)
, c2gn,2 =

√
2C2,

and the estimate of S4 can be continued by

S4 ≤
N∑

n=1

t
(n)
δ etn−1

{
g1(ε)‖wν,h‖2H1 + p2C3(g2(ε)‖wν,h‖2L1 + 1)

}
with

g1(ε) = −2cDu + pε
C3c

2
gn,2

2
and g2(ε) =

c2gn,2
2pε

.

The constant ε is fixed such that g1(ε) = 0 holds, i.e.,

ε :=
4cDu

C3c2gn,2p
and then g2(ε) = C3

c4gn,2
8cDu

.

Setting C4 := C3max(g2(ε), 1) we find

e−tN S4 = cu‖zν,h(tN )‖pLp ≤ C4p
2 e−tN

(
N∑

n=1

t
(n)
δ etn−1 ‖zν,h‖pLp/2 + 1

)
.

Now we proceed in a similar way as in the proof of Theorem 3.8.3. We set

bk = sup
n=1,...,N

‖zν,h(tn)‖2
k

L2k + 1, k ≥ 0.

Moreover we set p = 2k for k ≥ 1. Together with

‖zν,h(tN )‖pLp + 1 ≤ C5p
2 sup
n=1,...,N

(
‖zν,h‖

p/2

Lp/2 + 1
)2
, p ≥ 2,

where C5 > 0, we find for all k ≥ 1 the recursion formula

bk ≤ 22kC5(bk−1)
2 ≤

{
(4)

∑k−1
i=0 (k−i)2i(C5)

∑k−1
i=0 2ib2

k

0

}
.

Applying (3.8.31) we conclude bk ≤ (44C5b0)
2k and

‖zν,h(tN )‖
L2k ≤ 44C5b0, k ≥ 1.
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3.11 Global existence and uniqueness

This estimate holds true for all times tN ,N ∈ N. The term b0 is bounded by Lemma 3.10.1. Passing
to the limit k → ∞ we obtain

‖zν,h(tN )‖L∞ ≤ 44C5b0 ≤ C8.

The procedure can be done for ν = 1, . . . ,m and the result of the theorem follows with v−ν,h =

v+ν,h + κ− (vν,h + κ) ≤ v+ν,h + κ+ zν,h and the bound of v+ν,h fromTheorem 3.8.3.

3.11 Global existence and uniqueness

In this section we prove the uniqueness of the discrete solution. Only for this result we additionally
assume that the diffusion coefficients only depend on the space variable and not on the state variable.
The results in other sections are independent of this assumption.

Theorem 3.11.1 (Uniqueness of the discrete solution).
Let the AssumptionA1,A2, andA4 be fulfilled and letD = (M, (tn)n∈N) be a class of discretizations
fulfilling the AssumptionsA5. Assuming that the diffusion coefficients only depend on the space variable
and not on the state variable and suppose the time step restriction

t
(n)
δ <

cu
2C2

∀n = 1, . . . , N, (3.11.65)

where C2 depends on the data. Then there exists at most one solution to the discrete problem (3.3.PD).

Proof. It suffices to prove uniqueness on a time step tn−1 to tn. Assuming that (3.3.PD) has two
solutions (u(tn),v(tn)) and (û(tn), v̂(tn)) for the same initial value (u(tn−1),v(tn−1)). We test
(3.3.PD) by the difference of the two solutions ã = ev − ev̂ . From (3.3.4) we deduce S1 + S2 = S3

with

S1 :=

〈
u(tn)− u(tn−1)

t
(n)
δ

, ã(tn)

〉
RMm

−

〈
û(tn)− û(tn−1)

t
(n)
δ

, ã(tn)

〉
RMm

=

〈
ũ(tn)− ũ(tn−1)

t
(n)
δ

, ã(tn)

〉
RMm

and

S2 :=

m∑
ν=1

∑
σ=K|L∈Eint

TσY
σ
ν

(
(aνL − aνK)− (âνL − âνK)

)(
ãνL − ãνK

)
,

S3 :=

m∑
ν=1

∑
K∈V

|K|
(
RνK(aK)−RνK(âK)

)
ãνK .
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3 The discretized problem

Since the diffusion coefficients only depend on the space variable, the averaging Y σ
ν is equal for both

solutions. Since (x− y)x ≥ 1
2(x

2 − y2) and ‖ãν,h(tn−1)‖2L2 = 0 the term S1 can be estimated by

S1 ≥
m∑

ν=1

1

t
(n)
δ

{
cu
2
‖ãν,h(tn)‖2L2 −

cu
2
‖ãν,h(tn−1)‖2L2

}
=

cu

2t
(n)
δ

‖ãh(tn)‖2Y .

By Assumption A1 the flux term S2 can be estimated with a constant C1 > 0 as follows

S2 =
m∑

ν=1

∑
σ∈Eint

TσY
σ
ν (ãνL − ãνK)2 ≥ C1cu

m∑
ν=1

|ãν,h|2H1,M.

Due toTheorem 3.8.3 (global bounds for the arguments) and the uniformly local Lipschitz continuity
of the reaction terms we find with C2 > 0

|S3| ≤
m∑

ν=1

∑
K∈V

|K||RνK(aK)−RνK(âK)||ã| ≤ C2

m∑
ν=1

‖ãν,h‖2L2 .

From S1 + S2 = S3 we find

m∑
ν=1

{
cu

(
1

2t
(n)
δ

− C2

cu

)
‖ãν,h‖2L2 + cuC1|ãν,h|2H1,M

}
≤ 0.

The assumption (3.11.65) ensures that the term in front of theL2-norm is greater zero. Hence ãν,h =

0 for all n > 0 and ν = 1, . . . ,m and the two solutions coincide.

Remark 3.11.2. The uniqueness result, in particular the restriction on the time step, is not satisfying.
The time step restriction is due to the use of a discrete Gronwall lemma. To our knowledge, the question
of uniqueness of the discrete solution is open in the case of diffusion coefficients depending on the
state. Standard arguments are not applicable due to the nonlinearity of the flux term. As already
mentioned in [46], additional regularity assumptions, like the boundedness of the gradient in L∞,
exclude practically relevant geometries and heterogeneous materials. For the continuous problem, the
question of uniqueness was discussed in [46, 53] (see also Section 2.3).

At the end of this section we summarize the results which we have obtained for the discrete
Problem (3.3.PD) under the Assumptions A1 - A4, completed by the Assumption A5 on the time
discretization.

Theorem 3.11.3 (Existence of global positive bounded solutions).
We assume A1, A2, A3, and A4. LetD = (M, (tn)n∈N) be class of discretizations fulfilling Assump-
tions A5. Then there is at least one solution of the discrete Problem (3.3.PD). For this solution global
estimates as inTheorem 3.8.3 and 3.10.2 are satisfied. Moreover the asymptotic behavior as in Corollary
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3.12 Convergence

3.9.5 and Corollary 3.10.1 are valid uniformly on all considered discretionsD. If in addition the diffusion
coefficient are independent of the state variable the solution is unique under the time step restriction
(3.11.65).

3.12 Convergence

3.12.1 Introduction

In this section, we investigate the convergence of the scheme. The convergence for linear parabolic
problems is studied in [32, 34]. However the convergence of schemes for nonlinear parabolic equa-
tions and systems is still an ongoing research topic, see [7, 9, 33].

Convergence of the discrete problem (3.3.PD) is more involved then the usual parabolic setting
due to the Boltzmann statistics, the nonlinear diffusion and the nonsmooth coefficients. These
difficulties make it necessary to develop some new tools to handle the statistics and the reference
densities. The auxiliary results are collected in Subsection A.3.2.

We first introduce the prolongated quantities, i.e., the piecewise affine functions in space and time
and the piecewise linear in space functions for the gradients in Subsection 3.12.2. Since we are in two
space dimensions the discreteH1-seminorm and the linear finite elementH1-seminorm are equal.
Following the proof of [64, Lemma 6.4], we provide a priori estimates for the gradient and for the
time derivative in Subsection 3.12.3. The proof relies on the uniform lower and upper bounds on the
concentrations from Section 3.8 and 3.10. Together with a priori estimates, we derive in Subsection
3.12.4 the existence of a converging subsequence and prove that the limit is a weak solution of the
continuous problem (2.2.P). Finally we derive strong convergence results.

In contrast to the previous sections, where all results have been proven on the infinite time interval
R+, we restrict our investigations to an arbitrary finite time interval S = [0, T ] ⊂ R+ in order to
obtain the new results. We replace the Definition 3.3.1 by

Definition 3.12.1 (Time discretization).
Let S = [0, T ] ⊂ R+ be a finite time interval. A time discretization of S is defined as a strictly
increasing sequence of real numbers (tn)Nn=1 with t0 = 0 and tN = T . The time step is defined by

t
(n)
δ = tn − tn−1 <∞ for n = 1, . . . , N

and the largest possible time step is denoted by tδN = sup
n=1,...,N

t
(n)
δ .

A discretization of the whole domainQ = S×Ω is defined by the tupleD = (M, (tn)
N
n=1). The

size of the discretization is denoted by size(D) = max{size(M), tδN}. In the convergence proof
we consider size(D) → 0.
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3 The discretized problem

Additionally in this section, we only consider for simplicity the averaging

Y σ
ν =

uνKDνK(aνK) + uνLDνL(aνL)

2
, σ = K|L.

3.12.2 Prolongated quantities

Corresponding to Definition 3.2.2, we define a piecewise constant in time and piecewise constant
in space interpolation of aν(tn) denoted by aν,h(t, x) fulfilling aν,h(t, x) = aν,h(tn, x) = aνK(tn)

for t ∈ (tn−1, tn] and x ∈ K ,K ∈ V .

By aν,l(t, x) we denote the piecewise constant in time and piecewise linear in space interpolation
of aν fulfilling aν,l(t, xK) = aνK(tn) for t ∈ (tn−1, tn] and K ∈ V . Writing al we mean al =
(aν,l)

m
ν=1 and by ah we mean ah = (aν,h)

m
ν=1, see also Figure 3.3 for an illustration. The same

uK(t1)

uK(t2)

uK(t3)

uK(t4)

uK(t5)

t

u
h
(t
,x

K
)

uK(t1)

uL(t1)

uM (t1)

uN (t1)

uO(t1)

x

u
h
(t

1
,x

)

Figure 3.3: Prolongated concentration of u at note xK ∈ P ,K ∈ V and different times: uh(t, xK) piecewise
lines, (KDuh)(t, xK) dashed line

notation holds for the chemical potentials vν . Further we introduce an operatorKD mapping the
space-time-discrete concentrations into the space C(S,X∗) by

(KDuh)(t) :=
1

t
(n)
δ

(
(t− tn−1)uh(tn) + (tn − t)uh(tn−1)

)
for t ∈ (tn−1, tn]. (3.12.66)

We remark that the concentrations uh are piecewise constant on the control volumesK ∈ V . Obvi-
ously, it holds (KDuh)

′ = 1

t
(n)
δ

(
uh(tn)− uh(tn−1)

)
for all t ∈ (tn−1, tn]. With evl we denote the

vector (evν,l)mν=1.

70



3.12 Convergence

In the following we work with the half-diamonds

TσK = {txK + (1− t)y : t ∈ (0, 1), y ∈ σ} ,

TσL = {txL + (1− t)y : t ∈ (0, 1), y ∈ σ} ,

where σ = K|L ∈ Eint denotes the Voronoi surface of two neighboring Voronoi cellsK , L with
corresponding nodes xK , xL ∈ P , see Figure 3.4. The two half-diamonds TσK and TσL form the

K

LxK

xL

�T�K
T�L

Figure 3.4: KiteDσ = TσK ∪ TσL of the edge σ = K|L

so-called kite Dσ = TσK ∪ TσL of the edge σ = K|L ∈ Eint, the union of all these kites covers
the domain Ω. Note that |TσK | = |TσL| = 1

2 |Dσ| holds. The piecewise constant in space inter-
polation of the reaction rate constant k(α,β)K is introduced by k(α,β),h(x, ah(x)) = k(α,β)K(aK)

of the reaction term RνK by Rν,h(x, ah(x)) = Rν,K(aK), and of the diffusion term DνK by
Dν,h(x, ah(x)) = Dν,K(aK) for all x ∈ K ,K ∈ V , see (3.2.1). Moreover we identify F̂ (u) with
Fh(uh).

We introduce the weak gradient reconstruction operator∇w : XV(M) → L2(Ω)2 by

∇wal(x) := 2
aL − aK
dσ

nσ for x ∈ Dσ, σ = K|L. (3.12.67)

The vector nσ denotes a unit normal vector of the face σ = K|L ∈ Eint, the direction is arbitrary,
but fixed.

3.12.3 A priori estimates

In a first step we provide uniform bounds for the solutions to the discrete problem (3.3.PD) for
different discretization levels.

In the following we frequently use for ν = 1, . . . ,m

0 < inf
D

ess inf
x∈Ω

aν,h(t), sup
D

ess sup
x∈Ω

aν,h(t) <∞ ∀t ∈ S, (3.12.68)
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3 The discretized problem

which was proven inTheorem 3.8.3 andTheorem 3.10.2.

During the proof of the a priori estimates, we use a result of [32, Lemma 3.4], which holds true
under the following assumption.

AssumptionA6. There exists a constantP ∈ N such that for all discretizationsD = (M, (tn)
N
n=1) of

Ω× S the property supM=(P,V,E)maxK∈V card EK ≤ P holds. Moreover there exist some constant
ξ > 0 such that dσ ≥ 1

2ξ diam(K) for allK ∈ V and σ ∈ EK .

Lemma 3.12.2 (A priori estimates).
We assume A1, A2, A3, and A4. Let D = (M, (tn)

N
n=1) be a sequence of discretizations fulfilling

Assumptions A5 and A6. For solutions (uh, vh) to the discrete Problems (3.3.PD) the reconstructed
quantities al andKDuh fulfill

sup
D

{
‖al‖L2(S,X) + ‖KDuh‖H1(S,X∗) + ‖KDuh‖C(S,Y )

}
< +∞.

Proof. We test the discrete Problem (3.3.PD)witha(tn). By using the elementary inequality1/2(x2−
y2) ≤ (x− y)x for x, y ∈ R+, the lower and upper bounds on the reference densities, see Assump-
tion A1, we obtain the following estimate

S1 :=

N∑
n=1

t
(n)
δ

〈
u(tn)− u(tn−1)

t
(n)
δ

,a(tn)

〉
RMm

≥
m∑

ν=1

(
cu
2
‖aν,h(tN )‖2L2 −

cu
2
‖aν,h(0)‖2L2

)
.

(3.12.69)

On the other hand by using the definition of Â and Zσ
ν as well as Theorem 3.8.3 we get from (3.3.4)

the estimate

S1 = −
N∑

n=1

t
(n)
δ

〈
Âv(tn),a(tn)

〉
RMm

≤
m∑

ν=1

N∑
n=1

t
(n)
δ

{
−c1‖aν,h‖2H1,M + c1‖aν,h‖2L2 + c2

}
.

(3.12.70)

Here c1 is a positive constant depending on the lower bound of the reference densities and the
diffusion coefficients. The reaction term was estimated by some constant due toTheorem 3.8.3. The
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3.12 Convergence

discreteH1-seminorm was completed to the fullH1-norm. Therefore we deduce from (3.12.69) and
(3.12.70) usingTheorem 3.8.3 once more with constants c3, c4 > 0

sup
D

‖al‖2L2(S,X) ≤ sup
D

{
N∑

n=1

t
(n)
δ

m∑
ν=1

‖aν,h‖2H1,M

}

≤ sup
D

m∑
ν=1

{
c3‖aν,h(0)‖2L2 + c4

N∑
n=1

t
(n)
δ (‖aν,h‖2L2 + 1)

}
<∞.

(3.12.71)

FromTheorem 3.8.3 we also conclude

sup
D

sup
t∈S

‖uh(t)‖Y = sup
D

sup
t∈S

‖KDuh(t)‖Y <∞

and supD ‖KDuh‖L2(S,Y ) < ∞. SinceKD is a continuous interpolant in time we findKDuh ∈
C(S, Y ) and supD ‖KDuh‖C(S,Y ) <∞. We prove the boundedness of

sup
D

∥∥(KDuh)
′∥∥2

L2(S,X∗)
= sup

D

N∑
n=1

∫ tn

tn−1

∥∥(KDuh)
′∥∥2

X∗ dt. (3.12.72)

First we estimate ‖(KDuh)
′(t)‖2X∗ on the interval (tn−1, tn). For this we use an arbitrary test

function w ∈ X and denote by wνK = 1
|K|
∫
K wν(x) dx for allK ∈ V and ν = 1, . . . ,m. By wh

we denote the corresponding piecewise constant function. Then we obtain∣∣∣∣∣
〈
uh(tn)− uh(tn−1)

t
(n)
δ

, w

〉
X∗

∣∣∣∣∣ =
∣∣∣∣∣
〈
uh(tn)− uh(tn−1),

w

t
(n)
δ

〉
Y

∣∣∣∣∣
=

∣∣∣∣∣
m∑

ν=1

∑
K∈V

|K|uνK(tn)− uνK(tn−1)

t
(n)
δ

wνK

∣∣∣∣∣
=

∣∣∣∣∣
〈
u(tn)− u(tn−1)

t
(n)
δ

,w

〉
RMm

∣∣∣∣∣
=
∣∣∣〈Âv(tn),w〉

RMm

∣∣∣.
Using (3.3.4), (3.2.2), the boundedness of the reaction terms due to Assumption A1, Theorem 3.8.3
and Hölders inequality we obtain the following estimate

∣∣∣〈Âv,w〉
RMm

∣∣∣ ≤ m∑
ν=1

{
c5|aν,h|H1,M|wν,h|H1,M + c6‖wν,h‖L2

}
.

Using the following arguments
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3 The discretized problem

• |wν,h|H1,M ≤ C‖wν‖H1(Ω), Assumption A6 is needed, see [32, Lemma 3.4];

• ‖wν,h‖L2 ≤ C‖wν‖H1 + ‖wν − wν,h‖L2 ;

• by a discrete Poincaré inequality (see (B.21)) results

‖wν − wν,h‖2L2(Ω) =
∑
K∈V

‖wν − wνK‖2L2(K)

≤ C diam(Ω)2
∑
K∈V

‖wν‖2H1(K) = C diam(Ω)2‖wν‖2H1(Ω),

we get

∣∣∣〈Âv,w〉
RMm

∣∣∣ ≤ (c7 m∑
ν=1

|aν,h|H1,M + c8

)
‖w‖X .

Thus we find

∥∥(KDuh)
′∥∥2

X∗ ≤

(
c7

m∑
ν=1

|aν,h|H1,M + c8

)2

a.e. t ∈ (tn−1, tn)

and by using ‖al‖L2(S,X) <∞ we obtain from (3.12.72) the following estimate

sup
D

N∑
n=1

∫ tn

tn−1

∥∥(KDuh)
′∥∥2

X∗ dt ≤ sup
D
c9

∫
S

(
m∑

ν=1

|aν,h|2H1,M + 1

)
dt <∞

for all D. Finally, together with supD ‖KDuh‖L2(S,X∗) ≤ c10 supD ‖KDuh‖L2(S,Y ) < ∞ we
obtain supD ‖KDuh‖H1(S,X∗) <∞.

3.12.4 Weak solution

In this subsection we prove that a subsequence of solutions to the discrete problems (3.3.PD) con-
verges to a weak solution of the continuous problem (2.2.P). We show the weak convergence of
subsequences in different spaces and by using a result of [85] we obtain strong convergence of a
subsequence of the chemical activities in L2(S, Y ). The result is proven under an assumption on
the discontinuities of the diffusion coefficients, reaction rate coefficients and reference densities.

Assumption A7. Let f ∈ L∞(Ω) with f(x) ≥ 0 f.a.a. x ∈ Ω and let I be a finite index set.
Furthermore, let Ω ⊂ R2 be a polygonal domain and let Ω = ∪I∈IΩI be a finite disjoint union of
subdomains such that the discontinuities of f coincide with the subdomain boundaries. Let the over
all one-dimensional measure of all internal subdomain boundaries be bounded by θ. There exists some
γ ∈ (0, 1] such that f ∈ C0,γ(ΩI) :=

{
w|ΩI

, w ∈ C0,γ(R2)
}
, I ∈ I .
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3.12 Convergence

In the following we understand under an non-labeled subsequence that a subsequence of (wn)n∈N

is again denoted by (wn)n∈N.

Theorem 3.12.3. We assume A1, A2, A3, and A4. Furthermore we assume that Ω, the reaction
rate coefficients k(α,β)(·,y), the diffusion coefficientsDν(·,y), and the reference densities uν satisfy
Assumption A7 for all (α,β) ∈ R, y ∈ Rm and ν = 1, . . . ,m. Let D = (M, (tn)

N
n=1) be a

sequence of discretizations fulfilling Assumptions A5 and A6. Then there exist â ∈ L∞(S, Y ) ∩
L2(S,X), û ∈ H1(S,X∗) ∩ L2(S, Y ) and non-labeled subsequences ah, al, uh such that

ah → â in L2(S, Y ), al ⇀ â in L2(S,X), (3.12.73)

uh → û in L2(S, Y ), KDuh ⇀ û inH1(S,X∗) (3.12.74)

as size(D) → 0. And (û, v̂) = (û, ln â) is a weak solution of the continuous problem (2.2.P).

Before we start with the proof we will rephrase the different types of convergence [28, 115]: al ⇀ â

in L2(S,X) as size(D) → 0means∫ T

0
〈al − â, g〉X∗ dt→ 0 ∀g ∈ L2(S,X∗).

Moreover al → â in Lq(S, Y ) as size(D) → 0 iff∫ T

0
‖al − â‖qY dt→ 0.

Finally (KDuh)
′ ⇀ û′ in L2(S,X∗) as size(D) → 0 iff∫ T

0

〈
(KDuh)

′ − û′, g
〉
X
dt→ 0 ∀g ∈ L2(S,X).

Have in mind, that the sequence of reference densities is bounded from above and below, i.e. there
exist 0 < cu ≤ cu <∞ such that

cu ≤ min
ν=1...,m

ess inf
x∈Ω

uν,h(x) ≤ uν,h ≤ max
ν=1,...,m

ess sup
x∈Ω

uν,h(x) ≤ cu,

see also Assumption A1.

Proof. In order to show the assertions of the theorem we proceed in several steps.

Weak Precompactness: Due to Lemma 3.12.2 and (3.12.68) we deduce the existence of functions

â ∈ L∞(S, Y ) ∩ L2(S,X), û ∈ H1(S,X∗) ∩ L2(S, Y ),
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3 The discretized problem

such that, at least for non-labeled subsequences,

1. uh → u in Y due to Lemma C.5,

2. al ⇀ â in L2(S,X), L2(S, Y ),

3. KDuh ⇀ û inH1(S,X∗), L2(S, Y ),

4. KDuh(t)⇀ û(t) in Y , and additionally in Lp(Ω)m for p ∈ [1,∞) for all t ∈ S

as size(D) → 0. Note that, due toTheorem 3.8.3 we can extract a subsequence such thatKDuh(t)⇀

û(t) in Lp(Ω)m for p ∈ [1,∞) and for all t ∈ S. By the definition ofKD and Lemma C.5 we have
uh(0) = KDuh(0) → U in Y for size(D) → 0, hence U = û(0). Using Definition 3.12.1 we find
that

‖uh −KDuh‖2L2(S,X∗) =
N∑

n=1

∫ tn

tn−1

(tn − t)2
∥∥(KDuh)

′∥∥2
X∗ dt

≤ t
2
δ

∥∥(KDuh)
′∥∥2

L2(S,X∗)
→ 0

and therefore for subsequencesKDuh(t)− uh(t) → 0 inX∗ and uh(t)⇀ û(t) inX∗ f.a.a. t ∈ S

as size(D) → 0. Due to Lemma 3.12.2 andTheorem 3.8.3 we get supD ‖al(t)‖Y <∞ for all t ∈ S,
hence there exists a non-labeled subsequence, such that al(t)⇀ â(t) in Y f.a.a. t ∈ S.

Strong convergence of the activities: Now we use a result of [85]: Let (ϕj)j∈N be an orthogonal
basis of L2(Ω). For all ε > 0 there exists aNε > 0 such that

‖w‖2L2(Ω) ≤
Nε∑
j=1

〈w,ϕj〉2L2(Ω) + ε‖w‖2H1(Ω) ∀w ∈ H1(Ω). (3.12.75)

We apply the result for different discretizations, i.e., w = aν,l − aν,l′ , ν = 1, . . . ,m, and obtain
after integration over S

∥∥aν,l − aν,l′
∥∥2
L2(S,L2(Ω))

≤
Nε∑
j=1

∫ T

0

〈
aν,l − aν,l′ , ϕj

〉2
L2(Ω)

dt+ ε
∥∥aν,l − aν,l′

∥∥2
L2(S,H1(Ω))

.

Note the boundedness of supD ‖aν,l‖L2(S,H1(Ω)). Since aν,l is bounded in Y for all t ∈ S, by the
dominated convergence theorem we conclude that (aν,l)D is a Cauchy sequence in L2(S,L2(Ω))

and therefore aν,l → âν inL2(S,L2(Ω)) for ν = 1, . . . ,m. Sinceuh/uh = ah and since ah−al →
0 in L2(S, Y ) (see (C.29)) we obtain

‖uh/uh − â‖L2(S,Y ) ≤ ‖ah − al‖L2(S,Y ) + ‖al − â‖L2(S,Y ) → 0.
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3.12 Convergence

On the other hand by using uh(t)⇀ û(t) inX∗ f.a.a. t ∈ S and supD ‖uh(t)‖Y <∞ for all t ∈ S

we obtain for a non-labeled subsequence uh(t)⇀ û(t) in Y f.a.a. t ∈ S. Now we apply the strong
convergence of uh → u in Y and the uniform boundedness from above and below of the sequence
(uh) to get

uh(t)/uh ⇀ û(t)/u in Y f.a.a. t ∈ S. (3.12.76)

Due to supD ‖uh/uh‖L2(S,Y ) <∞ we conclude by the dominated convergence theorem uh/uh ⇀

û/u in L2(S, Y ) which gives us â = û/u. Since ah is uniformly bounded from above and below
(see (3.12.68)) the bounds also hold for the limit â and therefore â is positive and v̂ := ln â. Using
the Assumptions A1 and A7 together with Lemma C.6 we conclude with some c > 0 that

‖Rνh(ah)−Rν(â)‖2L2(S,Y ) ≤ c‖Rνh(ah)−Rν(â)‖L1(S,Y ) → 0,

‖uνhDνh(ah)− uνDν(â)‖2L2(S,Y ) ≤ c‖uνhDνh(ah)− uνDν(â)‖L1(S,Y ) → 0
(3.12.77)

as sizeD → 0. This gives pointwise convergence a.e. for subsequences.

Weak solution: Since C∞
0 (Ω)m is dense in X we use test functions ϕ ∈ C∞

0 (Ω)m and a pure
time function χ ∈ C∞

0 (S). Set ϕ = (ϕν(xK))K∈V,ν=1...,m and ϕν,h(x) = ϕν(xK) for x ∈ K ,
K ∈ V . By ϕν,l we denote the piecewise affine interpolation ofϕ. Note that ϕν,l ∈ L∞(Ω). Let be
χ(tn) = (χ(tn) + χ(tn−1))/2 for n = 1, . . . , N . We note that

t
(n)
δ χ(tn) =

(t
(n)
δ )2

2t
(n)
δ

(χ(tn) + χ(tn−1))

=
1

t
(n)
δ

∫ tn

tn−1

χ(tn)(t− tn−1) + χ(tn−1)(tn − t) dt

=

∫ tn

tn−1

(KDχ)(t) dt, n = 1, . . . , N

(3.12.78)
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3 The discretized problem

and (KDχ) → χ in L2(S) (use the mean-value form of the Taylor series remainder). We use test
functions ϕχ(tn), t ∈ (tn−1, tn], n = 1, . . . , N for (3.3.4) and sum over n = 1, . . . , N to obtain
S1 + S2 = S3 with

S1 :=
N∑

n=1

t
(n)
δ χ(tn)

〈
u(tn)− u(tn−1)

t
(n)
δ

,ϕ

〉
RMm

,

S2 :=
N∑

n=1

t
(n)
δ χ(tn)

m∑
ν=1

∑
σ=T |L∈Eint

TσY
σ
ν (aνL − aνK)(ϕνL − ϕνK),

S3 :=
N∑

n=1

t
(n)
δ χ(tn)

m∑
ν=1

∑
K∈V

|K|RνK(aK)ϕνK =
m∑

ν=1

∫
Q
(KDχ)(t)Rν,h(ah)ϕν,h dx dt.

We remark that the interpretation of the discrete sums as an integral over Q = S × Ω like in the
last two lines is crucial for the convergence proof. In the following we will do this several times. We
define

Ŝ1 :=

∫
S

〈
û′, ϕ

〉
X
χdt,

Ŝ2 :=

m∑
ν=1

∫
S
χ

∫
Ω
Dν(â)uν∇âν · ∇ϕν dt dx,

Ŝ3 :=
m∑

ν=1

∫
S
χ

∫
Ω
Rν(â)ϕν dx dt.

Time derivative: Using (3.12.78) the term S1 can be interpreted as

S1 =

m∑
ν=1

∫
Q
ϕν,h((KDuν,h)(t))

′(KDχ)(t) dx dt.

By partial time integration (andKDχ(0) = χ(0) = χ(tN ) = KDχ(tN ) = 0) we obtain

S1 = −
m∑

ν=1

∫
Ω

∫
S
ϕν,h(KDuν,h)(t)((KDχ)(t))

′ dt dx.

Now we use ϕh → ϕ in Y , (KDχ)
′ → χ′ in L2(S),KDuh → û in L2(S, Y ) and û ∈ H1(S,X∗)

to find
lim

sizeD→0
S1 = −

∫
S
〈û, ϕ〉Y χ

′ dt = Ŝ1.
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3.12 Convergence

Reactions: Using (3.12.78) the reaction term S3 can be written in the form S3 = S31 + S32,

S31 :=

m∑
ν=1

∫
S
(KDχ)(t)

∫
Ω
(Rν,h(ah)−Rν(â))ϕν,h dx dt,

S32 :=
m∑

ν=1

∫
S
(KDχ)(t)

∫
Ω
Rν(â)ϕν,h dx dt.

Since ϕh → ϕ in Y we find S32 → Ŝ3 and by the Cauchy-Schwarz inequality we get

S31 ≤
m∑

ν=1

‖(KDχ)ϕν,h‖L2(Q)‖Rν,h(ah)−Rν(â)‖L2(Q).

For the first term we find limsizeD→0 ‖(KDχ)ϕν,h‖L2(Q) = ‖χϕν‖L2(Q) and due to (3.12.77) the

second term tends to zero, and we find limsizeD→0 S31 = 0, hence limsizeD→0 S3 = Ŝ3.

Diffusion: TheaverageY σ
ν , over a diamondDσ = TσK∪TσL related to the edgeσ, can be expressed

by

|Dσ|Y σ
ν = |TσK |uνKDνK(aK) + |TσL|uνLDνL(aL) =

∫
Dσ

uν,hDν,h(ah) dx

since |TσK | = |TσL| = 1
2 |Dσ| and uνKDνK(aK) constant onK . The weak gradient formulation

and (3.12.78) yield

S2 =

N∑
n=1

t
(n)
δ χ(tn)

m∑
ν=1

∑
σ=T |L∈Eint

|Dσ|Y σ
ν 2

(aνL − aνK)

dσ

(ϕ(xL)− ϕ(xK))

dσ

=
m∑

ν=1

∫
S
(KDχ)(t)

∫
Ω
uν,hDν,h(aν,h)∇waν,l · ∇ϕν,l dx

= S21 + S22

since the tangential component of the strong gradient is orthogonal to the normal component of the
weak gradient. Here

S21 :=
m∑

ν=1

∫
S
(KDχ)(t)

∫
Ω
(Dν,h(ah)uν,h −Dν(â)uν)∇w aν,l · ∇ϕν,l dx dt,

S22 :=

m∑
ν=1

∫
S
(KDχ)(t)

∫
Ω
Dν(â)uν∇w aν,l · ∇ϕν,l dx dt.
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3 The discretized problem

Applying the Cauchy-Schwarz inequality and the boundedness ofKDχ∇ϕν,l and of the reference
densities we find with a constant c > 0

S21 ≤
m∑

ν=1

c‖∇w aν,l‖L2(S,L2(Ω)2)‖uν,hDν,h(ah)− uνDν(â)‖L2(S,L2).

Using (3.12.77), the estimate ‖∇waν,l‖L2(S,L2(Ω)2) ≤ 2‖∇aν,l‖L2(S,L2(Ω)2), and Lemma 3.12.2 we
obtain S21 → 0 as size(D) → 0. For S22 we use weak-strong convergence with al ⇀ â inL2(S,X)

and (KDχ)ϕl → χϕ in L2(S,X) to find limsize(D)→0 S22 = Ŝ2 hence limsize(D)→0 S2 = Ŝ2.
Since S1 + S2 = S3 and limsize(D)→0 Si = Ŝi for i = 1, 2, 3 we have shown that (û, v̂) = (û, ln â)
is a weak solution of the continuous problem (2.2.P) in the sense of (2.2.3).

Corollary 3.12.4. We assume A1, A2, A3, and A4. Furthermore we assume that Ω, the reaction
rate coefficients k(α,β)(·,y), the diffusion coefficientsDν(·,y), and the reference densities uν satisfy
Assumption A7 for all (α,β) ∈ R, y ∈ Rm and ν = 1, . . . ,m. Let D = (M, (tn)

N
n=1) be a

sequence of discretizations fulfilling Assumptions A5 and A6. Moreover, let (û, v̂) be a weak solution
of the continuous problem (2.2.P). Then there exists a subsequence of solutions (uh, vh) to (3.3.PD)
with the convergence properties stated in Theorem 3.12.3 such that

‖Fh(uh)− F (û)‖L2(S) → 0 as size(D) → 0,

where Fh(uh) denotes the corresponding piecewise constant reconstruction of the discrete free energy
F̂ (u), i.e.,

Fh(uh) :=

m∑
ν=1

∫
Ω

(
uν,h ln

uν,h
uν,h

− uν,h + uν,h

)
dx = F̂ (u).

Moreover, for the relative free energyΨh(uh) := Fh(uh)− F (u∗h) holds

‖Ψh(uh)−Ψ(û)‖L2(S) → 0 as size(D) → 0. (3.12.79)

Proof. Let c be a positive constant with varying meaning. Thanks toTheorem 3.8.3 we get

‖ln(uh/uh)− ln(û/u)‖L2(S,Y ) = ‖ln ah − ln â‖L2(S,Y )

≤
‖ah − â‖L2(S,Y )

minν=1...,m ess infx∈Ω âν(x)
→ 0

and together with Lemma C.5 and uh → û in L2(S, Y ) we obtain the following estimate

S1 = ‖Fh(uh)− F (û)‖2L2(S)

≤ c‖ln(uh/uh)− ln(û/u)‖2L2(S,Y ) + c‖uh − û‖2L2(S,Y ) + c T‖uh − u‖2Y → 0
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3.13 Comments on 3D

as size(D) → 0. Since u∗h = uh
u u

∗ and a∗h = a∗ holds (see [56, Corollary 3.1]) and by Lemma C.5,
we find

‖F (u∗h)− F (u∗)‖2L2(S) ≤ c T

m∑
ν=1

‖a∗ν(ln a∗ν − 1) + 1‖L∞(Ω)‖uν,h − uν‖2L2(Ω) → 0,

from which the second assertion follows.

Remark 3.12.5. In the case where the diffusion coefficients only depend on the space variable and not
on the state variable we have uniqueness of the weak solution (û, v̂) of the continuous problem (2.2.P)
as proven in [63, Theorem 5.6]. Assume by contradiction that there exist two converging subsequences,
then one can repeat the proof of Theorem 3.11.1 and Section 3.12 and use [63, Theorem 5.6] to conclude
that there exists only one limit point. Therefore not only a subsequence converges, but so does the whole
sequence.

3.13 Comments on 3D

This section discusses the generalization of the previous obtained results to three space dimensions.
All results of the Sections 3.4- 3.11 can be extended to three space dimension. However, the reaction
order in Section 3.8, 3.9, and 3.10 is more restrictive than in two space dimension.

In the proof of the uniform exponential decay of the discrete free energy (see Theorem 3.9.3) the
restriction of the reaction order is required by some steps in the proof due to the use of a discrete
Sobolev-Poincaré inequality. Using the new results concerning the discrete Sobolev-Poincaré in-
equality in [10], see (B.22), instead of [60, Theorem 2.2] the estimate of (3.9.41), (3.9.42), and (3.9.52)
holds true for p ∈ [1, 6]. Hence the estimate of (3.9.46) and (3.9.56) is valid up to a reaction order
less or equal to 3. In two space dimension this result remains true for reaction of arbitrary finite
order.

The uniform upper boundedness of the discrete solutions is obtained by Moser iteration, which
needs an initial bound in some Lp, p ≥ 1 space. In order to get an L2 bound (see (3.8.28)), we
estimate the growth of the reactions terms by a Gagliardo-Nirenberg inequality stated in Corollary
B.6. The resulting H1-norm is compensated by the H1-norm of the diffusion term. From (B.20)
follows that p ≤ 2d+1

d = 8
3 in (B.23) for d = 3. Hence on the results of (B.23) our technique to

get uniform upper works also in three space dimensions, provided that the order of the reaction
source terms (see (2.1.1)) is less or equal to 5

3 . This is exactly the same restriction as in the continuous
situation, see Chapter 2 and [46].

In the proof of convergence, we use the feature that in two space dimensions, the associated
discreteH1-seminorm is equivalent to theH1-seminorm of the linear finite element reconstruction
method. Numerical experiments suggest that they are also equivalent in three space dimensions
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3 The discretized problem

under some conditions on the mesh. If this result would be proved rigorously, the proofs in Section
3.12 can be extended to three space dimensions.
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4

Implementation of the scheme

Abstract In Chapter 3 a scheme is presented which is unconditionally stable and respects the physical
properties of the continuous problem. Now we provide ideas how to implement the method in case
of MMH kinetics, and to solve the discrete nonlinear system of equations by Newton’s method. Our
aim is to preserve the qualitative properties of the scheme during the calculations, especially for long
time intervals. During the evolution of the system, the invariance property of the solution (3.4.1)
is violated for finite precision arithmetic. This leads to a nonphysical behavior of the solutions, see
Remark 3.7.5 and Section 5.2. Therefore we present a possible approach to preserve the invariance
property of the solution (3.4.1) up to roundoff errors. The focus of Subsection 4.2 is the solution of
the resulting linear systems, which must be solved in every Newton step. The implementation was
done in Fortran and is parallelized by OpenMP [109]. Some core routines (BDF time stepping and
vector routines) are borrowed from [49].

In this chapter, the reaction rates, diffusion coefficients, and reference densities are assumed to
be constant per triangle and the interfaces of different materials are aligned to the triangle edges,
see also Assumption A7. Let |VKT | be the Voronoi volume of the vertex xK ∈ T with respect to a
simplex T = (xK , xL, xM ) ∈ P3 of the Delaunay mesh, see Remark 3.2.1. With uνT , k(α,β)T we
denote the constant value of the reference densities and reaction rates on a triangle T ∈ T of the
Delaunay mesh (P, T ).

4.1 Solution of the nonlinear equations

Due to the implicit time discretization of the discrete problem (3.3.PD), it is necessary to solve a
nonlinear system of equations in every time step. This means, in every time step we search for a
tuple of vectors (ũ, ṽ) which is a solution of the discrete Problem (3.3.PD). Following the idea of
[43], in the developed code the assembly of the discrete Problem (3.3.PD) is done element wise over
the triangles of the Delaunay triangulation (see Remark 3.2.1).
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4 Implementation of the scheme

For that reason, we introduce the vector of reference densities multiplied by the volumeK in the
form

uν =

 ∑
T∈NT (K)

|VKT |uνT


K∈V

, u = (uν)
m
ν=1 .

Since the reference densities are fixed over the evolution, the vector can be precomputed.

Considering the discrete Problem (3.3.PD), we search for a vector of chemical potentialsw such
that

B̂(w) =
u ew −u(tn−1)

t
(n)
δ

+ Âw = 0, Êw ∈ Û −U (4.1.1)

holds. Note that the operator B̂ is different to the operator B̂ introduced in Chapter 3. Newtons’s
method uses a Taylor expansion of (4.1.1) around a predictor v(0) = lna(0) = ln u(0)

u for the
solution at time tn. The resulting linear system

JB̂(v
(0))δv = −B̂(v(0)), (4.1.2)

consists of the Jacobian matrix JB̂, the function B̂, and the Newton update δv .

The solution δv of the linear system can be used to obtain a better approximation v(1) = v(0)+δv

of the solution of (4.1.1). The iteration process is repeated, expected the convergence of the method,
until a sufficiently accurate value is reached.

The appropriate choice of the initial guess v(0) for the solution at time tn has a big impact on
convergence property of the method. If v(0) is far away from the solution, the Newton method is
out of the quadratic convergence region and needs a lot of steps to reach this region. As predictor
v(0), we use an exponential extrapolation (in time) of the last two solutions in activities. In other
words, a linear extrapolation of the last two solutions in chemical potentials

v(0) = v(tn−1) +
tn − tn−2

tn−1 − tn−2
(v(tn−1)− v(tn−2)) .

Sincea(0) = ev(0) holds, it follows that the predictor preserves the positivity of the chemical activities.
The vector v(0) does not fulfill the invariance property of the solution, see Lemma 3.4.1. Linear
extrapolation of the chemical activities in time preserves the mass invariance property as long as
the two previously accepted solutions fulfill this property (exploit linearity of the extrapolation and
of the affine space Û + U ). But the linear extrapolation can violate the positivity of the chemical
activities, hence the domain of the operator Â is violated and the behavior of the free energy is
undefined. In the Example 5.4, we return to this topic again.
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4.1 Solution of the nonlinear equations

Remark 4.1.1. We have carried out some experiments with an explicit time integrator as predictor, i.e.,
an explicit Euler method

u(ti)−u(ti−1)
tδ

+ Âv(ti−1) = 0, u(ti) = Êv(ti), i ≥ 1,

u(0) = u(tn−1).

}

or a second order Adams–Bashforth method (see [24, 70])

u(ti)−u(ti−1)
tδ

+ 3
2Âv(ti−1)− 1

2Âv(ti−2) = 0, u(ti) = Êv(ti), i ≥ 2,

u(0) = u(tn−1).

}

and a reduced time step tδ , but still violating the CFL condition c tδ
(diamK)2

≤ 1 with some positive
constant c depending on the data of the problem, see [116]. The instability results in an inaccurate forecast
of the solution at time tn. It does not solve the problem of positivity and preserving of invariants.

In the following we describe the different parts of the Jacobian JB̂ = JT + JR + JD, consisting
of the Jacobian of the time derivative JT , the Jacobian of the flux term JD and the Jacobian of the
reaction term JR.

Time derivative The function of the time derivative can be expressed as

u(0) − u(K)(tn−1)

t
(n)
δ

.

Differentiating the term with respect to the chemical potentials v(0) we obtain

JT :=
1

t
(n)
δ

[
u(0)

]
. (4.1.3)

Both the function and the Jacobian can be computed in a loop over all vertices in the mesh.

Reaction term Let

k(α,β) =

 ∑
T∈N (K)

|VKT |k(α,β)T


K∈V

be the vector containing the reaction rates multiplied by the volume of the control volume. The
reaction term of all species can be written in the form

R =

 ∑
(α,β)∈R

(αν − βν)k(α,β)

(
eα·v(0)

K − eβ·v
(0)
K

)
K∈V

m

ν=1

. (4.1.4)
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4 Implementation of the scheme

Since the reaction rates are independent of the state, the vector can be precomputed at the beginning.
Only the last vector

(
eα·v(0)

K − eβ·v
(0)
K

)
K∈V

changes from Newton step to Newton step.

LinearizingR around v(0), we obtain JR := JRSJRKJRV with

JRS = S ⊗ IdM , JRK =
⊕

(α,β)∈R

[k(α,β)],

JRV =
((

diagK∈V

(
αν eα·v(0)

K −βν eβ·v
(0)
K

))m
ν=1

)
(α,β)∈R

.

HereS⊗IdM denotes theKronecker product of the twomatricesS and IdM and
⊕

(α,β)∈R[k(α,β)]

the direct sum of all diagonal matrices [k(α,β)], (α,β) ∈ R.

Thematrix JRK can be precomputed and thematrix JRS is a permutationmatrix, only thematrix
JRV has to be recomputed in every Newton step, but this is only a loop over all vertices in the mesh.
We remark that the vector of reactionsR can be written in a symmetric form, see [90], however the
Jacobian JR is non symmetric. Only at thermodynamic equilibrium the matrix JR is symmetric,
since then eα·v(0)

K = eβ·v
(0)
K holds in every control volume K ∈ V and for all (α,β) ∈ R, see

Section 3.7.

Flux term In order to assemble the flux term over a triangle T we introduce the following matrix

G2 =

 0 −1 1

1 0 −1

−1 1 0

 . Then 1G2 = 0, (GT
2G2)ii > 0, (GT

2G2)i>j < 0. (4.1.5)

The diagonal matrix [γ] contains the geometric weights per simplex (the transmissibility Tσ of the
edge σ). The element matrixG2 maps nodal values to edge differences on a triangle. The local (per
triangle) analogon of the flux term (3.3.3) reads as follows∑

T∈T
GT

2 [YνT ][γ]G2a
(0)
νT (4.1.6)

wherea(0)
νT = ev

(0)
νT is the vector containing the activities of species ν in the nodes of triangle T . Here

the diagonal matrix [YνT ] is created from the vector YνT containing the values of the mean value
Y σ
ν of the involved edges of the triangle T . If the diffusion coefficient and the reference density are

assumed to be piecewise constant on the triangle T , then the matrix [YνT ] is a scaled identity matrix.

The Jacobi matrix is obtained by differentiating the term (4.1.6) with respect to v(0), which results
in ∑

T∈T
GT

2 [YνT ][γ]G2[a
(0)
νT ]. (4.1.7)
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4.1 Solution of the nonlinear equations

This form has the advantage, that all computations can be done on a triangle and then the local
quantities can be distributed into the global Jacobi matrix JD of the system and the global function
vector. Every species creates a diagonal block of the sizeM ×M in the matrix JD. The sparsity
pattern of all these diagonal blocks is fixed for a given mesh. Therefore, the displacement vector
mapping the local element matrices in the global matrix JD can be computed once, which speedups
the assembly.

The boundary conforming Delaunay property yields Tσ ≥ 0 and therefore [γ] ≥ 0, see [58,
Remark, p. 2504]. If the diffusion coefficients are independent of the state, the resulting matrix is an
irreducible M-Matrix, since JD[a]−1 is symmetric positive semidefinite.

Remark 4.1.2. If the diffusion coefficients dependent on the state variable one has to apply the product
rule to (4.1.6) and differentiate [YνT ] with respect to the dependent chemical potentials. For the first
term of the product we obtain (4.1.7). For the differentiation of the vector YνT with respect to the
dependent chemical potentials it is useful to apply the identity∑

T∈T
GT

2 [YνT ][γ]G2a
(0)
νT =

∑
T∈T

GT
2 [γ][G2a

(0)
νT ]YνT (4.1.8)

and then to differentiate with respect to the dependent chemical potentials. Every depending species in
a diffusion coefficient creates an additional off-diagonal block of the sizeM ×M in the matrix JD.
The structure of this block is equal to the structure of the diagonal block, since (4.1.7) and (4.1.8) have a
identical structure per triangle.

Mass invariance After linearization we search for a vector δv such that

JB̂(v
(0))δv = −B̂(v(0)) (4.1.9)

and Ê(a(0)δv) ∈ Û + U . This means, we are only interested in solutions fulfilling Lemma 3.4.1.
The mass invariance property is essential for large time steps. Only together with this property
the free energy takes its minimal value at thermodynamic equilibrium, see Section 3.4. Numerical
experiments in Section 5.2 show a drift of the invariants after some time steps. Hence we take care
of the constraint. This phenomenon is also known in the context of ODE’s with integral constraints,
see [24, 71, 92].

LetmS⊥ = dim Û⊥ be the number of invariants in the system. The function g : RMm → RmS⊥

is introduced by

g(w) =
(〈

u ew −U ,w⊥
〉
RMm

)
w⊥∈Û⊥

, w ∈ RMm,
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4 Implementation of the scheme

see Section 3.4. Then the constraint Êv(i) ∈ Û+U is equivalent to g(v(i)) = 0, i ∈ N. Linearizing
g around v(0) leads to the linear system JN (v(0))δλ = −g(v(0)) with the Jacobian matrix JT

N ∈
RMm×mS⊥ and a vector δλ ∈ RmS⊥ . The columns of the Jacobian consist of

JT
N (v(0)) =

([
w⊥
]
u(0)

)
w⊥∈Û⊥

. (4.1.10)

Following [52, §4] we introduce the following two bilinear continuous forms a(·, ·) : RMm ×
RMm → R and b(·, ·) : RMm × RmS⊥ → R by

a(δv,w) =
〈
JB̂δv,w

〉
∀w, δv ∈ RMm,

b(δv,µ) = 〈JNδv,µ〉 ∀δv ∈ RMm, ∀µ ∈ RmS⊥ .

We consider the following problem: Given B̂(v(0)) ∈ RMm and g(v(0)) ∈ RmS⊥ , find (δv, δλ) ∈
RMm × RmS⊥ such that

a(δv,w) + b(w, δλ) =
〈
−B̂(v(0)),w

〉
∀w ∈ RMm,

b(δv,µ) = 〈−g,µ〉 ∀µ ∈ RmS⊥ .

Since b(δv,µ) = 〈JNδv,µ〉 =
〈
δv, J

T
Nµ
〉
holds, we can write: Find δ := (δv, δλ) ∈ RMm ×

RmS⊥ such that

K(v(0))δ =

(
JB̂(v

(0)) JT
N

JN 0mS⊥

)(
δv

δλ

)
= −

(
B̂(v(0))

g(v(0))

)
= f . (4.1.11)

If (δ,λ) is a solution to (4.1.11), then Ê(v(0)+ δv) ∈ Û +U holds and δv is a solution of the initial
problem (4.1.9). The resulting linear system (4.1.11) has a saddle-point structure and the JacobianK
is a sparse, non symmetric block matrix with dimension (mM +mS⊥)× (mM +mS⊥) (in case
of MMH (4M + 2)× (4M + 2)).

Remark 4.1.3. The part JR+JD of the Jacobian JB̂ is underdetermined. If the time step is sufficiently
small, the linear system (4.1.2) is regularized by JT (see (4.1.3)). Since this constraint contradicts long
time calculations, the linear system (4.1.2) is regularized by JN . Further, in order to guarantee the
solvability of the system in finite precision arithmetic near the thermodynamic equilibrium (for large
time steps)mS⊥ additionalDirichlet values are introduced. Thismeanswe deletemS⊥ linear dependent
rows and columns in JB̂ and solve a regularized system. The Newton update δv is then obtained using
the Schur complement with respect to the regularized linearized reaction-diffusion system. TheDirichlet
values are introduced by adding a large value on the diagonal of the Jacobian at the position responsible
for the deleted equations. The selection of the deleted equations is arbitrary. In the implementation,
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4.1 Solution of the nonlinear equations

we delete the equations responsible for control volumeK where the largest dissipation (rate) density
occurs.

In case of the MMH mechanism mS⊥ = dim(S⊥) = 2 holds, therefore we have two Lagrange
multipliers responsible for the two mass invariants. We delete one equation in the block of X2 and one
equation in the block of X3. The resulting full Jacobian of the system has four additional columns and
rows.

Algorithm The implemented Newton method is depicted in Algorithm 4.1.4.

Algorithm 4.1.4 (Newton(a(0), ε, ĉ)).

Input: Predictor a(0) = ev(0) , εr > 0,εm > 0, εΨ ≥ 0 ĉ > 0, nnonl
Output: Approximation a(nnonl) of the solution at time tn after nnonl = i Newton steps.
Set i = 0.
Do:

1. SolveK(v(i))δ = f

2. If |δv,j | < ĉ for at most one j = 1, . . . ,Mm set δv,j = sign(δv,j)ĉ
3. Update v(i+1) = v(i) eδv and i = i+ 1

As long as:
· i ≤ nnonl, or
· ‖δv‖L∞ > εr, and
·
∥∥g(v(i))

∥∥
L∞ > εm, and

· Ψ̂(ua(i))− Ψ̂(u(tn−1)) > εΨΨ̂(U) holds.

Since the chemical potentials are the primary variables, the update is multiplicative rather than
additive, which preserves the positivity of the activities during the iteration, see [48]. In step 2 of
Algorithm 4.1.4 we cut large updates in the potentials. This is an ’implicit’ damping of the Newton
method due to the reliably of the first order expansion of the exponential function (Boltzmann
statistics).

TheNewton iteration stops if ‖δv‖L∞ ≤ εr , where δv is theNewton update of chemical potentials
and εr is a given tolerance [48]. The second criterion

∥∥g(v(i))
∥∥
L∞ ≤ εm controls the error of the

mass invariants. The third criterion controls the decay of the relative free energy. Due to Lemma
3.6.1 this solution is only true if the free energy decays in time. Due to roundoff errors near the
thermodynamic equilibrium this criterion cannot be exactly fulfilled and must be relaxed by some
positive εΨ. In Chapter 5 we choose εr = 10−4, εm = 10−15, and εΨ = 10−10.

Typically the Newton method requires more steps to fulfill the mass invariance error, hence the
first criterion is fulfilled with higher accuracy than required.
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4 Implementation of the scheme

4.2 Solution of linear equations

After linearization it remains to solve a linear system per Newton step. In a first step we answer the
question invertibility of the linear system 4.1.2. In a second step we solve the linear system by a direct
solver.

Direct solution

The full JacobianK is inverted using the Schur complement of the matrix. MultiplyingK by−J−1

B̂
and adding the first block row and the second block row we obtain(

JB̂ JN

0 −JT
NJ

−1

B̂
JN

)(
δv

λ

)
=

(
B̂

g − JT
NJ

−1

B̂
B̂

)
. (4.2.12)

In a first step the systems

JB̂δJN = JN , JB̂δ̃ = B̂

are solved using the sparse direct solver Pardiso [117]. Next the correction λ is obtained by solving
−JT

NδJNλ = g− JT
N δ̃ using the LAPACK routine dgesv. Using λ we obtain the Newton update by

δ = δ̃ − δJNλ. This calculation is applicable if rk JN � rk JB̂, which holds for many applications.
In the example of MMH rk JN is 4 (two invariants and two ’Dirichlet points’). In order to save some
computational time, the LU-factorization of JB̂ can be frozen over some Newton steps. The Newton
update is computed using the frozen LU-factorization as preconditioner used in cgs iterative method.
A new factorization is calculated if the iteration time is larger than the factorization time, see [112].

Remark 4.2.1. We have done experiments with fully iterative methods for the solution of the linear
system in case of MMH-Kinetic. Due to the large differences of the diffusion and reaction timescales, the
strong coupling of the equations, and the constraints of the mass invariants, the development of a fully
iterative method is challenging. The different regimes of the system need appropriate preconditioners
which cover the physics of the system. In addition, the method must ensure the invertibility of the block
row containing the equations of species 2 and 3 independently of the time step. This is a topic of future
research.

4.3 Adaptive time stepping

An important topic with respect to long time calculations is the adaptation of the time step. The goal
is to make large time steps under the consideration that the discretization error is acceptable and
the qualitative properties are preserved. In this spirit, the presented method adapts the time step to
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4.3 Adaptive time stepping

the number of Newton steps and to the variation of suitable functionals. In contrast to the standard
adaptive time step schemes [24, 71, 87], the main difference in this approach is the use of suitable
functionals providing informations about the time scales of the system. This approach works well in
the simulation of semiconductors, see [42, 57].

Let nnonl be the maximal number of nonlinear iterations and nord the order of the time discretiza-
tion scheme, see [24, 70]. In case of the implicit Euler method nord = 1 holds. Moreover let ginc,
gdec be given factors for the increment, decrement of the time step, and gsav is a safety factor.

Let nF be the number of all controlled functionals and the predicted value u(0) for the solution
u(tn) at time tn, n > 0. The method calculates the maximum relative error between the predicted
value Θ̂(1)

i = Θ̂i(u
(0)) and the computed value Θ̂(2)

i = Θ̂i(u(tn)) of all controlled functionals
i = 1, . . . , nF , i.e.,

ω = max
i=1,...,nF

∣∣∣Θ̂(1)
i − Θ̂

(2)
i

∣∣∣(∣∣∣Θ̂(2)
i

∣∣∣+ εabs

)
εrel

with the relative and absolute error tolerance εrel and εabs. The decision whether a time step is
rejected or accepted is done by the following two rules:

• The step is rejected if the difference between predictor and corrector is large or and the new
time step t(n+1)

δ is calculated by

t
(n+1)
δ =

t
(n)
δ gdec, if ω > 4 or nnonl > nnonl,

gsav
t
(n)
δ

ginc ω
1/(1+nord)

, if ω > 1.

• If the difference between predictor and corrector is acceptable ω ≤ 1 a new time step is
obtained by

t
(n+1)
δ = min

(
gsavt

(n)
δ ω−1/(1+nord), t

(n)
δ ginc

)
.

and if 3nnonl > nnonl or t
(n+1)
δ ≤ t

(n)
δ the time step is adjusted by the number of Newton

iterations, i.e.,

t
(n+1)
δ =


(t

(n+1)
δ + t

(n)
δ )/2 if 2.3nnonl < nnonl,

t
(n)
δ /2 if 1.5nnonl < nnonl,

t
(n)
δ gdec if nnonl > nnonl.

We choose the relative free energy Ψ̂ and the dissipation D̂ of the system as suitable functionals.
As already mentioned in Section 3.6, the free energy is a Lyapunov function of the system, which
provides information about the timescales of the system and measures the distance to thermody-
namic equilibrium, see also Chapter 5. In Chapter 5 we choose nnonl = 10, εrel = 0.3, εabs = 1,
ginc = 1.6, gdec = 0.6, and gsav = 0.8.
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4 Implementation of the scheme

Remark 4.3.1. The method is implemented as backward differentiation formula (BDF) (see [24, 71]),
so that it is possible to use a higher integration order. Since a BDF method of order s > 1 requires
s− 1 solutions from the previous time steps, a second integration method must be applied to obtain the
necessary initial data. This can be done by using a s − 1 step BDF method. We mention that a BDF
method is only A-stable for s ≤ 2 (second Dahlquist barrier), see [71]. Numerical experiments show
that higher orders cause more time step rejections on coarse meshes due to non resolved features of the
solution, see Section 5.5. Up to now, there are no theoretical investigations about monotonous decay of
the free energy in case of higher order time discretizations (s>1). Possible starting points are [18, 29, 44].

Remark 4.3.2. We also experimented with other functionals like the distance (2.3.7). In [42] the author
notes that this measure is effective for the van Roosebrock system. In our situation we saw no significant
differences between (2.3.7) and the used relative free energy and the dissipation rate of the system as
controlled functionals.
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Numerical Example

Abstract The aim of this chapter is to illustrate the behavior of the analyzed method. Since the
system is nonlinear and an analytical solution is not known, our focus is the preservation of phys-
ical properties, a demonstration of the different timescales of the system, and finally reaching the
thermodynamic equilibrium. The examples are selected in such a way that they consider various
properties of the scheme. In order to cover the wide range of applications in biology and chemistry,
the used parameters have sometimes a large variation. The ranges are inspired by [30, 41, 106]. At the
beginning, we rephrase the Michaelis-Menten-Henri reaction mechanism. Section 5.2 illustrates the
preservation of the invariance property of the discrete solution. In Section 5.3, we consider the first
simple example including a heterogeneous material. The solutions of the system may contain layers
on the boundary of two materials. In the forthcoming section, the method is applied to examples
of different complexity. The example of Section 5.4 includes anisotropic meshes and is inspired by a
process coming from the manufacturing of semiconductors, see Section 1.3. Then we are interested
in the convergence behavior of the relative free energy and dissipation rate on varying meshes. Addi-
tionally we replace the implicit Euler method by a second order backward differentiation formula for
time integration. In Section 5.6, we consider an example, where three materials meet each other in
one point. The challenges of Section 5.7, a daisy with 12 petals, are a non convex domain, vanishing
reaction rate coefficients in some regions of the domain. The chapter is closed by an example in
Section 5.8 about the behaving of the scheme if the reactions becomes fast and a summary in Section
5.9.

5.1 Introduction

In the following we present different examples involving the MMH reaction mechanism [17], see
Example 1.4.1. The reaction step is present in themodeling of a pattern doubling process by a catalytic
cross-linking of a spacer, triggered by residual acid diffusion from a previously developed primary
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5 Numerical Example

structure into the spacer, see Subsection 1.3.2. Double patterning is a possible option used in optical
lithography to create lines with a structure size less than 48nm, see Section 1.3.

As already stated in Example 1.4.1, the reaction step can be symbolically expressed by

X1 + X2 
 X3 
 X4 + X2,

where X1 is a precursor, X2 is an acid, X3 is an intermediate, and X4 is a cross-linked polymer. Corre-
spondingly, the setR consists of two pairs of vectors, namelyα1 = (1, 1, 0, 0) and β1 = (0, 0, 1, 0)

for the first reaction as well asα2 = (0, 0, 1, 0) and β2 = (0, 1, 0, 1) for the second reaction. Due
to the definition of the reaction term (1.4.6), the net production rates of the species are given by

R1(a) = −k(α1,β1)
(a1a2 − a3),

R2(a) = −k(α1,β1)
(a1a2 − a3) +k(α2,β2)

(a3 − a2a4),

R3(a) = +k(α1,β1)
(a1a2 − a3) −k(α2,β2)

(a3 − a2a4),

R4(a) = +k(α2,β2)
(a3 − a2a4).

The stoichiometric subspace S and its orthogonal complement S⊥ are spanned by

S = span{(1, 1,−1, 0), (0,−1, 1,−1)}, S⊥ = span{(1, 0, 1, 1), (0, 1, 1, 0)}.

Every element ofS⊥ represents one invariant of the system, i.e.,R1+R3+R4 ≡ 0 andR2+R3 ≡ 0

hold, and hence ∫
Ω
(u1 + u3 + u4)(t) dx =

∫
Ω
(U1 + U3 + U4) dx, (5.1.1)∫

Ω
(u2 + u3)(t) dx =

∫
Ω
(U2 + U3) dx ∀t ≥ 0 (5.1.2)

are conserved during the time evolution. At thermodynamic equilibrium the chemical activities are
constant, therefore the solution can be obtained by solving

0 = R1(a
∗) = a∗1a

∗
2 − a∗3, 0 = R4(a

∗) = a∗2a
∗
4 − a∗3

together with (5.1.1), (5.1.2). In the model that we have in mind, see Subsection 1.3.2, the diffusion
coefficient of X2 is given by

D2(a1, a4) = D20 exp
(
−ϕ3

ϕ1u1a1 + (1− ϕ1)u4a4
ϕ2u1a1 + (1− ϕ2)u4a4

)
,
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5.2 Homogeneous material

where ϕ1, ϕ2, ϕ3 are constants, see [41]. All other diffusion coefficients are assumed to be piecewise
constant and independent of the concentration.

5.2 Homogeneous material

In a first example we illustrate the effect of the four Lagrangian multipliers (two for the invariants
and the two for the Dirichlet values). The calculation is done for the domainΩ = (−1, 1)2 on a grid
with 3260 nodes created by Triangle [120]. In order to show the long time stability of the method,
we choose the time interval S = [0, 1025].

We choose diffusion coefficients (D1, D20, D3, D4) = (0.01, 10−4, 0.1, 1), ϕ1 = 1, ϕ2 = 1,
ϕ3 = 0 and reaction coefficients k+1 = 109, k−1 = 3 · 102, k+2 = 3 · 10−5, k−2 = 40. Using the
results of Section A.1, we can choose the reference densities and reaction rate coefficients such that
the chemical potentials are constant in thermodynamic equilibrium.

The species concentrations are plotted in Figure 5.1 at times t = 10−10, 0.1, 1.0, 10.0 and 1010.
Every column in Figure 5.1 represents a gray straight line in Figure 5.2. First the green humps of X1
and X2 react. Then X1 diffuses and eats X2 away. If the hump of X2 is eaten up, the system reacts to
the steady state.

We consider three experiments: Each of the three figures in Figure 5.2 show the time dependence
of the relative free energy and the dissipation rate divided into the reaction and diffusion part, as
well as the relative error of the invariants (5.1.1) and (5.1.2).

1. In the first experiment, the only stopping criterion for Newton’s method is ‖δv‖L∞ ≤ εr,
whereδv is theNewton update of chemical potentials and εr is a given tolerance, seeAlgorithm
4.1.4. In Figure 5.2a, the free energy decays monotonously and the different parts of the
dissipation decay, too. Near to the thermodynamic equilibrium, the time step is not sufficiently
small to guarantee the invertibility of the Jacobian in finite arithmetic. Therefore the system
violates the invariants to the extent that the linear system is solvable since the stopping criterion
εr (see Algorithm 4.1.4) is to slack. The invariant violation results in a larger deviation of
the relative free energy from its minimum value and from the thermodynamic equilibrium
solution. Moreover the method is not stable at thermodynamic equilibrium. After some time,
the relative free energy begins to grow strongly.

2. The growth of the invariant error can be controlled by a sharper εr. Another option is to
include the relative mass invariant error as an additional stopping criterion. This was done
in the second calculation. The results are depicted in Figure 5.2b. The invariants are well
preserved during the calculation and the free energy decays as expected. Long before the ther-
modynamic equilibrium of the system, the simulation runs into trouble due to the singularity
of the Jacobian in finite precision arithmetic. Hence the time step must be reduced in order to
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5 Numerical Example

t : 10−10 0.1 1.0 10 1010

u1

u2

u3

u4

Figure 5.1: Concentrations of all species at different times. Every column represents a gray straight line in
Figure 5.2

regularize the system. The simulation was cancelled after 835 time steps (t = 7.381 · 10−10)
due to the large number of rejected time steps.

3. In the last experiment, we use the proposed method with the four Lagrangian multipliers in
order to obtain the solution. The relative error of the two invariants (5.1.1) and (5.1.2) is of the
order of machine epsilon 2.22·10−16. The plot of Figure 5.2c shows the expectedmonotonous
(and exponential) decay of the free energy and the expected non-negativity of the dissipation
rate up to roundoff errors.

The number of time steps and Newton steps are summarized in Table 5.1. In contrast to the first
naive approach, the last approach results in a slightly higher number of Newton steps. But as already
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(b) Second experiment
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(c) Third experiment

Figure 5.2: Time dependence of the relative free energy (red) and dissipation rate (diffusion part - green,
reaction part - blue). Invariants conservation (rel. error, light blue, pink). Every gray straight line represents
one column in Figure 5.1

mentioned, the first approach violates the invariance property of the solution which leads to an im-
proper approximation of the thermodynamic equilibrium solution. Due to the time step constraint,
we register a huge number of rejected time steps.

Alg. variant 1 2 3

Acc. Newton 654 NA 871

#tδ tot.(rej.) 413 (0) 835 (286) 402 (0)

Ratio 1.58 NA 2.17

Table 5.1: Summary of the simulation: accumulated Newton steps, total number of time steps including
rejections and mean value of Newton steps per time steps. The second experiment was cancelled at t =
7.381 · 10−10
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5.3 Layer behavior

We consider the MMH-kinetic on a domain Ω = Ω1 ∪ Ω2 consisting of two different materials
Ω1 = (0, 1] × (0, 1) and Ω2 = [1, 2) × (0, 1). The mesh is depicted in Figure 5.3 and consists of
609 nodes and 808 triangles. The subdomains are aligned to the triangle edges. Themesh is strongly
graded near the boundary of the two different materials, since we expect strong gradients in the
species concentration in this region.

Figure 5.3: The used acute mesh which is graded in the neighborhood of the layers

The material data are collected in Table 5.2. The parameters model the situation where X1 is

Ω1 and Ω2

(u1, u2, u3, u4) (10−18, 10−8, 1, 1020)

(U1, U2, U3, U4) (1, 0.5, 10−20, 10−20)

(D1, D20, D3, D4) (105, 105, 105, 105)

(K1,K2) (10−9, 106)

Table 5.2: Material parameters for both regions. The diffusion is assumed to be independent of the state
variable

catalytically converted into X4. The lifetime of the intermediate X3 is short and the catalyst X2 is
released after the reaction is finished.

Variation of the reference density of X1 In the first experiment we vary the reference density u1 in
Ω2 in the range of u1,h(x) = (1, 0.4, 0.133) · 10−18 ∀x ∈ Ω2. For u1,h(x) = 10−18 ∀x ∈ Ω2 both
materials are equal and the system acts like an ODE system due to the spatially homogeneous initial
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5.3 Layer behavior

value. For the three other values of the reference density the reaction runs faster in Ω2 than in Ω1

(Note that k(α1,β1)
= k+1u1u2, see also Section A.1).
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Figure 5.4: Cross section along y = 0 of the concentration u1,h for different reference densities u1,h(x) =
(1, 0.4, 0.133) · 10−18 ∀x ∈ Ω2 at different time steps. For a better visibility of the layer, the x-axis and
y-axis have a different scaling. Note also the log scale of the y-axis in Figure 5.4f

In Figure 5.4 the evolution of the concentration of species X1 along y = 0 is depicted at different
times. Until t = 10−17 the concentration of X1 is constant. Then the system recognizes the different
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materials and the resulting gradient in the activities. The diffusion processes start to equilibrate the
gradient in the activities which results in a layer in the neighborhood of the boundary of Ω1 and
Ω2 in the concentration of X1. The concentration jumps from the last mesh point contained in Ω1

and not lying on the boundary of the regions to the mesh point lying on the boundary and the first
mesh point contained in Ω2. The height of the layer seems proportional to the difference of the
reference densities. The maximum is located in the region, where the reference density is higher, i.e.,
the layer increases left to the boundary and decreases right to the boundary, see Figure 5.4b and 5.4c.
Swapping the parameter in Ω1 and Ω2 changes the location of the extreme values of the layer. Due
to the diffusion process the layer is propagated from the boundary into the domain.

In Figure 5.4e and 5.4f the reaction of X1 and X2 to X3 starts and the concentration of X1 decays
in space. Since the speed of the forward and backward reaction depends on the reference densities,
the decay is differently fast in Ω2, i.e., the species with smallest reference density decays faster in Ω2

than all others.

Variation of diffusion coefficients In this experiment, we vary uniformly the diffusion coefficient
Dν = D, ν = 1, . . . , 4. We setD = 10−2, 105, 106. All other parameters are summarized in Table
5.3. The evolution of the concentration of X1 is depicted in Figure 5.5 at different times. We see that

Ω1 Ω2

(u1, u2, u3, u4) (10−18, 1, 1, 108) (4 · 10−18, 1, 1, 108)

(U1, U2, U3, U4) (1, 0.5, 10−20, 10−20) (1, 0.5, 10−20, 10−20)

D 105 10−2, 105, 106

(K1,K2) (10−9, 106) (10−9, 106)

Table 5.3: Material parameters for the red and green region. The diffusion is assumed to be independent of
the state variable

larger diffusion coefficients lead to a larger width of the layer in Figure 5.5b, since the smoothing
effect of the diffusion is greater. Due to the faster diffusion the red curve is strongly propagated
into the domain, see Figure 5.5c and 5.5d. Since the diffusion coefficient corresponding to the blue
curve is very small, the system acts like an ODE-system and therefore the concentration profile stays
constant until the reaction starts in Figure 5.5c. The species X1 decays and creates X3 therefore the
concentration of X1 decreases. Since the reference density of X1 is larger inΩ2 than in OmegaΩ1 the
concentration profiles decay faster in Ω1 than in Ω2, see Figure 5.5d. In Figure 5.5e the diffusion has
almost completely equalized the gradient in the activities and therefore the green and the red curve
are close together. In the calculation for the blue curve the diffusion process starts which creates a
layer near the material boundary. From Figure 5.5e to 5.5f the conversion of X1 to X4 proceeds and
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Figure 5.5: Cross section along y = 0 of the concentration u1,h for different diffusion coefficients at different
times. The red line is covered by the green one. Note the different scaling of the x-axis and in Figure 5.5f the
log scale of the y-axis

the concentration of X1 decays. Since the diffusion coefficients of the blue curve are very small the
layer is still there.
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Summary We saw that heterogeneous materials lead to jumps on the material boundary in the
species concentration. Due to different constellations of the simulation parameters and the size of
the chemical activities, the behavior near the layer is variable. For example it would be possible that
in Ω1 the reaction creates X1 and in Ω2 the reaction destroys X1, i.e., the reaction acts like a dipole
near the internal boundary. The maximum and minimum of the layer is located on the closest mesh
point inside each region. The spatial expansion of the layer depends on the size of the diffusion
coefficients. Fast reactions and slow diffusion lead to very sharp layers, which are hardly resolved by
the mesh.

5.4 Moving front

We consider a heterostructure consisting of two different materials. The example illustrates the
process introduced in Section 1.3.2, where a pattern is duplicated by catalytic cross-linking of a
spacer, triggered by residual acid diffusion from a previously developed primary structure into the
spacer. A description of the process is given in Subsection 1.3.1. The interface between different
materials is aligned to the Delaunay triangulation that is dual to the Voronoi grid. One half of the
usedmesh is depicted in Figure 5.6. Instead of showing theVoronoi boxes we show the dual Delaunay
triangulation. The materials are represented by different colors in the mesh and the used parameters
are collected in Table 5.4.

red and green region blue region

(u1, u2, u3, u4) (10−16, 10, 10, 1012) (10−20, 1, 10−11, 1)

(U1, U2, U3, U4) (1, 10−15, 10−15, 10−15) (10−15, 10−15, 1, 10−15)

(D1, D20, D3, D4) (10−10, 200, 10−10, 10−12) (2 · 10−10, 200, 2 · 10−10, 2 · 10−12)

(ϕ3, ϕ1, ϕ2) (3.37, 0.65, 0.95) (0, 0.65, 0.95)

(K1,K2) (10−9, 103) (10−21, 0.1)

Table 5.4: Material parameters for the three different regions. The parameters for the red and green region
are equal. Note the large differences in the reaction coefficients

The simulation parameters in the blue region are chosen in such a way that the catalyst X2 is
created by the intermediate X3. In the red and green region the forward direction of the MMH
mechanism dominates. We expect that the catalyst X2 from the blue region diffuses and creates
together with X1 the intermediate X3 which quickly degrades into X4 by releasing X2. This catalytic
cycle leads to a moving reaction front from the primary region into the over-coated region, i.e. the
thickness of the reaction front of X4 grows in the red region, see Figure 5.11. On the slow timescales
the created structures dissolve by diffusion and the thermodynamic equilibrium solution is attained.
Technologically, the thickness of the reaction front of X4 can be controlled by an additional fast
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5.4 Moving front

reaction which neutralizes the catalyst X2, therefore, the MMH reaction stops, see Subsection 1.3.1.
But this part of the technological process is not included in the example. Based on the behavior of
the system we align the mesh in the green area. The large gap is introduced in order to show that the
used method is also stable on coarse mesh regions, see Figure 5.6.

(a) MeshM1 with 7105 nodes and 13873
triangles

(b) MeshM2 with 7766 nodes and 15195
triangles

(c) MeshM3 with 13944 nodes and 27505
triangles

Figure 5.6: Different meshes used in the simulation. The material are represented by a different color

In order to illustrate that the method converges we consider three different meshes with varying
numbers of mesh points, see Table 5.5. ThemeshesM1 andM2 are evolved fromM3 by coarsening
the green layer and removing some spider in the meshM1. The total number of time steps needed
by the algorithm in order to solve the problem on the time interval S and the maximal relative error
of the two invariants (5.1.1), (5.1.2) are also stated in the table. The time steps are distributed by the
time stepping mechanism presented in Section 4.3.

OnM3, the thermodynamic equilibrium is given by

a∗h3
= (1.195 · 10−12, 1.915 · 10−2, 2.288 · 10−14, 1.195 · 10−12),
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# nodes # tri. tot.(rej.) max rel. err (5.1.1) max rel. err (5.1.2)

D1 7105 13873 7369 (25) 9 · 10−15 9.4 · 10−15

D2 7766 15195 10073 (32) 9.3 · 10−15 9.4 · 10−15

D3 13944 27505 11462 (33) 7.6 · 10−15 9.8 · 10−15

Table 5.5: Characterization of the different discretizations. Total number of time steps #tδ including (rejec-
tions) needed by the algorithm in order to solve the problem on S = [0, 1020]

and the relative differences compared to the other meshes are smaller then 2 ·10−8. Figure 5.7 shows
the time evolution of the free energy, the dissipation rate divided into the reaction and diffusion part.
Every time scale in the system represents one plateau in the curve of the dissipation rate.
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Figure 5.7: Evolution of the the relative free energy functionalΨh(uh) and the reactive and diffusive part
of the dissipation rateDR,h,DD,h for different discretizationsDi, i = 1, 2, 3. Note that the dissipation
rate and free energy is truncated at 10−20 and 10−10, respectively. Every gray straight line represents one
column in Figure 5.11

The reaction part and the diffusion part provide information whether the system is reaction
dominated or diffusion dominated, i.e., in the first interval from 10−30 to 10−8 the system is reaction
dominated. Then energy of the system disappears by the reaction and diffusion. After the whole
region is filled with X4, the system is diffusion dominated. The curves of the relative free energy
and the dissipation rate for different discretizations lie close by. Only during the front movement
there are larger deviations, see Figures 5.7 and 5.8. The oscillating behavior of the dissipation rate
curves correlates with the number of gridlines in the refined region. In this region, the front has to
pass over the same distance, in order to jump to the next grid points. Therefore the period of the
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Figure 5.8: Zoom of Figure 5.7 into the region where the front is moving
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Figure 5.9: Evolution of the difference of the relative free energy functionalΨh(uh) of the discretizationsDi

i = 1, 2 relative to the relative free energy curve of discretizationD3. Every gray straight line represents one
column in Figure 5.11

oscillations is larger than in the non-refined region. The dissipation curves are slightly shifted due to
the different refinement level of the layer region, see Figure 5.8. Moreover in Figure 5.8 we see that a
time delay in the dissipation curve results in a slower decay of the relative free energy.
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Figure 5.10: Evolution of the difference of the two parts of the dissipation rateDD,h andDR,h of the dis-
cretizationsDi, i = 1, 2, relative to the relative free energy curve of discretizationD3. Every gray straight
line represents one column in Figure 5.11

The deviation of the curves of discretizationsD1 andD2 relating to the curves ofD3 are plotted
in Figure 5.9 and Figure 5.10. The largest differences in the free energy curves are during the front
movement (see third to fourth column in Figure 5.11). After that, the curves approach each other.
The largest deviations are obtained on the coarsest meshD1. The differences of the dissipation curves
of discretization D1 and D2 relating to D3 are very small. The blue curve is covered by the purple
one and the green one covers the red one.

In Table 5.6 the relative L2(S)-errors of the relative free energy and the dissipation rate are pre-
sented. Since the continuous solution of the reaction-diffusion system is not known, a reference
solution for the finest discretizationD3 is computed, and errors are measured against this discrete
solution. We are only interested in the convergence behavior w.r.t. the spatial error. Therefore we
repeat the simulation onM1 andM2 with the time steps used for the simulation onmeshM3. The
error norms are given by

∥∥∥Ψ̃hij

∥∥∥
L2(S)

=
∥∥Ψhi

(uhi
)−Ψhj

(uhj
)
∥∥
L2(S)

∥∥Ψhj
(uhj

)
∥∥−1

L2(S)
,∥∥∥D̃hij

∥∥∥
L2(S)

=
∥∥Dhi

(uhi
)−Dhj

(uhj
)
∥∥
L2(S)

∥∥Dhj
(uhj

)
∥∥−1

L2(S)
.

From Table 5.6, we conclude that small changes in the mesh quality lead to larger changes in the
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#P #tδ tot.
∥∥∥Ψ̃hi3

∥∥∥
L2(S)

∥∥∥D̃hi3

∥∥∥
L2(S)

D1 7105 12020 2.8157 · 10−2 4.6457 · 10−6

D2 7766 11801 2.2989 · 10−4 4.4736 · 10−6

Table 5.6: L2(S)-norm of the relative free energyΨhi
and the dissipation rateDhi

on meshMi, i = 1, 2,
related to meshM3 and scaled by the L2(S)-norm of the relative free energy and dissipation rate ofM3.
The time steps for the calculation onM1,M2 are included in the time step sequence ofM3

L2-error of the relative free energy than in the dissipation rate. In contrast toM1 we only remove
some spider in the meshM2.

In Figure 5.11 the time evolution of the four species concentrations is shown at different time steps.
Every column in Figure 5.11 is represented by a straight gray line in the Figures 5.7, 5.9 and 5.10. Up to
T = 5 ·10−3, the species X3 decomposes into X2 and X4. Now the reaction of X2 and X1 starts and the
profile of X4 grows (T = 25 and T = 250). Since the lifetime of X3 is very short, the concentration
of X3 is very small. Once X1 is fully converted into X4, the dissipation rate of the reactions drops
down and the slow diffusion and the backward reactions start (around at t = 2.5 · 1013). Finally the
system converges to the thermodynamic equilibrium solution (last column).

t : 10−20 5 · 10−3 25 250 2.5 · 1013 1020

u1

u2

u3

u4

Figure 5.11: Concentrations of the four species at different times on discretizationD3
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The relative free energyΨh(uh) decays to 10−10 and the chemical activities at the final simulation
time t = 1020 are close to the calculated thermodynamic equilibrium (5.4). In Figure 5.12 the relative
difference in space is depicted and in Table 5.7 the maximal value of the differences relative to (5.4)
is tabulated. The relative errors are close to the double precision machine epsilon (2.22 · 10−16).

Summarizing, we emphasize that our method can reach – up to machine epsilon – the thermody-
namic equilibrium (approx. at T = 1020) and shows the expected monotonous (and exponential)
decay of the free energy and the expected non-negativity of the dissipation rate, see Lemma 3.6.1.
Moreover the relative error of the two invariants (5.1.1) and (5.1.2) is of the order of machine epsilon
over all orders of magnitude in time, see Table 5.5.

TheNewtonmethod shows almost quadratic convergence rates and passes the convergence criteria
in 3 or 4 steps. During the marching of the reaction front the Newton iteration needs 5 or 6 steps,
in order to pass the convergence criteria, see Table 5.5. Since the reaction front cannot be accurately
predicted by the linear extrapolation predictor, the initial guess of the Newton method is not in
the region of quadratic convergence resulting into a larger number of necessary Newton steps. To
overcome this problem, one would need a more accurate prediction of the reaction front, which
would be possible to implement, but was not in the focus of this contribution.

ν = 1 ν = 2 ν = 3 ν = 4

D1

D2

D3

Figure 5.12: Relative distance of the activities errν = (aν,h(T ) − a∗ν,h)/a
∗
ν,h, ν = 1, . . . , 4, for different

discretizations at time T = 1020. Note the logarithmic scale and see also Table 5.7 for the maximum value
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5.5 Nested Circles – Order of convergence

‖errν‖L∞(Ω) D1 D2 D3

ν = 1 6.761 · 10−16 3.381 · 10−16 2.366 · 10−15

ν = 2 3.624 · 10−16 1.812 · 10−16 0

ν = 3 1.104 · 10−15 0 2.345 · 10−15

ν = 4 6.761 · 10−16 3.381 · 10−16 2.366 · 10−15

Table 5.7: The relative error ‖errν‖L∞(Ω) =
∥∥∥(aν,h(T )− a∗ν,h)/a

∗
ν,h

∥∥∥
L∞(Ω)

, ν = 1, . . . , 4, for different

discretizations at time T = 1020

5.5 Nested Circles – Order of convergence

In the former example we saw that the method is applicable to real world problems coming from
chemical engineering. Now we are more interested in the convergence behavior of the method. For
this purpose we assume a circular domain consisting of three different materials. The values are
comparable to Table 5.4. The parameters of the red material are equal to the parameters of the red
material in Table 5.4. In the blue region the diffusivities are smaller than in the blue material in
Table 5.4. Only the diffusivity of X3 is larger. In the green region the forward and backward reaction
from X1 and X2 to X3 is assumed to be fast and the second one is slow compared to the first one.
At the initial state the reactions are in equilibrium. Due to diffusion on the material interface, this
equilibrium state will be violated and the reactions start. In Table 5.8, we collect the parameters of
the blue and green material. The parameters in the red region are equal to those of Table 5.4.

green region blue region

(u1, u2, u3, u4) (1, 1, 1, 1) (10−20, 1, 10−11, 1)

(U1, U2, U3, U4) (1, 1, 1, 1) (10−20, 10−16, 1, 10−27)

(D1, D20, D3, D4) (10−10, 0.02, 10−5, 10−12) (10−10, 250, 10−10, 10−12)

(ϕ3, ϕ1, ϕ2) (10, 0.01, 0.95) (0, 0.65, 0.95)

(K1,K2) (1010, 10) (10−21, 0.1)

Table 5.8: Material parameters for the three different regions. Note the large differences in the diffusion and
reaction coefficients

5.5.1 Uniformly refinedmesh

In a first step we consider a uniformly refined mesh, see Figure 5.13. The meshes are created with
Triangle [120] using a constraint on the triangle area. The reference meshM5 consists of 43973
nodes. The different numbers of degrees of freedom are listed in Table 5.9. In addition to the implicit
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5 Numerical Example

Figure 5.13: One half of the Delaunay mesh of discretizationD2. The different materials are represented by
different colors

Mesh. # nodes # tri. ratio ‖Ψhi
‖L2(S) ‖DR,hi

‖L2(S) ‖DD,hi
‖L2(S)

M1 465 861 0.01 1.835 · 108 3.082 · 107 2.474 · 102

M2 2264 4360 0.05 1.886 · 108 3.294 · 107 2.238 · 102

M3 4454 8687 0.1 1.890 · 108 3.339 · 107 2.068 · 102

M4 22085 43666 0.5 1.893 · 108 3.397 · 107 1.772 · 102

M5 43973 87233 1 1.894 · 108 3.414 · 107 1.593 · 102

Table 5.9: Characterization of the different meshes and L2-norm of the initial free energy and dissipation.
The quantity ratio is defined by ratio = #Mi/#M5

Eulermethod (1-step), we use a 2-step backward differentiation formula (BDF-2) for time integration,
see [71]. In case of time step rejections we return to the implicit Euler method (BDF-1) for the next
time step and thenwe try to increase the order once again. Note that the BDF-2method preserves the
invariance property of the solutions (see Lemma 3.4.1), as long as the first step fulfills this property.

The total numbers of time steps that are needed by the algorithm in order to obtain the solution
on the interval S = [0, 1020] are summarized in Table 5.10. The number of first and second order
steps are collected in Table 5.10, too.

Evolution of the time step In Figure 5.14, we plot the growth of the time step over the time. The
time step grows linearly in the log-log scale, with the exception where a new timescale is reached.
The first deviation from linear growth in log-log-scale is due to the fast reaction in the blue region.
During the movement of the front of X4, the time step is limited by the number of Newton steps.

The second deviation is less pronounced on the coarse mesh, due to a faster discrete diffusion
on coarse meshes. The next deviation is due to the growth of the concentration on the boundary
between the green and red region. The finer mesh resolves more effects of the solution, therefore the
necessary time steps forD5 are smaller compared to the time steps ofD1.
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5.5 Nested Circles – Order of convergence

Discret. Mesh #tδ tot.(rej.) T1 ratio sq #tδ tot.(rej.) ratio sq 2/1-order

D1 M1 834 (4) 0.027 1528 (146) 0.19 1357;153
D2 M2 1104 (5) 0.047 3701 (536) 1.11 3183; 518
D3 M3 1693 (4) 0.11 4926 (768) 1.97 3927;999
D4 M4 3513 (3) 0.48 4950 (729) 1.99 3858;1092
D5 M5 5084 (3) 1 3507 (265) 1 2429;1078

Table 5.10: Characterization of the time discretizations. Total number of time steps tδ (without rejections)
that are needed in order to solve the problem on S = [0, 1020] and the squared ratio for implicit Euler (T1)
and BDF-2 (T2). The quantity ratio sq is defined by (#tδMi

/#tδM5
)
2. Moreover the number of BDF-2

steps and BDF-1 steps during time integration with the 2-stage BDF method

During the front movement, the BDF-2 method spends much more time steps and the method
switches back to the implicit Euler method. When the solutions evolve smoothly, the BDF-2 method
works well. Especially during the growth of the concentration on the boundary between the green
and red region, the deviation from linear growth in log-log-scale of the BDF-2 method is less pro-
nounced compared to the implicit Euler method.

Due to the large number of rejections and time steps of the BDF-2 method, the computational
cost is higher than for the implicit Euler method. OnM5, the BDF-2 method needs less time steps
than the implicit Euler, since the spatial discretization error is sufficiently small. During the front
movement and near the thermodynamic equilibrium the BDF-2method switches back to the implicit
Euler.

It is interesting to note that the ratio of the mesh nodes and the squared ratio of the executed time
steps by the implicit Euler method are close together. Due to the large number of rejection on coarse
meshes the ratio for the BDF-2 method is greater than one and not meaningful in comparison to the
ratio of the mesh nodes.

Time integration using implicit Euler First we consider the implicit Euler method for time integra-
tion. In Figure 5.17 we depict the evolution of concentration of the four species on the mesh M1

andM5 at various times. Every column in Figure 5.17 corresponds to a vertical straight line in the
relative free energy plots in Figure 5.15.

In a first step the system formsX2 in the blue region. Due to the strongly spatially varying diffusivity
of X4 the concentration creates a layer on the boundary of two materials. Then the movement of
X4 into the red region starts. On the coarsest mesh the diffusion is larger, therefore the front moves
faster and the dissipation rate disappears earlier in time. After the species X4 fully fills up the red
region, the layer on the boundary of the red and green region starts to grow, see the profile of u4,h1

and u4,h5 at time t = 5.05 · 106. The growth is driven by reaction and diffusion and will become
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Figure 5.14: Evolution of the time step and the distribution of first and second order steps on a meshM1

with BDF-1 and BDF-2 method. Every gray straight line represents one column in Figure 5.17

flatter on the area where the distance of the red and blue region is minimal. The species X4 cannot
penetrate into the red region due to its very small diffusivity. After the system is evolving on the slow
time scale (around t = 1010), the barrier dissipates, the concentration of species X4 raises in the red
region, and the system approximates the thermodynamic equilibrium (approximately at t = 1020).

The evolution of the relative free energy functionalΨh is plotted in Figure 5.15a. The evolution of
the relative free energy and the dissipation reflects the different timescales of the system.

Since the initial value is differently resolved by the meshes, the relative free energy varies on
different meshes at the initial time. After the first fast reaction the curve of the relative free energy
steps down. The reaction timescale is faster than all other diffusion timescales and therefore the
curves nearly coincide. Coarse grids add numeric diffusion, hence the front movement is slower on
fine grids and the energy curves decay accordingly.

Then further diffusion is blocked by the already described layer and this causes the synchronization
of all free energy curves. The fill up of the red region by X4 is diffusion dominated and depends
on the refinement of the mesh. Therefore we see a time shift in the free energy curves. Finally the
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(d) Diffusive part of the dissipation rateDD,hi scaled
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Figure 5.15: Evolution of the relative free energy functional, both parts of the dissipation rate for different
discretization levelsDi, i = 1, . . . , 5. Moreover the time evolution ofΨhj

−Ψh5
, j = 1, . . . , 4 is depicted.

The values in the Figures 5.15a, 5.15d and 5.19c are scaled by 1720.0, 1.75 · 1013 and 5.2 · 106, respectively. In
Figure 5.15d and 5.15c we set the numerical zero to 10−35. Every gray straight line represents one column in
Figure 5.17

system approximates the thermodynamic equilibrium, which depends on the initial species masses,
hence weakly on the spatial discretization. This is reflected in nearly coinciding energy curves.

In Figure 5.15b we plot the evolution of the absolute difference of the relative free energy curve
associated toDi, i = 1, . . . , 4, and the relative free energy curve belonging toD5.

The largest deviations occur at the end of the front movement. Moreover the maxima are slightly
shifted, due to the faster evolution on the coarser meshes. The second peak represents the growing
of X4 on the boundary of the red and green region. The height of the peak depends on the resolution
of the layer by the meshes. The growth of the layer is reaction dominated and the maxima are only
slightly shifted. The fill up of the red region with X4 is diffusion dominated. Therefore the curves of
the free energy differences descent at different speeds into the thermodynamic equilibrium.
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5 Numerical Example

Convergence order In order to investigate the convergence behavior of themethod w.r.t. the spatial
error, we fix the temporal discretization for every mesh. This means, for every mesh Mi, i =

1, . . . , 4, we run the simulations again with the time steps used in the simulation of D5. Due to
the shifts in the time scales on different meshes we allow the method to refine the given time steps
in case of rejections. Therefore the temporal discretization is assumed to be comparable for every
considered mesh.

In Table 5.11 the relativeL2(S)-error of the relative free energy and the dissipation rate is presented.
Since the continuous solution of the reaction-diffusion system is not known, a reference solution
for the finest discretizationD5 is computed, and errors are measured against this discrete solution.
From these errors convergence rates are estimated by fitting. The error norms are given by

∥∥∥Ψ̃hij

∥∥∥
L2(S)

=
∥∥Ψhi

(uhi
)−Ψhj

(uhj
)
∥∥
L2(S)

∥∥Ψhj
(uhj

)
∥∥−1

L2(S)
,∥∥∥D̃hij

∥∥∥
L2(S)

=
∥∥Dhi

(uhi
)−Dhj

(uhj
)
∥∥
L2(S)

∥∥Dhj
(uhj

)
∥∥−1

L2(S)
.

(5.5.3)

Defining h = 1√
#P , from Table 5.11 can be recognized that the L2(S)-errors of the relative free

energy and the dissipation rate decay as h2 and h1.5. Therefore, we observe that our scheme allows
by quadrupling the number of mesh points to divide the error of the discrete relative free energy by a
factor of four. In order to get a better understanding of the influence of the time integration method
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Figure 5.16: Linear fit of the values of Table 5.11 and 5.12 On both x-axis the value ln
√

#Mi/#M5 is plotted.
On the y-axis the value ln

∥∥∥Ψ̃hi5

∥∥∥
L2(S)

(left) and ln
∥∥∥D̃hi5

∥∥∥
L2(S)

(right) is plotted. The blue points and

lines are covered by the red ones. The slope of the linear function is−2.06 in Figure 5.16a and−1.54 in
Figure 5.16b

on (5.5.3), we compute the relative L2(S)-error of the relative free energy and the dissipation rate.
As before, we repeat all calculations with the time steps used onM5 and allow refinements in case
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#P #tδ tot.
∥∥∥Ψ̃hi5

∥∥∥
L2(S)

∥∥∥D̃hi5

∥∥∥
L2(S)

D1 465 5136 2.3871 · 10−2 9.7167 · 10−2

D2 2264 5092 5.2070 · 10−3 3.5054 · 10−2

D3 4454 5095 2.7435 · 10−3 2.2046 · 10−2

D4 22085 5098 4.3777 · 10−4 4.8919 · 10−3

hp p = 2.06 p = 1.5

Table 5.11: L2(S)-norm of the relative free energyΨhi
and the dissipation rateDhi

of discretizationDi,
i = 1, . . . , 4, related to discretizationD5 and scaled by the L2(S)-norm of the relative free energy and
dissipation rate ofD5

of rejections. In Figure 5.16 we see that the measured values of the BDF-1 and BDF-2 method nearly
coincide, see also Tables 5.11 and 5.12. This means that we see the spatial convergence behavior of the
method.

#P #tδ tot.
∥∥∥Ψ̃hi5

∥∥∥
L2(S)

∥∥∥D̃hi5

∥∥∥
L2(S)

D1 465 5187 2.3704 · 10−2 9.7145 · 10−2

D2 2264 5756 5.2174 · 10−3 3.5047 · 10−2

D3 4454 6070 2.7629 · 10−3 2.2041 · 10−2

D4 22085 6144 4.4232 · 10−4 4.8908 · 10−3

hp p = 2.06 p = 1.5

Table 5.12: L2(S)-norm of the relative free energyΨhi
and the dissipation rateDhi

on the meshesMi,
i = 1, . . . , 4, related to meshM5 and scaled by the L2(S)-norm of the relative free energy and dissipation
rate ofM5. Time integration was done using the BDF-2 method

115



5 Numerical Example

T : 0.0 1.26 · 10−12 0.071 1.2 · 105 5.05 · 106 1020

u1,h1

u2,h1

u3,h1

u4,h1

u1,h5

u2,h5

u3,h5

u4,h5

Figure 5.17: Concentrations of the four species at different times for discretizationsD1 andD5. Note the
similarities of the coarse and fine solutions, e.g., at t = 1.26 · 10−12 and t = 5.05 · 106. Be aware that
differences are mainly caused by faster diffusion on coarse grids
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5.5 Nested Circles – Order of convergence

5.5.2 Alignedmesh region

In this example we replace the unstructured triangulation in the red region by an aligned one, in
order to get a better resolved moving front. The resulting discretizations are tabulated in Table 5.14
and one half of the mesh is shown in Figure 5.18. From the degrees of freedom, the discretizations

Mesh. # nodes # tri. ratio ‖Ψhi
‖L2(S) ‖DR,hi

‖L2(S) ‖DD,hi
‖L2(S)

M′
1 463 854 0.02 1.857 · 108 3.092 · 107 2.729 · 102

M′
2 1065 2034 0.48 1.874 · 108 3.197 · 107 2.979 · 102

M′
3 2235 4314 0.10 1.886 · 108 3.297 · 107 2.378 · 102

M′
4 2924 5691 0.13 1.887 · 108 3.299 · 107 2.825 · 102

M′
5 4753 9293 0.21 1.889 · 108 3.338 · 107 2.333 · 102

M′
6 7040 13862 0.31 1.890 · 108 3.340 · 107 2.747 · 102

M′
7 22423 44354 1.0 1.881 · 108 3.399 · 107 1.873 · 102

Table 5.13: Characterization of the different meshes and L2-norm of the initial free energy and dissipation

Discretization Mesh #tδ tot.(rej.) ratio sq

D′
1 M′

1 1046 (5) 0.025

D′
2 M′

2 932 (4) 0.020

D′
3 M′

3 996 (4) 0.023

D′
4 M′

4 1917 (4) 0.085

D′
5 M′

5 1742 (4) 0.070

D′
6 M′

6 3993 (3) 0.369

D′
7 M′

7 6575 (14) 1

Table 5.14: Characterization of the different discretizations. The numbers of time steps are needed by the
scheme in order to solve the problem on S = [0, 1020] (Time integration done by implicit Euler)

D′
1 and D1, D′

3 and D2, D′
5 and D3, as well as D′

7 and D4 are comparable. On some meshes the
total number of time steps is slightly greater than on the unstructured mesh. In comparison to the
ratio between space and time discretization, here the ratio of the number of time steps is smaller
than the ratio the number of nodes, due to the irregular refinement of different regions. Since an
analytical solution is not available, we compare the energy curves. In Figure 5.19a, 5.19d and 5.19c the
time evolution of relative free energy and dissipation rate is plotted. The curves are comparable to
the corresponding plots of the unstructured mesh. Only during the front movement, we see a more
pronounced oscillating behavior in Figure 5.19d, due to the aligned structure of themesh. The period
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Figure 5.18: One half of the Delaunay mesh of discretizationD′
3, which has approximately the same number

of nodes asD2. The different materials are represented by different colors

is correlated to the distance of two neighboring mesh lines. This behavior was already mentioned in
Subsection 5.4.
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Figure 5.19: Evolution of the relative free energy functional, both parts of the dissipation rate for different
discretization levels. Moreover the time evolution ofΨhj

−Ψh7
, j = 1, . . . , 6 is depicted. The values in the

Figures 5.15a, 5.15d and 5.19c are scaled by 1720.0, 1.75 · 1013 and 5.2 · 106, respectively. In Figure 5.15d and
5.19c we set the numerical zero to 10−35. Every gray straight line represents one column in Figure 5.17
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5.5 Nested Circles – Order of convergence

At large times near the thermodynamic equilibrium, there is a strong deviation of the diffusive
part of the dissipation rate, due to roundoff errors. The energy curves of the coarsest mesh are closer
to the other curves, which could be a consequence of the aligned mesh. In Figure 5.19b the peaks are
slightly smaller and less shifted than on the unstructured meshes. This means that the time scales
on the different discretization are closer together. The L2(S) norm of the deviation is summarized
in Table 5.15. The values are comparable to Table 5.11.

#P #tδ tot.
∥∥∥Ψ̃hi7

∥∥∥
L2(S)

∥∥∥D̃hi7

∥∥∥
L2(S)

D′
1 463 6608 2.1985 · 10−2 9.0280 · 10−2

D′
2 1065 6663 1.1510 · 10−2 5.9365 · 10−2

D′
3 2235 6651 2.7435 · 10−3 2.2046 · 10−2

D′
4 2924 6668 3.9113 · 10−3 2.9382 · 10−2

D′
5 4753 6667 2.1584 · 10−3 1.8019 · 10−2

D′
6 7040 6811 1.8157 · 10−3 1.7470 · 10−2

hp p = 1.93 p = 1.30

Table 5.15: L2(S)-norm of the relative free energyΨhi
and the dissipation rateDhi

of discretizationD′
i,

i = 1, . . . , 6 related to discretizationD′
7 and scaled by the L2(S)-norm of the relative free energy and

dissipation rate ofD′
7

Summary In this example themethod can reach the thermodynamic equilibrium, after the decay of
14magnitudes of the relative free energy. All timescales of the system can be resolved by the method,
even if the front movement or the strong gradients in the direct neighborhood of interfaces are only
roughly resolved — still on the very coarse meshM1 the different energetic states of the system are
present, of course with time shifts of their begin and end points (compare Figures 5.15, 5.17, 5.19d). In
general, diffusion is faster on coarse grids due to the added numerical diffusion. Whenever a quasi
steady state at a time scale is reached, or the system is ’waiting’ before evolving on the next slower
time scale, the free energy curves are synchronized. The BDF-2 method is cheaper for simulations
where the spatial discretization error is sufficiently small. That means that the mesh must resolve
more features of the solution and the evolution in time is smoother, compare Table 5.10. For both
time integration methods BDF-1 and BDF-2 we see a convergence order of approximately 2 for the
relative free energy and approximately 1.5 for the dissipation rate, which seams reasonable for a first
order scheme, see [32].
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5 Numerical Example

5.6 Tiles

We consider a domain containing a point at which the boundaries of three materials meet. For sim-
plicity, we choose the same parameters as in Subsection 5.5. Therefore we expect a similar behavior
of the solution as in Subsection 5.5, except for singularities due to the triple point.

We adapt the Delaunay triangulation in the direction of the interface between different materials.
On a domainΩ = (0, 3)× (0, 3) we create a mesh consisting of 98262 triangles, 50668 nodes. The
largest edge is hmax = 0.12 and the mesh is depicted in Figure 5.20.

(a) Full mesh (b) Zoom into the layer region

Figure 5.20: The used mesh with 50668 nodes and 98262 Delaunay triangles. Zoom into the adapted layer
region

The evolution of the solution at different times is depicted in Figure 5.20. In a first step (in the
interval [0, 1·10−9] in Figure 5.23) the fast reaction acts in the blue region and creates X4 and X2. Due
to the space dependence of the reactions and the different diffusion coefficients, we see strong layers
on the boundary of the blue and red material, see Figure 5.22a. On the triple points (2, 2) (green,
blue, red, blue) and (3, 3) (red, green, blue, green) we see some small spikes. In the neighborhood
of these points the reaction can act in three different ways. Then a bit earlier at t = 1.214 · 10−5 the
front movement starts. In the red region X1 will be fully converted into X4. Since the concentration
of X2 is high in all neighboring squares, the front stops in the tile (2, 2) from every edge of the square
and therefore the square in middle is filled up by X4 at first, see columns three and four in Figure
5.21. During the front movement the layer in the concentration of X4 on the boundary of the red and
green region grows, see Figures 5.22b and 5.22c. The maximum of the layers is located only on the
nodes lying on the boundary. Due to triple points the layers can be curved.
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t : 0.0 1.214 · 10−5 0.573 59.14 1.785 · 106 1020

u1,h

u2,h

u3,h

u4,h

Figure 5.21: Concentrations of the four species at different times. Every column represents a straight gray line
in Figure 5.23

After the red region is fully filled up by X4, X1 and X2 degrade in the blue and green regions. On
the boundary of the red material, the concentration of X4 grows. Especially at the triple point (2, 2)
a peak of X4 grows. At t = 1.7153 · 106 the peak reaches its maximum of 13.6731 · 104. Almost all
mass of X4 is concentrated in this point, see Figure 5.22d. During this process it is essential that the
mass is correctly divided. Otherwise it is not possible to reach the thermodynamic equilibrium.

Now the slow diffusion and reaction time scales come into play and the peak as well as the layers
on the boundary will degrade and the concentration of the species X4 raises in the red region. The
system achieve the thermodynamic equilibrium, where almost all mass of the species X1 and X3 is
transformed into X2 and X4 and is located in the red region.

Since the parameters are the same as in Subsection 5.5, the evolution of the relative free energy
and the dissipation rate are comparable. Due to the better aligned mesh in the neighborhood of
the layer the oscillating behavior of the dissipation rate is less pronounced. If the front reaches the
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5 Numerical Example

(a) Elevation of u2,h at time 1.086 · 10−6 (b) Elevation of u4,h at time 59.14

(c) Wireframe of u4,h at time 59.14 (d) Elevation of u4,h at time 1.7153 · 106

Figure 5.22: Details of the solution

coarse region of the squares, the oscillations are larger, since the front jumps from one grid line to
the next, see Figure 5.23a.

The simulation needs 12778 time steps with 1688 rejections and 52215Newton steps (in themean
four Newton steps per time step) in order to calculate the solution on the time interval S = [0, 1020]

using the BDF-2 method. During the evolution the relative error of both invariants (5.1.1) and (5.1.2)
is of the order of machine epsilon, see Figure 5.23c. Most of the time steps are executed during
the front movement in the red material. In order to integrate from [0, 2.18] we need 11902 steps.
However integrating from [2.18, 1020] needs only 877 time steps. On the one hand, the reaction
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5.7 Daisy

front can not be accurately predicted by the linear extrapolation predictor, the initial guess of the
Newtonmethod is not in the region of quadratic convergence leading to a larger number of necessary
Newton steps. On the other hand, the front movement needs a constant time step.

Similar to Subsection 5.5, most of the BDF-1 steps are done during the front movement, due to the
spatially nonsmooth behavior of the solution. The BDF-2 method takes advantage in time intervals
where the solution is spatially stationary or the solution evolves smoothly. These time intervals are
the first fast reaction and the growth of the layers and peaks on the boundary.
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 1e-30  1e-20  1e-10  1  1e+10  1e+20

t

mach eps = 2.22e-16
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distr. of BDF-1/BDF-2 steps

(c) Timestep and invariant error

Figure 5.23: Figure 5.23a: Evolution of the relative free energyΨhi (Scaled by 5.95 · 102) and both parts of
the dissipation rateDR,hi andDD,hi . (Numerical zero at 10−20) Fig. 5.23c: Evolution of the time step over
the time, distribution of BDF-1 and BDF-2 steps and the evolution of the relative invariant error. Every gray
straight line represents one column in Figure 5.21

5.7 Daisy

In the example a non convex domain is used, which has the form of a daisy with a spanner inside.
The large boundary and the interfaces are of special interest, because the initial data is chosen such
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5 Numerical Example

that the reactions are in equilibrium in the interior of the regions. In other words the equations are
fulfilled up to boundary and interface layers which are very small in normal direction. Therefore the
mesh is anisotropically refined along all interfaces, see Figure 5.24. Themesh consist of four different
materials, 16812 triangles, and 8701 nodes. In every material we consider different reaction steps,

(a) Full mesh (b) Zoom into the layer region

Figure 5.24: Daisy with 12 petals. The mesh has 8701 nodes and 16812 Delaunay triangles. The different
materials are represented by different colors. Zoom into the spanner region

i.e. we assume

X1 + X2 
X3, (red region),

X3 
 X4 + X2, (green region),

X1 + X2 
X3 
 X4 + X2, (blue region),

X1 + X2 
X3, (yellow region).

This means the first MMH reaction step is present in the red and yellow regions, the second MMH
reaction step is active in the green region, and the full MMH mechanism only occurs in the blue
region. The reaction step in the blue region is assumed to be fast, whereas all other reactions steps
are act on a moderate or slow timescale. In the red and blue material, the diffusion coefficient of X2
depends on the concentration of X1 and X4. All other diffusion coefficients are independent of the
state. Table 5.16 summarizes all parameters used in the calculation.

During time evolution, the concentration of X2 decays strongly in the neighborhood of the domain
boundary, see Figures 5.26a and 5.26b. In Figure 5.25 the evolution of the relative free energy, the
dissipation rate and the conservation of the invariants is depicted. Every straight gray line represents
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5.7 Daisy

region (u1, u2, u3, u4) (D1, D20, D3, D4) (ϕ3, ϕ1, ϕ2) (K1,K2)

red (10−8, 100, 10−11, 10−8) (10−2, 1, 10−3, 10−2) (1, 0.65, 0.95) (10−15, 0)

green (10−7, 102, 10−3, 0.1) (10, 10−2, 10−2, 10−4) (0, 0, 0) (0, 10−5)

blue (10−8, 104, 10−3, 10−15) (103, 10−2, 10−5, 1) (0.2, 0.65, 0.95) (0.1, 10−4)

yellow (10−4, 1, 10−3, 10−17) (10−6, 10−3, 10, 10−5) (0, 0, 0) (10−9, 0)

Table 5.16: Material parameter for the three different regions. In the red and blue region the diffusion coeffi-
cient of x2 depends on the state

one row in Figure 5.27. Due to the initial data, the reactions are locally in equilibrium and therefore
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rel invar err m134
rel invar err m23

Figure 5.25: Evolution of the relative free energyΨh(uh), the dissipation rate decomposed into the reaction
partDR,hi

and the diffusion partDD,hi
, and the conservation of the invariants

the dissipation rate of the reactions is close to zero at the beginning, see Figure 5.25. The diffusion
processes start immediately and trigger the reactions. Consequently the dissipation rate of the
reactions must increase, compare Figure 5.25. In a first step, the system fills up the blue region with
X3, see the second and the third column in Figure 5.27. Now, the dissipation rate of the reactions
decays. Then the diffusion starts to smooth out the boundary layer of X2, see the fourth column
in Figure 5.27. This causes the dissipation rate of the reactions to grow a second time. When this
is finished the gradient of X2 in the neighborhood of the domain boundary is smoothed out, see
Figure 5.26c. Now the concentration of X3 in the blue material decays. The species X2 decays too and
creates X1 in the green and X4 in the yellow region, see Figure 5.26d. Now the system proceeds fast
to the thermodynamic equilibrium, see the fifth column in Figure 5.27 and the last gray straight line
in Figure 5.25. The simulation ends at t = 2 · 108. At this time the distance of the concentrations to
the thermodynamic equilibrium solution is
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max
ν=1,...,4

∥∥uν,h − u∗ν,h
∥∥
L∞ = 10−12.

(a) Elevation of U1,h (b) Elevation of U2,h

(c) Elevation of u2,h at time 5.275 · 103 (d) Elevation of u3,h at time 5.275 · 103

Figure 5.26: Details of the solution at different times. Note that the scale is different

Summary The method is able to handle the case with vanishing rate coefficients in parts of the
domain. Subdomains without any reactions are possible, too. The equations in this subregion are
regularized by the the global invariants. If in addition one diffusion coefficient is very small, the
boundary of the subdomain acts, due to rounding, like an homogeneous Neumann boundary con-
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5.8 Instantaneous reaction

dition for that equation. Hence the used regularization with one Dirichlet value is not sufficient (see
Remark 4.1.3). With respect to the last Section 5.8, zero reaction rate constants in some subdomains
can be viewed as a limit case of the full system.

t = 0 t = 2 · 10−5 t = 24.1 t = 9 · 105 t = 2 · 108

u1,h

u2,h

u3,h

u4,h

Figure 5.27: Concentrations of the four species at different times t + ε. Note the logarithmic scale of the
pictures

5.8 Instantaneous reaction

In this section we are interested in the behavior of the code handling the instantaneous reaction limit.
For this propose we chose the well studied example of [34, Section 6]. of a reversible dimerisation of
o-phenylenedioxydimethylsilane (2,2-dimethyl-1,3,2-benzodioxasilole), which has been studied by
hydrogen-1 Nuclear magnetic resonance spectroscopy, together with its limit system. The reaction
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5 Numerical Example

can be described quantitatively by a bimolecular 10-ring formulation reaction and a monomolecular
back reaction, see [98]. Therefore the reaction step has the form

2X1 
 X2 (5.8.4)

The setR consist of the vectorsα = (2, 0) and β = (0, 1) and therefore

S := span {(2,−1)} , S⊥ := span {(1/2, 1)} .

The fast reaction limit of special reaction-diffusion systems was considered in [11–14, 55, 113]. In
order to prove convergence of the initial system to the limit system, the idea is to obtain a-priori
bounds independent on the quantity which becomes large and than pass to the limit. Therefore the
upper and lower bounds established in Section 3.8 and 3.10 are not suitable since they depend on the
reaction rate constant of the reaction term. Whereas the L1-bounds obtained by the conservation
of atoms (see Remark 3.6.2) stay valid.

We consider the one-dimensional domain Ω = (0.0, 0.1) and a finite interval S = (0, T ] ⊂ R,
T <∞. Assuming that the region is isolated (Neumann boundary conditions) and homogeneous
and diffusion is modeled by Fick’s law we obtain a system of two reaction diffusion equations

u′1 −D1∆u1 + 2κ
(
k1+u

2
1 − k1−u2

)
= 0

u′2 −D2∆u2 − κ
(
k1+u

2
1 − k1−u2

)
= 0

}
in S × Ω,

n · ∇u1 = n · ∇u2 = 0 onS × Γ,

u1(0) = U1, u2(0) = U2 inΩ

(5.8.5)

with positive diffusion coefficientsD1,D2 ∈ R, a positive parameter κ ∈ R, and positive reaction
rate coefficients k1+, k1− ∈ R. Since the material is assumed to be homogeneous the reference
densities are spatially constant and therefore using Bolzmann statistics (1.4.3) and

k(α,β)(x) = k1+u1(x)
2 = k1−u2(x) ∀x ∈ Ω (5.8.6)

the system (5.8.5) can be rewritten withR(α,β) = k(α,β)(a
2
1 − a2) in terms of chemical potentials

v and concentrations u (see the continuous problem (2.2.P)), i.e.,

u′1 −∇ · (D1u1∇v1) + 2κR(α,β) = 0

u′2 −∇ · (D2u2∇v2)− κR(α,β) = 0

}
in S × Ω,

n · ∇u1 = n · ∇u2 = 0 onS × Γ,

u1(0) = U1, u2(0) = U2 inΩ.
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5.8 Instantaneous reaction

Well-posedness of problem (5.8.5) is considered in [11, 20] and the limit to an instantaneous reac-
tion if κ becomes large is studied in [11]. In particular, using a suitable Layapunov functional and
compactness arguments, they proof that

uκ → u in L2(S, Y ) as κ→ ∞, Y := L2(Ω)2.

Here uκ = (uκ1 , u
κ
2) is a solution of (5.8.5) for fixed parameter κ. Let keq = k1+k

−1
1− denotess the

equilibrium constant of the reaction. The limit κ→ ∞ can be determined by

kequ
2
1 = u2 and

1

2
u1 + u2 = w (5.8.7)

wherew is the unique weak solution of the nonlinear diffusion problem

w′ −∆ϕ(w) = 0 inS × Ω,

n · ∇w = 0 onS × Γ,

w(0) = W :=
1

2
U1 + U2 inΩ

(5.8.8)

with

ϕ =

(
D1

2
id+D2η

)
◦
(
1

2
id+ η

)−1

and η(x) = keqx
2, x ≥ 0.

Thefirst equation in (5.8.7) states the reaction is in equilibrium. The second one defines the conserved
quantity by the reaction. An explicit unique representation of u1 and u2 can be obtained from
1
2 id+ η = w, i.e.

u1 =

(
1

2
id+ η

)−1

(w) =
1

4keq

(√
1 + 16keqw− 1

)
,

u2 = η ◦
(
1

2
id+ η

)−1

(w) =
1

16keq

(√
1 + 16keqw− 1

)2
.

(5.8.9)

Using (5.8.7) the limit system can be written in the form

(u1 + 2u2)
′ −∆(D1u1 + 2D2u2) = 0, kequ

2
1 = u2 inS × Ω,

n · ∇(D1u1 + 2D2u2) = 0 onS × Γ,

u1(0) + 2u2(0) = U1 + 2U2 inΩ.

(5.8.10)

The parabolic equation describes the evolution of the conserved quantity. Integrating this equation
leads to the same global invariant as (5.8.5), see Remark 3.6.2, Example 3.8.1 and [111]. Problem 5.8.5
and 5.8.7 have the same thermodynamic equilibrium and dissipative structure.
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The implicit Euler in time and finite volume in space discretization of 5.8.5 was considered in
[34]. Using a discrete comparison principle, the existence and uniqueness of solutions for the dis-
crete problem was proven. Moreover, they show that the discrete solutions (u1,h, u2,h) converge
in L2(S, Y ) to a solution of (5.8.8) if κ → ∞ and size(D) → 0, see [34, Subsection 5.1]. Voronoi
meshes represent a class of admissible finite volumemeshes [32]. Hence for the special case of homo-
geneous materials, the finite volumemethod analyzed in [34] is equivalent to the method introduced
in Section 3.2. Therefore we expect the same convergence behavior with respect to κ.

In the following we are interested in the experimental convergence order if κ becomes large, see
[34, Section 6]. In order to compare the discrete solution (u1,h, u2,h), obtained with the scheme of
Section 3.2, and the discrete solution (u1,h, u2,h) of the limit system the following quantities

Ea = ‖uh/uh − uh/uh‖L2(S,Y )‖uh/uh‖
−1
L2(S,Y ), Er =

∥∥(u1,h/u1,h)2 − u2,h/u2,h
∥∥
L2(S,L2)

are introduced. The first quantity Ea measures the distance between the solution of the discretized
problem and the solution of the discretized limit system and Er measures if the reaction term is
in equilibrium. The solution (u1,h, u2,h) is obtained by discretizing the conserved quantity (5.8.10).
The discretized equation (5.8.10) preserves the same qualitative properties: mass invariant, thermo-
dynamic equilibrium and dissipative structure.

The simulations where done on a domain [0, 0.1]× [0, 1] and the tensor product mesh consisting
of 213 nodes (3 nodes in y direction and 71 nodes in x direction). The same parameter as given in
[34, Section 6] are chosen, i.e. forward and backward reaction rate constants

k1+ ≈ 1.072 · 10−4L2mol−2, k1− ≈ 2.363 · 10−6L2mol−2

and diffusion constants

D1 ≈ 1.579 · 10−9m2s−1, D2 ≈ 1.042 · 10−9m2s−1.

These parameters are experimentally estimated in the case of benzene as solvent at a temperature
T = 298K. Due to (5.8.6), the reaction rate constants are equivalent to

u1 = 10−2, u2 = 0.4537, k(α,β) = 1.072 · 10−6.
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5.8 Instantaneous reaction

The value of κ is varied in the range of [10−12, 1012], see Table 5.17. In order to fulfill the positivity
of the initial data (see Assumption A1), we set

U1(x) =

10−30 for x ∈ [0, 0.03],

1
2 sin

(
50π
7 (x− 0.03)

)
for x ∈ [0.03, 0.1],

U2(x) =

1
4 cos

(
50π
7 x
)

for x ∈ [0, 0.07],

10−30 for x ∈ [0.07, 0.1].

In Figure 5.28 the evolution in time of (u1,h, u2,h) along the line y = 0 for different values of κ
is depicted. At first for smaller κi, i = 1, 2 (see Table 5.17), the concentrations are flattening in
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Figure 5.28: Evolution profile of the numerical solution (u1,h, u2,h) for various choices of κ. Every line
represents an other time

space by diffusion and then the thermodynamic equilibrium is reached on the reaction timescale.
For κi, i = 3, 4, 5, the diffusion and the reaction timescale is comparable, the concentration is
uniformly transformed into the thermodynamic equilibrium. For larger κi the reaction is dominant.
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The concentrations (u1,h, u2,h) become a w-profile which is smoothed out by diffusion and the
thermodynamic equilibrium is reached. In the limit system the evolution of the initial value to the
w-profile is replaced by an instantaneous reaction step (the solution of a1,h(x)2 = a2,h(x) and
u1,h(x) + 2u2,h(x) = U1,h(x) + 2U2,h(x) for every x ∈ Ω), see (5.8.9).

i κi κik(α,β) Ea Er

1 10−12 1.072 · 10−18 1.772 · 10−6 9.205 · 107

2 10−9 1.072 · 10−15 5.266 · 10−8 2.724 · 106

3 10−4 1.072 · 10−10 1.600 · 10−10 8.513 · 103

4 10−2 1.072 · 10−8 2.033 · 10−11 1.337 · 103

5 1 1.072 · 10−6 2.355 · 10−12 1.668 · 102

6 42 6.861 · 10−5 2.127 · 10−13 1.507 · 101

7 44 1.098 · 10−3 5.319 · 10−14 3.766

8 106 1.072 4.084 · 10−15 3.200 · 10−1

9 108 1.072 · 102 1.359 · 10−15 1.090 · 10−1

10 1012 1.072 · 106 1.781 · 10−17 1.405 · 10−3

(κi/κ10)
p p = 0.459 p = 0.450

Table 5.17: The calculated values of Ea and Er for different values of κi. A convergence rate of 0.459 for Ea

and 0.450 for Er with respect to κi is observed

Table 5.17 shows the values of the errorEa andEr . For larger κ, the error becomes smaller which
means that the system approximates the discrete solution (u1,h, u2,h) of the the discretized limit
system, see also Figure 5.30c and 5.30d. The experimentally observed order of convergence with
respect to κ is close to 1/2 (see Table 5.17) which is in good agreement with the theoretical results
obtained in [34, Eq. (4.4) andTheorem 5.2]. Figure 5.30a shows the decay of the discrete relative free
energy Ψ̂ for different values of κ. If the reaction is slower than the diffusion (compare the curves
for κ1 to κ3 in Figure 5.30a), the concentration is equalized in space before the reaction timescale
is reached. Therefore the free energy decays to a plateau. If the reaction timescale is reached the
system approximates the thermodynamic equilibrium. If the reaction and the diffusion timescale are
of the same order (compare the curves for κ4 and κ5 in Figure 5.30a), the initial value is uniformly
transformed into the thermodynamic equilibrium. Hence the relative free energy decays without
a plateau. If the reaction becomes faster than the diffusion (compare the curves for κ6 to κ10 in
Figure 5.30a), the relative free energy decays to a plateau. The value of Ψ̂ is approximately equal
to the initial value of Ψ̂ for the limit system. At this value the concentration has the w-profile, see
Figure 5.29b, 5.29a, and 5.30c. After that the w-profile is equalized by the diffusion process and the
relative free energy decays to zero. Since the diffusion process is the same for finite κ and the limit
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Figure 5.29: The concentration for different values of κ at time t = 0, 0.12 + ε, 1028. The initial value of the
limit system has a w-profile, which is approximated by the full system if κ becomes large.

case the curves of Ψ̂ stay close together. The dissipation of the discrete problem for different values
of κ is depicted in Figure 5.30b. A larger value of κ leads to a higher dissipation since D̂ is the time
derivative of the free energy. The initial value of the dissipation in case of the instantaneous reaction
limit is smaller, since in this case the first decay is infinitely fast.

Summary The example shows the connection between the different timescales of the system, de-
fined by the reaction rate constants and the diffusion constants, and the decay of the relative free
energy. The first downturn of the relative free energy is related to the fastest time scale and the last
downturn with the slowest timescale, see Figure 5.30a. In the limit case the reaction timescale is
infinity fast and therefore the initial value of the limit system is approximately the same as the value
of the full system after the evolution of the fast reaction timescale is finished.
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Figure 5.30: Evolution of the discrete relative free energy Ψ̂, the norm ‖uh/uh − uh/uh‖2Y and the errors
Ea and Er for different values of κ. In Figure 5.30a numerical zero is set to 10−12 and in Figure 5.30c to
10−29. The slope of the linear fitted lines are approximately−1/2, see Table 5.17

5.9 Conclusion

The example of Section 5.2 shows the consequences if the invariants property (see Section 3.4) is
violated by the method and illustrates the behavior of the introduced Lagrange multipliers. In the
following example of Section 5.3 we saw that heterogeneous materials may lead to strong internal
layers on the interfaces between two materials. Using strong varying diffusivities and fast reactions,
it is possible to create ’boundary’ reactions and the resulting layer is hardly to resolve by the mesh.

The examples of Section 5.4 and 5.5 show that the method can reach the thermodynamic equilib-
rium on different discretizations. The system travels on comparable energy curves into the thermo-
dynamic equilibrium. The method attains comparable quasi stationary states but the arrival times
vary due to the faster diffusion on coarser meshes. On quasi stationary points the energy curves
come close together. Moreover we saw that a second order time integration method (BDF-2) is more
effective on fine meshes, where more details of the solution are resolved and the evolution of the
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solution is smoother. We establish comparable rates of convergences for the relative free energy
(close to 2) and for the dissipation rate (close to 1.5) if the discretization size tends to zero.

The example of Section 5.6 takes points into account, where three materials meet each other in
one point. In Section 5.7 we illustrate the behavior of the scheme in case of reaction rate constants
vanishing on subdomains. Finally, in the example of Section 5.8 we illustrate the behavior of the
method if the reaction timescale becomes fast. In all these examples of different complexity with
many different fast and slow timescales the method can reach the thermodynamic equilibrium and
all qualitative properties of the scheme are fulfilled up to roundoff errors.
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Appendix

A.1 Symmetric reaction coefficients

In the usual setting a reversible reaction is described by a reaction rate constant for the forward
reaction and one for the reverse reaction. In this part we will show that both constants can be
transformed to a single rate constant as defined in the model of Section 1.4. For this purpose we
introduce the equilibrium constant of a reaction and the Wegscheider condition [126].

Assuming that, according to the mass action law, the reaction rate of a reversible reaction

α1X1 + α2X2 + · · ·+ αmXm 
 β1X1 + β2X2 + · · ·+ βmXm

for a pair (α,β) ∈ R is given by

R(α,β)(·, u) = (kαu
α − kβu

β), (A.1)

where kα : Ω → R+, kβ : Ω → R+ are positive functions of the spatial variable, and uα :=∏m
ν=1 u

αν
ν . Then the equilibrium constant of a reaction is introduced byKeq

(α,β) =
kα
kβ

for (α,β) ∈
R. If during the evolution of timeKeq

(α,β) > u(β−α) holds, then the forward direction is dominant.
Otherwise ifKeq

(α,β) < u(β−α) holds, then the backward reaction is dominant. The reaction is in
equilibrium if Keq

(α,β) = u(β−α) holds. For a single reaction the positive equilibrium solution is
determined by the equilibrium constant. In complex reaction networks the Wegscheider condition
imposes restrictions on the choice of the forward and backward rate constants, see [83, 126].

We introduce the stoichiometric matrix Γ and the column vectorK by

Γ = (β1 − α1, . . . , βm − αm)(α,β)∈R, K = (Keq
(α,β))(α,β)∈R.
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A.1 Symmetric reaction coefficients

To ensure the existence of a positive equilibrium solution u∗ = eṽ∗ > 0 of

Γṽ∗ = lnK (A.2)

we assume that for every solution λ = (λ(α,β))(α,β)∈R of the linear system

ΓTλ = 0 (A.3)

the Wegscheider condition ∏
(α,β)∈R

k
λ(α,β)
α =

∏
(α,β)∈R

k
λ(α,β)

β

holds. This condition is necessary and sufficient for the existence of u∗ = eṽ∗ > 0, see [66]. From
the physical point of view the Wegscheider condition ensures the thermodynamical consistency of
the reaction system. In mathematical sense, the condition means that the inhomogeneous linear
system (A.2) has a solution iff the rank of the matrix is equal to the rank of the extended matrix. This
means that every solution to (A.3) is orthogonal to the right-hand side of (A.2).

Assuming that the reactions satisfy the Wegscheider condition, there exist a vector u such that

k(α,β) = kα

m∏
ν=1

uαν
ν = kβ

m∏
ν=1

uβν
ν , (α,β) ∈ R,

holds and that the reaction rates (A.1) can be written in the form

R(α,β) = k(α,β)

(
aα − aβ

)
,

which is exactly (1.4.5), see also [102]. The section is closed by two examples to illustrate theWegschei-
der condition.

Example A.1 (MMH-Kinetic, see Example 1.4.1). The set R consists of the pairs α1 = (1, 1, 0, 0),
β1 = (0, 0, 1, 0), andα2 = (0, 0, 1, 0), β2 = (0, 1, 0, 1). The linear system to determine a positive
equilibrium solution is given by(

lnKeq,1

lnKeq,2

)
=

(
−1 −1 1 0

0 1 −1 1

)
ṽ∗.

A solution of the system exists, since the Wegscheider condition kλ1
α1
kλ2
α2

= kλ1
β1
kλ2
β2

is satisfied with
λ1 = 0 and λ2 = 0.
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Example A.2 (see [83, S. 109]). We consider the reaction system

X1 + X2
k+1−−⇀↽−−
k−1

X3, X3 + X4
k+3−−⇀↽−−
k−3

X5,

X1 + X4
k+2−−⇀↽−−
k−2

X6, X6 + X2
k+4−−⇀↽−−
k−4

X5.

This network creates X5 over two different ways. One the one hand, the substance X1 creates together
with X2 the substance X3 which decays together with X4 to X5. On the other hand, the species X1 builds
together with X4 the substance X6 which further reacts with X2 to X5. The stoichiometric subspace S
consists of

S = span{(1, 1,−1, 0, 0, 0), (1, 0, 0, 1, 0,−1), (0, 0, 1, 1,−1, 0), (0, 1, 0, 0,−1, 1)}

and the matrix Γ is given by

Γ =


−1 −1 1 0 0 0

−1 0 0 −1 0 1

0 0 −1 −1 1 0

0 −1 0 0 1 −1

 .

The solution of (A.3) is spanned by λ = (−1, 1,−1, 1) and the Wegscheider condition imposes the
following dependencies on the reaction rates

k+2 k
+
4

k−2 k
−
2

=
k+1 k

+
3

k−1 k
−
3

.

By the choice of appropriate reaction coefficients it is possible to create cyclic reactions. In this example
such an behavior is excluded by the Wegscheider condition.
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A.2 Discrete Gagliardo-Nirenberg inequality

A.2 Discrete Gagliardo-Nirenberg inequality

In this section we provide a discrete Gagliardo-Nirenberg and a Sobolev-Poincaré inequality for
boundary conformingDelaunay-Voronoimeshes. In the first version, the equivalence of the Voronoi
finite volume Lp-norm, the Donald box finite volume Lp-norm (for the definition of a Donald box
see [69]), and the linear finite element Lp-norm is exploited. The proof provides a simple way
to translate continuous inequalities into the discrete world. A drawback of this approach is the
limitation to two space dimensions.

During the work at this thesis, another proof of the discrete Gagliardo-Nirenberg and the Sobolev-
Poincaré inequality was given by [10]. The version works in higher space dimensions and for gen-
eral admissible finite volume meshes. Therefore it is possible to handle all (boundary conforming)
Delaunay-Voronoi meshes, including arbitrarily anisotropic grids. We recapitulate the result and
infer the special version of the Gagliardo-Nirenberg inequality (B.24) from (B.19).

A.2.1 1. Approach – restricted to 2d

In the following, we prove a discrete version of the Gagliardo-Nirenberg inequality [108] on Voronoi
finite volume meshes. The approach is restricted to two space dimensions. First, we introduce

DK

DL

DM

xK

xL

xM

Figure A.1: Notation of the dual Voronoi mesh and the Donald box mesh. Voronoi boxes (gray areas), trian-
gles (thin lines), Donald boxes (thick lines)

the following notation, see also Figure A.1 : The dual of a Voronoi mesh M = (P,V, E) is given
by a tuple (P, T ), where T is a family of triangles T spanned by (xK , xL, xM ) ∈ P3 fulfilling
K ∩ L ∩M 6= ∅,K,L,M ∈ V . Furthermore, byNT (K) we denote the set of all triangles sharing
xK as common vertex.
A Donald box DK = D(xK) around a node xK ∈ P is the polygonal control volume obtained
by joining the barycenters and the midpoints of the edges of the triangles surrounding a node xK ,
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see [69, 116]. The area of a triangle T ∈ T is denoted by |T | and the area of the part of a Donald
box contained in the triangle T is given by |DK ∩ T | = 1/3|T |. ByXD(M) we denote the set of
all piecewise constant functions from Ω to R which are constant on every Donald box DK . The
discrete Donald box finite volume Lp-norm is then introduced by

‖wD‖Lp =

(∑
K∈V

|DK ||wK |p
)1/p

∀wD ∈ XD(M). (B.4)

Let wT (x) be the linear function on a triangle T ∈ T with nodes (xK , xL, xM ) ∈ P3 and
values wT (xK) = wK , wT (xL) = wL, wT (xM ) = wM , where wK , resp., is the value in the node
xK ∈ P . The set of all these functions is denoted by P1(M). The finite element Lp-norm is then
defined by

‖wT ‖Lp =

(∑
T∈T

∫
T
|wT (x)|p dx

)1/p

∀wT ∈ P1(M). (B.5)

We make the following assumption on the mesh: There exist two constants CD > 0, CD ≥ 1

such that for all xK ∈ P the area of the Donald box around xK can be estimated by the area of the
Voronoi boxK , i.e., it holds

CD|K| ≤ |DK | ≤ CD|K| ∀K ∈ V. (B.6)

Remark B.1. Such an inequality is valid for all Delaunay-meshes where either:

xK ; �1

xL; �2

xL0; �3

A1

A2

xK ; �1

xL; �2

xL0; �3

xO

xP

xQ

Figure A.2: Illustration of the two typical cases: acute triangles (left) and triangles with obtuse angles

1. All triangles with a common vertex xK ∈ P are acute.
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A.2 Discrete Gagliardo-Nirenberg inequality

2. Or if one triangle hanging on a common vertex xK ∈ P has an obtuse angle, then there exists a
0 < θmin ≤ π/3 such that the angles of all triangles hanging on a common vertex xK ∈ P are
greater or equal θmin.

The area of a triangle is given by

|T | =
d2KL

2

sin θ1 sin θ2
sin θ3

=
d2KL′

2

sin θ1 sin θ3
sin θ2

, (B.7)

where dKL and dKL′ is the length of the edge xX xL and xX xL′ , resp.. The area A = A1 + A2 of
the Voronoi snippet spanned by T can be calculated by

A = A1 +A2 =
d2KL

8
cot θ3 +

d2KL′

8
cot θ2

=
|T |
4

(
cos θ3

sin(θ3 + θ2) sin θ2
+

cos θ2
sin(θ3 + θ2) sin θ3

)
=

|T |
4

(1 + cot θ3 cot θ2) .

1. If all triangles with a common vertex xK ∈ P are acute, then the Voronoi boxK is convex and
every triangle edge σ = K|L ∈ EK is divided into two equal sized parts. Therefore dividing
every triangle edge σ by the factor two, all triangles with the a common vertex xK ∈ P are
inside the Voronoi box K and it results |K| ≥ 1

4 |T |. If the angle related to xK is π/2 then
|K ∩ T | = 1

2 |T |. Hence
1
4 ≤ |K|

|T | ≤
1
2 .

2. Let 0 < θminK . If π/2 ≤ θ1 ≤ π − 2θminK and θminK ≤ θ2, θ3, then the circumcenter xO
is outside of the triangle and the largest edge is xL xL′ . We obtain the upper bound

A

|T |
≤ 1

4

(
1 + cot(θminK)2

)
. (B.8)

3. Let π/2 ≤ θ3 ≤ π− 2θminK and θminK ≤ θ1, θ2. Then the largest edge is opposite to θ3. The
length dKP of the line xK xP is given by dKP =

dKL′
2 cos θ1 and by sine rule and θ3 = π− θ1− θ2

we obtain

dKP

dKL
=

sin θ2
2 cos θ1 sin θ3

=
1

2

sec θ1 sin θ2
sin θ1 cos θ2 + cos θ1 sin θ2

≥ sec(θminK)2

4
. (B.9)

After enlarging the Voronoi box K by the factor dKP
dKL

, all triangles sharing xK lie inside the
Voronoi boxK and we obtain

|K| ≥ sec(θminK)4

8
|T |. (B.10)
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There is a special case where the circumcenter xO of the triangle T = (xK , xL, x
′
L) is contained in

the l-th neighboring triangle of T sharing xK as common node and all these l neighboring triangles
have the same circumcenter xO, i.e., all nodes of the triangles lie on a circle. Then the similitude radius
is given by the largest edge of the l neighboring triangles and the intersection of line xQ xO. Using
sine rule and knowing that xK is a common node of all these triangles, the radio can be determined
analogously to the case 3.

Wemake the following observation:

LemmaB.2. LetΩ be an open, bounded, polygonal subset ofR2 andM = (P,V, E) a givenVoronoi
mesh and (P, T ) its dual Delaunay triangulation fulfilling (B.6). The following statements are true:

1. For all wh ∈ XV(M), wD ∈ XD(M) and p ∈ N, wh ≥ 0 the estimate

C
1/p
D ‖wh‖Lp ≤ ‖wD‖Lp ≤ C

1/p
D ‖wh‖Lp (B.11)

is valid.

2. Furthermore there exist two constants CFEM,p = 6
(p+1)(p+2) ≤ 1 and CFEM = 1 such that

for wD ∈ XD(M) and wT ∈ P1(M), wD ≥ 0

C
1/p
FEM,p‖wD‖Lp ≤ ‖wT ‖Lp ≤ CFEM‖wD‖Lp (B.12)

holds.

Proof. For simplifying the notation, Assume that wK is nonnegative for allK ∈ V . The proof of
(B.11) follows immediately from (B.6) together with

‖wD‖Lp =

(∑
K∈V

|DK |wp
K

)1/p

≤

(∑
K∈V

CD|K|wp
K

)1/p

= C
1/p
D ‖wh‖Lp .

Similar, the estimate from above is derived. For the second assertion (B.12) we observe together with
|DK ∩ T | = 1/3|T | that

‖wD‖pLp =
∑
K∈V

∑
T∈NT (K)

|T |
3
wp
K =

∑
T∈T

|T |
3

(
wp
K + wp

L + wp
M

)
with T = (xK ,xL,xM ). It remains to show that for every triangle the identities

CFEM,p|T |
3

(
wp
K + wp

L + wp
M

)
≤
∫
T
wT (x)

p dx ≤
CFEM,p|T |

3

(
wp
K + wp

L + wp
M

)
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with constants CFEM,p and CFEM,p hold. In a first step the triangle T = (xK ,xL,xM ) is
transformed to the reference triangle T̂ = (P1, P2, P3) with vertices P1 = (0, 0), P2 = (1, 0),
P3 = (0, 1) using

x = xK + (xL − xK)ξ + (xM − xK)ρ

with ξ ∈ [0, 1] and ρ ∈ [0, ξ]. The transformed function reads as

ŵ(ξ, ρ) = wT (xK + (xL − xK)ξ + (xM − xK)ρ)

= wK + (wL − wK)ξ + (wM − wK)ρ

and its functional determinant is given by det(J) = 2|T |. The integral over the triangle T can be
written in the form

I =

∫
T
(wT (x))

p dx = 2|T |
∫ 1

0

∫ 1−ξ

0
(ŵ(ξ, ρ))p dρ dξ

=
2|T |

(p+ 1)(wM − wK)

∫ 1

0
(wM + (wL − wM )ξ)p+1 − (wK + (wL − wK)ξ)p+1 dξ

=
2|T |

(p+ 2)(p+ 1)(wM − wK)

(
wp+2
M − wp+2

L

wM − wL
−
wp+2
L − wp+2

K

wL − wK

)
.

To continue the estimate, we use 0 ≤ (va − 1)(vb − 1) for all v ≥ 1 and a, b ≥ 0. Let be v = x/y

with nonnegative real numbers x, y. Using

xayb + yaxb ≤ xa+b + ya+b (B.13)

we can bound the cyclic sum∑
cycl

xiyjzk := xi(yjzk + ykzj) + yi(xjzk + xkzj) + zi(xjyk + ykxj)

by
∑

cycl x
iyjzk ≤ 2(zi+j+k + xi+j+k + yi+j+k).

The binomial theorem yields for p ∈ N the identity

wp+2
M − wp+2

L

wM − wL
=

p+1∑
i=0

wi
Mw

p+1−i
L
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and we conclude

I =
2|T |

(p+ 1)(p+ 2)

∑
i,j,k≥0

i+j+k=p

wi
Mw

j
Lw

k
K =

2|T |
(p+ 1)(p+ 2)

∑
i,j,k≥0

i+j+k=p

1

6

∑
cycl

wi
Mw

j
Lw

k
K

≤ 4|T |
6(p+ 1)(p+ 2)

(
wp
M + wp

L + wp
K

) ∑
i,j,k≥0

i+j+k=p

1 =
|T |
3

(
wp
M + wp

L + wp
K

)
.

In the last line we used

∑
i,j,k≥0

i+j+k=p

1 =

p∑
i=0

1 +

i−1∑
j=0

1

 =

p∑
i=0

i+ 1 =
(p+ 2)(p+ 1)

2
.

Since the termwp
M +wp

L+w
p
K ,wM , wL, wK > 0 is contained in

∑
i,j,k≥0

i+j+k=p
wi
Mw

j
Lw

k
K , the lower

bound of I follows.

Theorem B.3 (Discrete Gagliardo-Nirenberg inequality). Under the assumptions of LemmaB.2 the
following statements are true:

• For every p ∈ [1,∞) and let g(p) = max(CD,C
(p+1)/2
D )

CDCFEM,p
. Then there exist constants cp > 0 and

CM,1,p =

g(p), if p ∈ N,

max(g(r), g(r + 1)), if p ∈ (r, r + 1)

such that
‖wh‖Lp ≤ cpC

1/p
M,1,p‖wh‖

1/p
L1 ‖wh‖

1−1/p
H1,M ∀wh ∈ XV(M). (B.14)

Especially, for p from a compact interval [p1, p2] the constant cp can be bounded by

cp ≤ max(cp1 , cp2 , 1)
1/p1 .

• Additionally, for every ε > 0 and p ∈ (1,∞) there exist constants cε,p > 0 such that for all
wh ∈ XV(M)

‖wh‖pLp ≤εCM,2,p‖wh ln |wh|‖L1‖wh‖p−1
H1,M

+ cε,pCM,3,p‖wh‖L1

(B.15)
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with the two constants

CM,2,p =

g(p), if p ∈ N,

max(g(r), g(r + 1)), if p ∈ (r, r + 1),

CM,3,p =


CD

CDCFEM,p
, if p ∈ N,

max
(

CD
CDCFEM,r

, CD
CDCFEM,r+1

)
, if p ∈ (r, r + 1).

The constants CM,i,p, i = 1, 2, 3, are the only difference to the continuous version in [63].

Proof. The proof takes advantage of the fact that the discrete Voronoi finite volume gradient semi-
norm in 2d coincides with the gradient seminorm of continuous piecewise linear finite elements.
From [32, Sec. 3.4.2] we obtain |wh|H1,M = |wT |H1(Ω).

First let p ∈ N. As a consequence of Lemma B.2 we can use the continuous version to prove the
discrete inequalities. From Lemma B.2 we conclude the estimates

‖wh‖Lp ≤ 1

(CDCFEM,p)
1/p

‖wT ‖Lp ,

‖wT ‖Lp ≤ C
1/p
D ‖wh‖Lp ,

‖wT ‖H1,M ≤ max(1, C1/2
D )‖wh‖H1,M.

Using the continuous Gagliardo-Nirenberg inequality [63, (1.8)] the assertion

‖wh‖Lp ≤ cpC
1/p
M,1,p‖wh‖

1/p
L1 ‖wh‖

1−1/p
H1,M,

results with a constant CM,1,p defined above. Together with r ∈ [p, p+ 1], p ∈ N and

1/r = θ/p+ (1− θ)/(p+ 1), θ ∈ [0, 1]

we conclude

‖wh‖Lr ≤ ‖wh‖θLp‖wh‖1−θ
Lp+1

≤ cθpc
1−θ
p+1C

θ/p
M,1,pC

(1−θ)/(p+1)
M,1,p+1 ‖wh‖

θ/p+(1−θ)/(p+1)
L1 ‖wh‖

1−θ/p−(1−θ)/(p+1)
H1 .

(B.16)

We mention that x lnx, x ≥ 0 is convex and therefore the linear interpolation of wT lnwT

denoted by (wT lnwT )T is greater or equal wT lnwT . Hence,∫
T
wT lnwT dx ≤

∫
T
(wT lnwT )T dx.

145



A Appendix

Using the continuous Gagliardo-Nirenberg inequality [63, (1.9)] we get

‖wh‖pLp ≤ε 1

CDCFEM,p

‖(wT lnwT )T ‖L1‖wT ‖p−1
H1

+ cε,p‖wT ‖L1

≤εCM,2,p‖wh ln |wh|‖L1‖wh‖p−1
H1,M + cε,pCM,3,p‖wh‖L1 .

A discrete Sobolev-Poincaré inequality, i.e., for every p ∈ [1,∞) exist constants c = c(Ω, p) such
that

‖fh −mΩ(fh)‖Lp ≤ cp

(CDCFEM,p)1/p
‖fh‖H1,M, mΩ(fh) =

1

|Ω|

∫
Ω
fh dx (B.17)

for every fh ∈ XV(M) holds, can be proven in the same fashion as the first assertion inTheorem
B.3.

A.2.2 2. Approach

In the following, we recapitulate from [10] a discrete version of the Gagliardo-Nirenberg inequality
[108] and a discrete Sobolev-Poincaré inequality on admissible finite volume meshes [32]. The proof
uses functions of bounded variation and is done under the general assumption on the mesh, that

∃ξ > 0 : dist(xK , σ) ≥ ξ|xK − xL| ∀σ = K|L ∈ Eint ∩ EK ∀xK ∈ P, (B.18)

see [10, p. 5.2.1]. In the case of Voronoi meshes this condition fulfilled with ξ = 1
2 .

Lemma B.4 (see [10, Th. 5.3.1 and Th. 5.3.2]). Let Ω be an open bounded polyhedral domain of Rd,
d ≥ 2. LetM = (P,V, E) be a given admissible finite volume mesh which satisfies (B.18).

• Then, there exists a constant C > 0 only depending on d and Ω (but not onM) such that

‖wh‖Lp ≤ Cgn,p‖wh‖1−θ
L1 ‖wh‖θH1,M, Cgn,p :=

C

ξθ/2
, ∀wh ∈ XV(M), (B.19)

where

θ =
2d(p− 1)

(d+ 2)p
, p ∈

[1,∞) if d = 2,

[1, 2d/(d− 2)] if d > 2.
(B.20)
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• Let d ≤ 2. Then for all p ∈ [1,∞) there exists a constant C > 0 only depending on p, d and Ω
(but not onM) such that

‖wh‖Lp ≤ C

ξ1/2
‖wh‖H1,M ∀wh ∈ XV(M). (B.21)

• Let d > 2. Then for all 1 ≤ p ≤ 2d
d−2 there exists a constant C > 0 only depending on p, d and

Ω (but not onM) such that

‖wh‖Lp ≤ C

ξ1/2
‖wh‖H1,M ∀wh ∈ XV(M). (B.22)

Remark B.5. An inspection of the proof shows thatCgn,p depends continuously on p and can therefore
be estimated uniformly for p ∈ [2, 3]. The results of [10, Th. 5.3.1 andTh. 5.3.2] allow us to handle all
Voronoi meshes, including arbitrarily anisotropic grids.

In the proof ofTheorem 3.8.3 we need a special case of the discrete Gagliardo-Nirenberg inequality:

Corollary B.6. Let Ω be an open bounded polyhedral domain of Rd, d ≥ 2. LetM = (P,V, E) be
a given admissible finite volume mesh which satisfies (B.18). For any ε > 0 and any p ∈ (1, 3] there
exists a constant cε,p > 0 such that

‖wh‖pLp ≤ ε

ξ(p−1)/2
‖wh ln |wh|‖

p(1−θ)
L1 ‖wh‖pθH1,M + cε,p‖wh‖L1 . (B.23)

(For ε→ 0 it follows cε,p → ∞). Especially for d = 2 we obtain the estimate

‖wh‖pLp ≤ ε

ξ(p−1)/2
‖wh ln |wh|‖L1‖wh‖p−1

H1,M + cε,p‖wh‖L1 . (B.24)

Proof. ForN > 1 we define the function

χ(s) :=


0, for |s| ≤ N,

2(|s| −N), for |s| ∈ (N, 2N ],

|s|, for |s| > 2N.

Adding and subtracting χ(wh) we obtain

‖wh‖pLp ≤ cp
(
‖|wh| − χ(wh)‖pLp + ‖χ(wh)‖pLp

)
. (B.25)
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The first term of (B.25) can be estimated by

‖|wh| − χ(wh)‖pLp =
∑
K∈V

|wK |≤2N

|K| (|wK | − χ(wK))p ≤ (2N)p−1‖wh‖L1 .

Applying (B.19) for the second term of (B.25) we obtain

‖χ(wh)‖pLp ≤ Cp

ξpθ/2
‖χ(wh)‖

p(1−θ)
L1 ‖χ(wh)‖pθH1,M.

We estimate

‖χ(wh)‖L1 ≤
∑
K∈V

|wK |>N

|K||wK | ≤ 1

lnN

∑
K∈V

|wK |>N

|K||wK | ln |wK | ≤ 1

lnN
‖wh log |wh|‖L1

and since
∣∣∣χ(wL)−χ(wK)

wL−wK

∣∣∣ ≤ 2 and |χ(wh)| ≤ |wh| we deduce

‖χ(wh)‖2H1,M = ‖χ(wh)‖2L2 + |χ(wh)|2H1,M ≤ ‖wh‖2L2 + 4|wh|2H1,M ≤ 4‖wh‖2H1,M

and therefore ‖χ(wh)‖H1,M ≤ 2‖wh‖H1,M. All together we find

‖wh‖pLp ≤ cε‖wh‖L1 +
ε

ξpθ/2
‖wh ln |wh|‖

p(1−θ)
L1 ‖wh‖pθH1,M

with cε,p = cp(2N)p−1 and ε = cpCp2pθ

(lnN)(1−θ)p . Especially for d = 2 it results θ = (p− 1)/p and the
inequality

‖wh‖pLp ≤ cε‖wh‖L1 +
ε

ξ(p−1)/2
‖wh ln |wh|‖pL1‖wh‖p−1

H1,M

follows.
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A.3 Technical lemmas

A.3.1 Global existence proof

In this part we collect some auxiliary results, which we use in Section 3.8 and in Section 3.10.

Lemma C.1. Let x, y, p ∈ R, x, y > 0.

1. For p ≥ 2 the following inequalities hold:

4(p− 1)

p2

(
xp/2 − yp/2

)2
≤ (x− y)(xp−1 − yp−1) ≤

(
xp/2 − yp/2

)2
. (C.26)

2. For p ≥ 1, we have
1

p
(xp − yp) ≤ xp−1(x− y). (C.27)

3. Finally, for p ≥ 2 the inequalities

2

p2
(xp/2 − yp/2)2 ≤ (xp−2 + yp−2)(x− y)2 ≤ 2(xp/2 − yp/2)2 (C.28)

are fulfilled.

Proof. 1. For z ≥ 1, we consider the function

f(z) = (z − 1)(zp−1 − 1)− 4(p− 1)

p2
(zp/2 − 1)2.

The first and second derivatives of f are given by

d

dz
f(z) =

(p− 2)2

p
zp−1 − (p− 1)zp−2 +

4(p− 1)

p
zp/2−1 − 1,

d2

dz2
f(z) =

(p− 2)(p− 1)

p

(
((p− 2)z − p)zp−3 + 2zp/2−2

)
.

It is easy to see that f(1) = 0, f ′(1) = 0 and f ′′(1) = 0. Further, we deduce from f ′′(z) > 0

for z > 1 that f ′(z) > 0 and f(z) > 0. W.l.o.g. let x ≥ y > 0 otherwise swap the variables
x and y. Setting z = x/y, we find

0 ≤ f(x/y) = (x− y)(xp−1 − yp−1)− 4(p− 1)

p2

(
xp/2 − yp/2

)2
and finally by using Muirhead’s inequality(

xp/2 − yp/2
)2

− (x− y)(xp−1 − yp−1) = xp−1y + xyp−1 − 2xp/2yp/2 ≥ 0
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holds. The case y = 0 is trivial.

2. For the second statement we consider for z ≥ 1 the function

f(z) =
p− 1

p
zp − zp−1 +

1

p
.

Since f(1) = 0, the first derivative of f

d

dz
f(z) = (p− 1)zp−2(z − 1) ≥ 0

implies f(z) ≥ 0. Setting z = x/y, x ≥ y > 0 we find

0 ≤ ypf(x/y) =

(
p− 1

p

xp

yp
− xp−1

yp−1
+

1

p

)
yp = xp−1(x− y)− 1

p
(xp − yp).

For x ≤ y it results

1

p
(xp − yp) ≤ (xp − yp) ≤ xp−1

(
x− y(y/x)p−1

)
≤ xp−1(x− y).

3. We use the function

f(z) = (zp−2 + 1)(z − 1)2 − 2

p2
(zp/2 − 1)2.

The first and second derivatives are given by

d

dz
f(z) = 2(z − 1)(zp−2 + 1) + (p− 2)(z − 1)2zp−3 − 2

p
(zp/2 − 1)zp/2−1,

d2

dz2
f(z) =

1

p

(
2p+ (p− 2)zp/2−2 + zp−4g(z)

)
with

g(z) = (p− 3)(p− 2)p− 2(p− 2)(p− 1)pz + (p− 1)(p2 − 2)z2,

g′(z) = 2(p− 1)
(
(p2 − 2)z − (p− 2)p

)
,

g′′(z) = 2(p− 1)(p2 − 2).

From g′′(z) > 0 for z > 1 and p ≥ 2we see that g(z) is a convex function. Furthermore f(z)
is convex since g′(1) = 4(p− 1)2 > 0, g(1) = 2 and f ′′(z) > 0. Using f ′(1) = f(1) = 0

we get f(z) > 0 and with z = x/y, x ≥ y > 0 the first inequality of (C.28).
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The last assertion follows from

(xp/2 − yp/2)2 − 1

2
(xp−2 + yp−2)(x− y)2 =

1

2

(
xp + yp − xp−2y2 − x2yp−2

)
+
(
xp−1y + xyp−1 − 2xp/2yp/2

)
together with Muirhead’s inequality for the term

xp + yp ≥ xp−2y2 + x2yp−2, xp−1y + xyp−1 ≥ 2xp/2yp/2.

Lemma C.2. Let x be a real number. Then

f(x) =
(ex−1)(e−x+1)

2x
≥ 1, g(x) =

(ex−1)(e−x−1)

x2
≤ −1

hold. We define the value of the functions at x = 0 as limit x→ 0.

Proof. Using the power series of sinh(x) and cosh(x) we obtain

f(x) = 1 +

∞∑
i=1

x2i

(2i+ 1)!
, g(x) = −1− 2

∞∑
i=2

x2i−2

(2i)!
.

A.3.2 Convergence proof

LemmaC.3. Let supD ‖al‖L2(S,H1(Ω)) <∞ and the assumptions ofTheorem 3.12.3 be fulfilled. Then

‖al − ah‖L2(S,L2) → 0 (C.29)

as sizeD → 0.

Proof. We decompose the integral over the whole domain into the intersected area of the control
volumeK and the kiteDσ (see Subsection 3.12.2) over the edge σ = K|L

T1 := ‖al − ah‖2L2(S,L2(Ω)) =

∫
S

∫
Ω
(al(x)− ah(x))

2 dx dt

=

∫
S

∑
K∈V

∑
L∈NV (K)

∫
K∩Dσ

(al(x)− aK)2 dx dt.
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Using the Taylor expansion of al around x, i.e. al(xK) − al(x) = ∇al(x)(xK − x) and the
boundedness of the gradient we get

T1 ≤ size(M)2
∫
S

∑
K∈V

∑
L∈NV (K)

∫
K∩Dσ

|∇al|2 dx dt

≤ size(M)2‖al‖L2(S,H1(Ω)) → 0

as size(D) → 0.

We repeat the definition of the weak gradient reconstruction operator∇w : XV(M) → L2(Ω)2

(see (3.12.67)), i.e.

∇wal(x) = 2
aL − aK
dσ

nσ for x ∈ Dσ, σ = K|L.

Lemma C.4. Let D be a sequence of discretization of Q = S × Ω and al in L2(S,H1(Ω)) a corre-
sponding sequence of piecewise linear functions with ‖al‖L2(S,H1(Ω)) ≤ C . Then a subsequence (also
called al) can be extracted which converges to â ∈ L2(S,H1(Ω)) in the following senses

al ⇀ â in L2(S,H1(Ω)), ∇wal ⇀ ∇â in L2(S,L2(Ω)2).

Proof. Since ‖al‖L2(S,H1) is uniformly bounded, the weak gradient reconstruction of al is also
uniformly bounded inL2(S,L2(Ω)2). Therefore there exist a subsequence and a ĝ ∈ L2(S,L2(Ω)2)

such that∇wal ⇀ ĝ in L2(S,L2(Ω)2). We show that ĝ = ∇â holds.
In the following we use arbitrary test functions χ ∈ C∞

0 (S) and w ∈ C∞
0 (Ω)2. The set {g :

g =
∑n

i=1 χiwi with wi ∈ C∞
0 (Ω)2, χi ∈ C∞

0 (S)} is dense in L2(S,L2(Ω)2). According to the
Helmholtz decomposition, the set {w : w = ∇ϕc + curlϕr with ϕc, ϕr ∈ C∞

0 (Ω)} is dense in
L2(Ω)2.

For all ψ ∈ C∞
0 (Ω) we denote by ψl the Lagrange interpolant of ψ consisting in a continuous

piecewise affine function such that for all nodes xK in the mesh one obtainsψl(xK) = ψ(xK). Due
to the regularity of the mesh, one gets from classical FEM theory that ψl → ψ inH1(Ω). Moreover,
we introduce a strong gradient interpolation operator by

∇sψ(x) :=
ψ(xL)− ψ(xK)

dσ
nσ +

ψ(xTσK
)− ψ(xTσL

)

mσ
tσ for x ∈ Dσ, σ = K|L,

wherexTσK
andxTσL

denote the circumcenters of the triangles to the left and to the right of xK , xL.
Furthermore, the continuous curl operator is defined by a (−π

2 ) rotation of the gradient, i.e., one
has

curlψ =

(
ψy

−ψx

)
= −

(
ψx

ψy

)⊥

= −(∇ψ)⊥.
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Therefore, the strong curl interpolator is defined by

curls ψ(x) := −ψ(xL)− ψ(xK)

dσ
tσ +

ψ(xTσK
)− ψ(xTσL

)

mσ
nσ for x ∈ Dσ, σ = K|L.

Using the Helmholtz decomposition we obtain

ĝ(t) = ∇gr(t) + curl gc(t) gr(t), gc(t) ∈ H1(Ω) f.a.a. t ∈ S.

Irrotational part: First we show that the irrotational part of ĝ in the sense of Helmholtz decompo-
sition equals∇â. Due to the orthogonality of tσ and nσ we have

S =

∫
S
χ

∫
Ω
∇al · ∇ϕr,l dx dt

=

∫
S
χ

∑
σ=K|L∈Eint

mσ

dσ
(aK − aL)(ϕr(xK)− ϕr(xL)) dt

=

∫
S
χ

∑
σ=K|L∈Eint

|Dσ|
(
2
aK − aL
dσ

)(
ϕr(xK)− ϕr(xL)

dσ

)
dt

=

∫
S
χ

∫
Ω
∇wal · ∇sϕr,l dx dt.

By weak-strong convergence, we obtain in the first and the last integral∫
S
χ

∫
Ω
∇â · ∇ϕr dx dt =

∫
S
χ

∫
Ω
ĝ · ∇ϕr dx dt

and therefore∇ĝr(t, x) = ∇â(t, x) f.a.a. (t, x) ∈ Q.

Divergence-free part: It remains to show that the divergence-free part of ĝ vanishes. In [107] it
is shown that covolume discretizations on Delaunay-Voronoi grids fulfill the continuous property
∇ · curlψ ≡ 0 in a discrete sense, which will be used in the following. For the sake of completeness,
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we present the necessary arguments. Obviously, we obtain for the strong curl interpolator on regular
meshes that curls ψ → curlψ in L2(Ω)2. Now we compute∫

Q
χ∇wal · curls ϕc dx dt

=

∫
S
χ

∑
σ=K|L∈Eint

|Dσ|
(
2
aL − aK
dσ

)(
ϕc(xTσK

)− ϕc(xTσL
)

mσ

)
dt

=

∫
S
χ

∑
σ=K|L∈Eint

(aL − aK)
(
ϕc(xTσK

)− ϕc(xTσL
)
)
dt

=

∫
S
χ
∑
L∈V

xL /∈∂Ω

∑
K∈NV (L)

aL
(
ϕc(xTσK

)− ϕc(xTσL
)
)
dt

= 0.

The last integral is always identically 0, since the term ϕc(xTσK
) is added two times with opposite

sign. By weak-strong convergence of the first integral, we finally obtain∫
Q
χ ĝ · curlϕc dx dt = 0,

i.e., the divergence-free part of ĝ vanishes, and we have indeed ĝ(t, x) = ∇â(t, x) f.a.a. (t, x) ∈ Q.

Lemma C.5. Let Ω be an open, bounded, polyhedral subset of Rd. Moreover, let {M} be a series of
Voronoi finite volume meshes with size (M) → 0. Let be u ∈ L∞(Ω) and u(x) ≥ 0 f.a.a. x ∈ Ω.
Then the piecewise constant functions uh with uh(x) = uK if x ∈ K ,

uK =
1

|K|

∫
K
u(x) dx ∀K ∈ V,

converge to u in Lp(Ω) for all p ∈ [1,∞) as size (M) → 0.

Proof. We show the result for p = 1, the assertion for p ∈ (1,∞) then results from

‖uh − u‖Lp ≤ (2‖u‖L∞)
p−1
p ‖u− uh‖

1/p
L1 .

Let be ε > 0. Luzin’s theorem [128, p. 1013] guarantees the existence of a closed setMε ⊂ Ω such
that

u|Mε is continuous and |Ω \Mε| <
ε

8||u||L∞
.
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SinceMε is compact there exists a δ > 0 such that

|u(x)− u(y)| < ε

2 |Ω|
∀x, y ∈Mε, |x− y| < δ.

Let size (M) < δ which implies |x− y| < δ. Introducing the set

K \Mε := {x ∈ RN : x ∈ K, x /∈Mε}

and by using the identityK = (K \Mε) ∪ (K ∩Mε) we estimate the integral in the L1-norm by
considering integrals on subsets

‖u− uh‖L1 ≤
∑
K∈V

1

|K|

∫
K

∫
K
|u(x)− u(y)| dy dx

=
∑
K∈V

1

|K|

∫
K∩Mε

∫
K\Mε

|u(x)− u(y)| dy dx

+
∑
K∈V

1

|K|

∫
K∩Mε

∫
K∩Mε

|u(x)− u(y)| dy dx

+
∑
K∈V

1

|K|

∫
K\Mε

∫
K
|u(x)− u(y)| dy dx

<
ε

2 |Ω|
|Ω|+ 2‖u‖L∞

ε

8‖u‖L∞
+ 2‖u‖L∞

ε

8‖u‖L∞
= ε.

We recapitulate the Assumption A7: Let f ∈ L∞(Ω) with f(x) ≥ 0 f.a.a. x ∈ Ω and let I be
a finite index set. Furthermore, let Ω ⊂ R2 be a polygonal domain and let Ω = ∪I∈IΩI be a finite
disjoint union of subdomains such that the discontinuities of f coincide with the subdomain boundaries.
Let the over all one-dimensional measure of all internal subdomain boundaries be bounded by θ. There
exists some γ ∈ (0, 1] such that f ∈ C0,γ(ΩI) :=

{
w|ΩI

, w ∈ C0,γ(R2)
}
, I ∈ I .

Lemma C.6. We assume Assumption A7. LetD = (M, (tn)
N
n=1) be a sequence of discretizations of

Q = S × Ω and ah → â in L2(S, Y ) as size(D) → 0 with ‖ah‖L∞(S,L∞(Ω,Rm)) ≤ R. Moreover,
let f : Ω × Rm → R+ satisfy the Carathéodory condition and there exist 0 < c, c < ∞ such that
c ≤ f(x, y) ≤ c, f.a.a. x ∈ Ω, ∀y ∈ Rm. Additionally, there exists a constant γ ∈ (0, 1] such that
f |ΩI

∈ C0,γ(ΩI × BRm(0, R)) for all I ∈ I , where BRm(0, R)) denotes a ball in Rm centered at 0
with radiusR. Then

‖fh(·, ah)− f(·, â)‖L1(Q) → 0 as size(D) → 0.
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Proof. For any given discretizationM, let be

Ξ := {x ∈ Ω : x ∈ K ∈ V with |K ∩ ΩI | 6= 0 ∧ |K ∩ ΩJ | 6= 0 for I 6= J, I, J ∈ I}

with |Ξ| ≤ 2θ size(M) for all discretizationsD (see also Assumption A7). In order to estimate

S1 = ‖fh(·, ah)− f(·, â)‖L1(Ω) =
∑
K∈V

∫
K

∣∣∣∣ 1K
∫
K
f(y, ah(x)) dy − f(x, â(x))

∣∣∣∣ dx
≤
∑
K∈V

∫
K
S2(x) dx

with
S2(x) =

1

|K|

∫
K
|f(y, ah(x))− f(x, â(x))| dy

we consider the cases:

• On x ∈ Ω \ Ξ, we obtain

S2(x) ≤
c

|K|

∫
K
(|ah(x)− â(x)|γ + |x− y|γ) dy ≤ c|ah(x)− â(x)|γ + c size(M)γ .

• On x ∈ Ξ, we find by using the bound c of f the estimate S2(x) ≤ 2c.

Therefore we deduce with some constant c1 the following estimate

∫
S
S1 dt ≤

∫
S

(∫
Ω\Ξ

S2 dx+

∫
Ξ
S2 dx

)
dt

≤ c1 size(M)γ + c1

∫
Q
|ah − â|γ dx dt.

Since γ ∈ (0, 1], we apply Hölder’s inequality with q = 2/γ and p = 2/(2− γ) and conclude

‖fh(·, ah)− f(·, â)‖L1(Q) ≤ c1 size(M)γ + c1(T |Ω|)1−γ/2‖ah − â‖L2(S,Y ) → 0

as size(D) → 0.
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A.4 Convex analysis

This section rephrases results of convex analysis, which we need in Section 3.6 and 3.10. The results
are mainly taken from [115, Sec. 1.1.3, Sec. 8.10], [27, 128] and [77, Sec. 0.3.2., Sec. 4.2.].

In this section let V be a (real) linear space.
A setA in a linear space is called convex if λu+(1−λ)v ∈ A whenever u, v ∈ A and λ ∈ [0, 1].

A function f : V → R is called convex if f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v) for any
u, v ∈ V and λ ∈ [0, 1]. If u 6= v and λ ∈]0, 1[ imply a strict inequality then f is called strictly
convex. A function f : V → R is convex iff its epigraph epi(f) := {(v, a) ∈ V × R : a ≥ f(v)}
is a convex subset of V × R. A function f : V → R := R ∪ {±∞} called proper iff its domain
dom(f) := {v ∈ V : f(v) < +∞} 6= ∅ and f(x) > −∞ for all x ∈ V . A function f : V → R is
said to be lower (resp. upper) semicontinuous if

∀u ∈ V, uk → u : f(u) ≤ lim
k→∞

inf f(uk)
(
resp. f(u) ≥ lim

k→∞
sup f(uk)

)
.

Let f : V → R be a proper convex function. The subdifferential ∂f of the function f is defined by

∂f(u) := {v∗ ∈ V ∗ : f(v)− f(u) ≥ 〈v∗, v − u〉 ∀v ∈ V } . (C.30)

An element v∗ ∈ V ∗ satisfying v∗ ∈ ∂f(u) is said to be a subgradient of the function f at a point u.
If f is a proper convex function onRn then f is subdifferentiable in every relative interior point, see
[77, Sec. 4.2.3]. Let f : V → R be convex. The conjugate functional f∗ : V ∗ → V of f is defined
by

f∗(v∗) = sup
v∈V

{〈v∗, v〉 − f(v)} . (C.31)

The transformation f 7→ f∗ is called the Legendre transformation in the smooth case, or the Legendre-
Fenchel transformation in the general case. From the definition (C.31) it follows that f∗ is convex,
lower semicontinuous and f∗(v∗) + f(v) ≥ 〈v∗, v〉 which is called Fenchel’s inequality. Further-
more f∗∗ = f iff f lower semicontinuous. If f is a proper and lower semicontinuous function,
then

v∗ ∈ ∂f(v) ⇔ v ∈ ∂f∗(v∗) ⇔ f(v) + f∗(v∗) = 〈v∗, v〉.
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Kurzzusammenfassung

Gegenstand der Arbeit sollen abgeschlossene Systeme von parabolischen partiellen Differentialglei-
chungen sein, welche die Umwandlung von chemischen, elektrisch neutralen Spezies in heterogenen
Materialen beschreiben, welche durch Diffusion und reversiblen Reaktionen getrieben werden. Ins-
besondere die Modellierung von Prozessen der chemischen Verfahrenstechnik, wie sie zum Beispiel
bei der Herstellung von Halbleitern in der Fotolithografie auftreten, führen auf Reaktions-Diffusi-
onssysteme, die durch nicht glatte Daten im Orte gekennzeichnet sind.

Der Beitrag dieser Arbeit betrifft die örtliche Voronoi Finite-Volumen und die zeitliche implizite
Euler Diskretisierung solcher dissipativen Reaktions-Diffusionssysteme. Für den Beweis von Aussa-
gen über die Stabilität von Lösungen und von a priori-Abschätzungen für die diskreten Lösungen
werden Techniken in die diskrete Welt übertragen, die sich bereits beim Studium des kontinuierli-
chen Problems als zielführend herausgestellt haben. Den Ausgangspunkt bilden dabei Abschätzun-
gen der diskreten Freienenergie, die entlang von Trajektorien des diskreten Problems monoton und
exponentiell gegen ihren Gleichgewichtswert fällt.

Unter zusätzlichen Annahmen an die Reaktionsordnung (Reaktionenmit maximal quadratischen
Quelltermen) konnte die uniforme zeitlich globale Existenz von positiven Lösungen gezeigt werden.
Ausdrücklich sei darauf hingewiesen, dass in beiden Fällen die auftretenden Konstanten unabhängig
von der Güte des Voronoi-Gitters und vom Zeitschritt sind, womit auch anisotrope Gitter nicht
ausgeschlossen sind. Die lokale Existenz von Lösungen des diskreten Problems konnte unter den na-
türlichenVoraussetzungen derQuasipositivität der Reaktionsterme und der Erhaltung der Atomzahl
bewiesen werden. Zusammenfassend konnten alle qualitativen Eigenschaften des kontinuierlichen
Systems (thermodynamisches Gleichgewicht, monotones und exponentielles Fallen der freien Ener-
gie, globale obere und untere Schranken) auch für das diskretisierte Problem nachgewiesen werden.
Ein weiteres neues Resultat betrifft die Konvergenz des Schemas.

Für das Beispiel der Michaelis-Menten-Henry-Kinetik wird eine prototypische Implementierung
des Schemas aufgezeigt, bei der großenWert auf die Erhaltung der theoretisch erzieltenEigenschaften
über große Zeitintervalle gelegt wird. Um die Stabilität und Anwendbarkeit der Methode auf reale
Problem zu demonstrieren werden verschiedene Beispiele mit Michaelis-Menten-Henry-Kinetik
betrachtet, welche sich speziellen Eigenschaften der implementierten Methode widmen. In allen
Beispielen sind während der Rechnungen die physikalischen Eigenschaften des Schemas bis auf
Rundungsfehler auch über lange Zeitintervalle erhalten. Darüber hinaus löst das analysierte Verfah-
ren die verschieden Zeitskalen des Systems auf, wenn auch wandernde Reaktionsfronten oder starke
Gradienten, in der Nachbarschaft von Materialübergängen nur grob durch das Gitter approximiert
sind.
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