Appendix B

The Gently Tool

Specification and Generation of JSP Dialogues

In this appendix we describe the language and the tool Gently for the speci-
fication of submit/response style systems and the subsequent generation of an
executable interface prototype. A textual description of a form storyboard can
be directly expressed in Gently, and is then automatically mapped onto a sys-
tem structure in compliance with currently discussed web design patterns like
the Model 2 architecture. However, Gently integrates specifically well with ad-
vanced server pages technologies like NSP [44]. The Gently tool leads over from
specification to implementation, therefore in this appendix we give also an out-
line of the targeted technology, namely the JSP technology for implementing
Web interfaces. We discuss the properties and problems of this technology for
submit /response style systems.

The language Gently directly supports the system metaphor of Form-Oriented
Analysis, namely the system model as a bipartite state machine.

B.1 The Advantages of Gently

In this section and the following section we give arguments for a language and
tool like Gently directly from the standpoint of the design phase, thus adding a
new motivation to our conceptual views on submit/response style systems. We
describe, why the working developer of servlet-based web interfaces can gain
advantages for the everyday problems by using Gently.

Servlets give access to CGI style parameter passing through an object-
oriented mechanism. Commonly accepted documentation and testing concepts,
when used naively in the context of developing a servlet based ultra-thin client
tier, may consider only the purely technical parameters (HTTPRequest, HTTPRe-
sponse) instead of the CGI parameters significant for the business logic.

Moreover, the servlet concept is open for polymorphic use of servlets. One
servlet can be designed to respond to different sets of CGI parameters. However,

83

84 APPENDIX B. THE GENTLY TOOL

the servlet mechanism does not perform any checking on the parameter set.

The formal language called Gently defines a discipline restricting the use
of this mechanism to a strongly typed concept which is in compliance with
best practices. This language serves as input to a JSP generator, producing
templates for a type safe dialogue. Gently allows at the same time to document
a JSP based dialogue.

More formally, our language enables the specification of the system as the
signature of a static object system. The template generator maps each object to
one JSP and each dialogue method offered by this object to a protected region
within this JSP.

In Gently, form storyboards can be directly expressed, and the bipartite
structure of the specification is checked by the Gently tool. The bipartite struc-
ture of the form storyboard is matched with the so called Model 2 Design pat-
tern, and therefore supports current state-of-the-art web interface development.

B.2 Introduction to the Viewpoint of Gently

We consider systems with HTTP interface in which the main dialogue function-
ality is based on basic HTML form techniques or in which the dialogue can be
viewed as such. We will use an online bookshop as a running example. We
consider the implementation of such systems with Java Server Pages (JSP),
which is a proposed standard technique to implement HTTPServlets [2][11][5].
The interface of such a system is used in a request/response style by requesting
single pages. For simplicity, we suppose that the system is based completely on
pages generated by JSPs, and we will call all pages of the system together the
pageset of the interface. Technical differences between JSP and servlets are of
minor interest in the context of this paper, so we feel free to use these terms
mostly synonymously.

The HTML form standard offers an untyped, textbased remote call mecha-
nism, which is used as the standard parameter passing mechanism for dynamic
websites. This mechanism is commonly, but not quite correctly, referred to as
CGI parameter mechanism. We prefer HTML form parameters in the following
as precise term for those parameters. The mechanism can be used in HTTP
links as well. Servlets offer HTML form parameters to custom code via the
HTTPRequest parameter.

The user of a HTTP dialogue can be viewed as invoking methods on the
system via the browser. However, it is not helpful to view the user as invoking
the doGet (or e.g. doPost) methods of the servlet: Applying standard docu-
mentation to the customized servlet classes leads only to the documentation of
the formal doGet methods. The interesting parameters however are the HTML
form parameters provided by the forms and links calling the page, which have
to be recognized by the custom code.

Each customized doGet implementation may be able to understand different
parameter sets. In other words, the servlet mechanism is open for overloading.

B.3. THE LANGUAGE GENTLY 85

We define programming guidelines limiting the degrees of freedom in ac-
cordance with common best practices, and we define a precise specification
methodology, namely a formal language for pagesets.

The programming guidelines demand that each servlet must respond only to
a fixed set of parameter lists and that the decision must be based on a hidden
parameter. Hence, for the specification language, we view each JSP as a static
object offering a set of methods with fixed parameter set.

A whole HTTP dialogue can therefore be seen as the signature of a static
object system, each page being an object. Our language will allow the specifi-
cation of such a signature and the generation of templates for the JSPs of this
system.

The described static object system signature is called the dialogue signature
of the system. Each method within that signature is called a dialogue method.
In well-designed systems, dialogue methods and business methods live on dif-
ferent tiers. Dialogue methods invoke business methods. So the dialogue can
be changed without changing the business logic.

Dialogue methods produce result pages. Note that therefore one JSP will
potentially generate as many different result pages as it has methods.

Each result page offers to the user the choice between different calls to dia-
logue methods as the next step in the dialogue. Dialogue methods can be called
by links or forms. Forms can be seen as editable method calls offered to the
user.

For each dialogue method, our language will permit to specify the links and
forms contained in the result page. The syntax of these declarations is derived
from the Java method syntax.

From each specified method declaration and call the generator will produce
appropriate code templates as described below.

B.3 The Language Gently

The language Gently is a specification language for HTML dialogues. Its type
system and syntax are oriented towards Java. Gently allows the specification of
a HTML dialogue as a static object system. The signature of this object system
is expressed in Gently in a single source file. This source file is conceived as
the place of documentation of the functionality of the HTML interface. The
documentation for the JSPs shall be provided in the Gently file, and shall be
ruled by the design by contract paradigm [9].

The Gently generator performs static type checking on this specification and
generates JSP templates, containing protected regions. The JSP templates can
be completed by inserting custom code into the protected regions.

Gently considers the different pages of a JSP interface as the static objects
which constitute the interface. FEach group is specified in the Gently file in
a syntax element group similar to the class construct in Java. Each JSP
can have a set of different methods with different parameter signatures. We
have introduced this option in order to permit the invocation of one JSP with

86 APPENDIX B. THE GENTLY TOOL

different parameter sets. As a result we obtain a two level hierarchical structure
of the services offered by a HTML interface. It is not our intention to prescribe
a special usage of this feature. The programmer is free to decide about the
distribution of functionality over different JSPs.

Each method within a group construct has a fixed parameter set. The
method construct in Gently is again similar to the method syntax in Java.

In the body of Gently’s method construct, two types of declarations have
to be provided. In one type of declaration the programmer has to specify all
links and forms which shall be offered by the result page of this method. Since
links and forms enable calls of dialogue methods, their declarations resemble
method calls. They start with the keywords 1ink or form, they get a label,
which enables references to them, and finally they have a method call syntax,
e.g.
link myLabel calls myGroup.myMethod(myActParl,..,myActParN).

For links, the actual parameters are names of variables. Gently generates a
protected region in which variables with these names are accesible (the declara-
tion is placed in front of the protected region). The custom code should assign
values to these variables. In the code subsequent to the proteced region, these
variables are used to construct an appropriate HTML-link code.

In form declarations each actual parameter is a pair of the widget type that
shall be generated and a variable name. The values of these variables are used
to provide the default values within the widgets.

These 1ink or form declarations serve as specifications of the possible next
actions the user can take.

Our intention with Gently is to maximize local specification value, therefore
we demand the other type of declaration in each method, the called by dec-
larations. By such declarations the programmer has to specify all places in the
dialogue, where links to this method are offered to the user, i.e. all methods in
which this method is called in a 1ink or form declaration.

Naturally, one has to place called by declarations in front of 1ink or form
declarations. Both declaration types are separated by and, declarations of one
type are separated by or.

Alternatively, in other versions of the tool, called by declarations or even
an appropriate state chart visualization could be generated, too.

Further important Gently constructs will be explained directly in the up-
coming example.

B.3.1 Two Staged Request Processing

Gently directly supports the system paradigm established in Form-Oriented
Analysis, in which the system is modeled as a bipartite state machine. The
action and page declarations in Gently enable a two-staged request processing,
wich fits to the bipartite structure of Form-Oriented Analysis. The current
Gently tool output is consistent with SUNs Model2 [11] as a JSP design pattern.
Due to the generative approach of the Gently tool it is however easily possible
to support advanced and more flexible system designs like the NSP approach

B.3. THE LANGUAGE GENTLY 87

presented in [44]. Gently offers two method modifiers, action and page, which
qualifies the respective method as corresponding to a server action or client
page. A page method must call only action methods, and only via 1link or
form declarations. A action method must call only page methods, and only
via redirect declarations. The Gently tool checks, whether the specification
complies with the given rules, and whether all methods have a modifier.

B.3.2 Generation of Code

The language Gently serves as a formal specification language, but also as input
to the Gently tool, a type checker and generator. The Gently tool performs the
following static checks:

e It checks whether all calls to methods (in the result pages of other meth-
ods) have correct parameter sets. This is important especially for forms.
Here the tool checks whether the widgets chosen in each actual parameter
matches the type of the corresponding formal parameter.

e It checks whether every link or form declaration is matched by a corre-
sponding called by declaration in the method called.

e It checks, whether every action calls only page targets via redirect
declarations, and whether every page calls only action targets via link
or form declarations.

For correct input, the Gently generator produces the following output code:

e For each group construct it produces one Java Server Page with the same
name.

e For each method within a group construct it produces one block in the
Java Server Page. This block is executed whenever the appropriate Gen-
tly method is called. Within that block it produces code which performs
runtime type checking whether the method is called with correct param-
eters, and converts the parameters to Java local variables with the same
name as the formal parameters in the Gently file. Subsequently it creates
a protected region which can be used as method body for the Java code.

e For every link or form declaration in the Gently method body it creates
HTML code, giving a form or link which offers a correct call to the corre-
sponding method. Within that HTML code, the Gently tool again creates
protected regions for each HTML parameter, defining where to insert Java
code which produces actual parameters. Of course, the programmer could
chose to generate some links with Gently and some other links manually.
However, since Gently is not only a generation tool but also a specification
language, proper documentation requires that every call to the dialogue
methods must be specified within Gently.

e The Gently tool produces comments, structuring the generated code.

88 APPENDIX B. THE GENTLY TOOL

The Gently tool is developed in Java with the compiler generator JavaCC
[8]. It is build using standard compiler construction techniques [15] combined
with proposed object-oriented patterns [6].

B.3.3 The Seminar Registration System in Gently

We now give the Gently code for the running example, the seminar registration
system. The example makes use of the partitioning concept of Gently, by binding
logically connected groups of states together. The example shows also the usage
of the menu construct. This construct may contain 1ink and form declarations,
which will be included on every result page. It is used to realize the back link
in the example. In the specification for the seminar registration here, the back
link is contained on every page, including the home page.

menuq
1link home calls Home.home()

group Home{
action home()
called by home from menu
and
redirect Home.list()

page list()

called by home from Home.newLink
or called by redirect from New.newForm
or called by redirect from Change.changeForm
or called by redirect from Delete.deleteForm
and

link delete calls Delete.deleteLink(person)
or link change calls Change.changeLink(person)
or link change calls New.newLink()

group Delete{
action deleteLink(Person selected)
called by delete from Home.list
or called by delete from Change.changePage
and
redirect Delete.deletePage(selected)
}
page deletePage(Person selected)
called by redirect from Delete.deleteLink
or called by redirect from Delete.deleteForm
and
form confirm calls Delete.deleteForm(PASSWORD passwd)

B.3. THE LANGUAGE GENTLY

}
action deleteForm(Password passwd)
called by confirm from Delete.deletelLink
and
redirect Delete.deletePage(selected)
or redirect Home.list()
}
}

group Change{
action changeLink(Person selected)
called by change from Home.list
and
redirect Change.changePage(selected)
}
page changePage(Person person)
called by redirect from Change.changeLink
or called by redirect from Change.changeForm
and
link delete calls Delete.deleteLink(person)
or form submit calls Change.changeForm(HIDDEN person,
TEXTFIELD name,
TEXTFIELD phone,
TEXTFIELD studentID,
PASSWORD passwd)
}
action changeForm(Person person, String name, String phone,
int studentID, Password passwd)
called by submit from Change.changeLink
and
redirect Change.changePage (person)
or redirect Home.list()
}
¥

group New{
action newLink()
called by new from Home.list
and
redirect New.newPage()
}
page newPage()
called by redirect from New.newLink
or called by redirect from New.newForm
and
link home calls Home.home()
or form submit calls New.newForm(TEXTFIELD name,
TEXTFIELD phone,
TEXTFIELD studentID,
PASSWORD passwd,

89

90 APPENDIX B. THE GENTLY TOOL

PASSWORD passwd2)
X
action newForm(String name, String phone, int studentID,
Password passwd, Password passwd2)
called by submit from New.newLink
and
redirect New.newPage()
or redirect Home.list()
}
¥

B.4 The use of the menu concept

The menu concept has become widespread in the domain of web technology. In
this section we distinguish the menu concept from the mere technical concept
of the browser history.

User interaction with the web browser can be divided into two classes: Inter-
action on one page, like filling out a form. We have called this page interaction.
For itself it is a purely client-side activity, it is not of interest for our considera-
tions, which apply to the server side. On the other hand we consider interaction
changing the currently shown page, we call this page change. In case of submit-
ting forms, user input is transferred with this request.

As a consequence of this, HTTP interfaces can be specified as a set of pages
modeled as states of a state machine and a set of page changes modeled as
state changes on this machine. Hence one may think of using the state machine
as documentation for the dialogue. But a closer look on many HTTP inter-
faces shows that they offer almost every state transition, so that state machine
modeling becomes almost useless.

To circumvent this we propose a classification of page changes into three
classes:

e browser-caused. These are state changes via the browser’s history mech-
anism, bookmarks etc. These changes must be considered by the system
designer because they must not make the system unstable. However, it is a
quietly accepted pattern of HTML dialogue design that a user should not
be forced to use such mechanisms in order to get a meaningful dialogue
with the system.

e menu-supported. HTML interfaces typically have alongside the changing
page a menu, which allows the user to branch fairly unrestricted in the
system dialogue. The menu is a substitute for the browser history that is
provided by the site itself and built with insight into the semantics. But
again, the user should at most in exceptional cases be forced to use the
menu. The menu should be always at hand for the user’s convenience, but
the system should propose the most usual state changes within the page
itself.

B.4. THE USE OF THE MENU CONCEPT 91

e page-guided. These page changes are caused by links or buttons on the
page and constitute the main alternatives. Navigation along these state
changes is what constitutes the use cases [12]. Only these are amenable
to meaningful state machine modeling.

Gently supports this classification with the menu concept.

B.4.1 Modeling the Use Cases

We consider the distinction between page-guided state changes and the other
classes and the reduction of use cases to dialogues along page-guided state
changes as essential for a mature model for HTML dialogues.

This result is of course not restricted to HTML/HTTP as special technol-
ogy. In fact it is valid for an abstract class of ultra-thin clients. They can be
summarized as

e page-based clients, in contrast to GUIs based on recursive container struc-
tures for GUI elements, where almost every GUI element can have a state
of its own.

e pull-based, i.e. especially the page changes are user driven. Nevertheless
elements of the page may be fed with pushed information (a continuously
updated curve for example).

e Non-modal: the user can suspend or leave the use case and must not
stick to page-guided changes. However, restricting the interaction to the
page-guided changes must give a meaningful modal dialogue.

This more abstract model of ultra-thin clients could be called the abstract
browser.

B.4.2 Working with Gently

In order to develop an Interface with Gently, perform the following steps:

e Use Form-Oriented Analysis to achieve at least a form storyboard of the
system, preferably a form chart.

e Encode the resulting form storyboard in Gently.

e Invoke the Gently generator and obtain a set of JSP pages. Within these
pages, you find protected regions, in which you are allowed to write code.
There are two kinds of protected regions offered by Gently: Regions for
HTML coding and regions for Java programming. Use OCL tools for
transforming the OCL specification.

e Gently facilitates complete separation of HTML coding and Java program-
ming. The generator offers a switch, which triggers generation of separate
Java Interfaces. Instead of editing the second kind of protected regions as
described above, all Java custom code then has to be provided following
the Hollywood Principle [14].

92 APPENDIX B. THE GENTLY TOOL

B.5 Related Work

In contrast to other approaches [13] we do not adress the domain expert but
the professional software engineer in a code intensive working environment [1]
instead.

The functionality of Gently is different from tools like [10], which provide
an interconnection between different language paradigms like HTML and SQL.
Gently takes one signature specification and generates code in the different
paradigms, Java and HTML, according to this signature specification.

Gently does not prescribe architecture [7] or design. For example, we have
discussed how Gently directly supports SUNs Model2 [11] as JSP architecture.
As an example for JSP design, one could imagine the commonly accepted appli-
cation of the GoF-State-Pattern [6] to encapsulate the workflow of a user session
in a single servlet. As one may check against these two examples, our proposal
neither encourages nor discourages concrete architectures or designs. Instead,
it starts as a best practice for documenting JSP based systems and ends up as
a development discipline for such systems.

This is in contrast to, for example, the Struts framework [4][2], which leads
to very particular Model 2 architectures only. Struts suggests dynamic type
checking. Gently on the other hand consequently performs static type checking
and ensures that the resulting system is statically well typed [3].

With respect to performance, the use of Gently leads to almost no overhead.
The main function of Gently is not to generate Java statements, but to generate
matching HTML and Java signatures. Additionally Gently generates conversion
code and dynamic type checking, which serves as an additional firewall against
invalid calls to the system. This code must be provided in any stable system
implementation, even if Gently is not used. The code has minimal execution
time.

It is noteworthy that the resulting approach is amenable to generalization,
as pointed out in the chapter on further work.

B.6 Gently Contributions
As starting point for our contribution we have observed:

e HTTP offers a page based dialogue paradigm.

e HTML forms introduce a remote call mechanism with key-value lists as
parameter sets.

e Servlets do not enforce strong typing, they do not control overloading.

e The servlet mechanism has no inbuilt rejection mechanism for invalid re-
quests (no runtime type checking).

e Naive Java documentation misses the point for servlets.

B.6. GENTLY CONTRIBUTIONS 93

We proposed specification guidelines based on a formal language Gently and
a template generator taking Gently as input. Our main paradigm is that we
view a system with HTML interface as a static object system that is described
by its signature. The use of Gently offers the following advantages:

e A type system for HTTP requests connected to the Java type system, and
support for the enforcement of this type system.

e Generation of runtime type checks according to the type system.
e Generation of HTTP requests in compliance with the type system.

e Generation of a variety of input forms for each signature as well as gener-
ation of links.

94 APPENDIX B. THE GENTLY TOOL

B.7 Gently Grammar

B.7.1 Gently BNF

syntax

<LOCATION> <EQUALS> <LOCATOR> groups (menu)?

groups

(group)+

group

<GROUP> <IDENTIFIER> <CURLYOPEN> methods <CURLYCLOSE>

methods

(method)=*

method

(<ACTION> | <PAGE>)7 <IDENTIFIER> <OPEN> parameters <CLOSE>
<CURLYOPEN> ((callers (<AND> calls)?) | (calls))? <CURLYCLOSE>

parameters

(parameter (<COMMA> parameter)*)7

parameter

((<BOOLEAN> <IDENTIFIER>)
| ¢ (<INT> | <STRING>)
((<ARRAYOPEN> <ARRAYCLOSE> <IDENTIFIER>)
| (<IDENTIFIER> (<ARRAYOPEN> <ARRAYCLOSE>)7))))

callers

(caller (<OR> caller)*)

caller

<CALLED> <BY>

((<REDIRECT> <FROM> <IDENTIFIER> <DOT> <IDENTIFIER>)
| (<IDENTIFIER> <FROM> ((<IDENTIFIER> <DOT> <IDENTIFIER>)
| <MENU>)))

calls

B.7. GENTLY GRAMMAR 95

(call (<OR> call)*)
call
(link | form | redirect)

redirect

<REDIRECT> <IDENTIFIER> <DOT> <IDENTIFIER>
<0PEN> actuallLinkParameters <CLOSE>

link

<LINK> <IDENTIFIER> <CALLS> <IDENTIFIER> <DOT> <IDENTIFIER>
<0PEN> actualLinkParameters <CLOSE>

actuallLinkParameters

(<IDENTIFIER> (<COMMA> <IDENTIFIER>)*)7

form

<FORM> <IDENTIFIER> <CALLS> <IDENTIFIER> <DOT> <IDENTIFIER>
<0PEN> actualFormParameters <CLOSE>

actualFormParameters

(actualFormParameter (<COMMA> actualFormParameter)*)7
actualFormParameter

(<TEXT> | <TEXTAREA> | <CHECKBOX> | <RADIO> | <COMBOBOX> |
<MULTIPLELIST> | <HIDDEN>) <IDENTIFIER>

menu

<MENU> <CURLYOPEN> calls <CURLYCLOSE>

B.7.2 Gently Keywords

The Genty keywords encompass group specifiers, types, call specifiers, input
field specifiers, signs and auxiliaries. Identifier are alphanumeric values with a
leading letter. Comments in Gently are oriented towards Java. It is possible to
comment areas with /* comment */, and the rest of a line with // rest of line.

e Group Specifiers

96

APPENDIX B.

GROUP
MENU

Types

INT
BOOLEAN
STRING

Call Specifiers

CALLED
BY

FROM
REDIRECT
LINK
FORM
CALLS

OR

AND

Input Field Specifiers

TEXT
TEXTAREA
CHECKBOX
RADIO
COMBOBOX
MULTIPLELIST
HIDDEN

Signs

OPEN : 7 (”

CLOSE : ")
CURLYOPEN : " {”
CURLYCLOSE : '}
ARRAYOPEN : "[?
ARRAYCLOSE : 7]”
DOT : 7.

COMMA : 7"
EQUALS : "="

THE GENTLY TOOL

B.7. GENTLY GRAMMAR

e Auxiliary

LOCATION

97

98

APPENDIX B. THE GENTLY TOOL

