Chapter 6

Conclusion and Reflection

In this thesis we have discussed Form-Oriented Analysis, a new analysis method
specifically designed for so called submit/response style applications. Form-
Oriented Analysis introduces different artifacts, namely page diagrams, from
storyboards and form charts, which differ in formality and expressiveness. The
final and most expressive artifact, the form chart, was defined formally in UML.
Furthermore Form-Oriented Analysis is designed as a firm basis for tool support,
and the fully implemented Gently tool is presented in the Appendix B of this
Thesis.

6.1 The Main Contributions of Form-Oriented
Analysis

This thesis presents two kinds of contributions. First the contributions of Form-
Oriented Analysis to the modeling process, i.e. contributions for the working
developer, including the contributions by the Gently tool. We can summarize
that Form-Oriented Analysis brings the following benefits for the analysis of
submit /response style systems:

e It is an elaborated approach for modeling submit/response style systems
with bipartite state machines.

e It gives precise semantics to form charts, which are constraint-annotated
bipartite transition diagrams for modeling the user interface while unifying
forms and links as strongly typed method calls. It defines decomposition
and refinement concepts.

e The complete system specification is structured in four artifacts, the form

chart, the dialogue constraints, a data dictionary and a semantic data
model.

69



70 CHAPTER 6. CONCLUSION AND REFLECTION

e Form-Oriented Analysis offers page diagrams and form storyboards for
eliciting functional requirements and communicating them with domain
experts.

e The relationship between Form-Oriented Analysis models and state-of-the-
art proposals for software architecture of web based information systems
is well understood, and gives rise to useful tools like the Gently Tool.

The second kind of contributions of Form-Oriented Analysis concerns the-
oretical advances achieved in the formal semantics of form charts. These ad-
vances go beyond the immediate application within Form-Oriented Analysis,
however the application of these theoretical concepts in Form-Oriented Analy-
sis are a more than sufficient justification of them. During the formal treatment
of Form-Oriented Analysis we have encountered the following notable theoretic
contributions.

e A specification of finite state behavior by a bipartite state machine. The
finite state machine alternates between receptive states, which listen for
the next event, and reactive states, which react to an event and are left
automatically in order to return to an receptive state.

e The form chart as a formal artifact for the special purpose of specifying
submit /response based systems by dialogue constraints.

e The operational semantics of state history diagrams as class diagrams
derived from the shdframework.

e Opaque references for the data dictionary.

6.2 Further Work based on the Contributions

This thesis introduces a bipartite finite state model for a well-defined applica-
tion area. Finite state models are one of the most important and basic modeling
techniques used in theory and practice. The state chart formalism is not bipar-
tite, Petri nets on the other hand use a bipartite graph to model a transition
system. The bipartite structure of Petri nets has a different aim as we have
argued earlier. However, our bipartite state transition model is useful, since it
offers a natural separation of concerns: One class of state transitions models the
input to the system, the other class models the reaction of the system. In fur-
ther work we want to study, if bipartite state transition models provide valuable
models in other areas, too.

The operational semantics of state history diagrams given in this thesis has
the advantage to be tightly integrated with the system model and allows pow-
erful combined reasoning about the finite model and the semantic data model
at the same time. It is natural to study, whether this operational semantics
provides added value in other areas of finite state modeling, too.



6.3. REFLECTION 71

The notion of opaque references was introduced as a high level concept to
model references in immutable messages, hence as an abstraction from ID types
or from primary key fields. In future we are looking for a class diagram seman-
tics, which offers opaque references as first class citizens. Furthermore opaque
references may promise a valuable contribution for modeling automated inter-
faces, currently discussed as web services.

6.3 Reflection on Submit/Reponses Style Sys-
tems

Throughout the thesis we have seen, how submit/response style systems can
be modeled in a semantically well understood framework. We have seen, how
to specify such a system along its usage through a formbased interface, which
is easily combined with state-of-the art modeling techniques like a class dia-
gram and a constraint language. Now at the end of the thesis, after a formal
treatment of submit/response style interfaces, we feel free to discuss broader
aspects of such interfaces. We want to recall the properties of such interfaces
and discuss possible extensions. Some advanced concepts especially concerning
active content we have discussed earlier in the thesis. Here we want to discuss,
whether there is still a natural place and a need for submit/response style inter-
faces. Such interfaces are often considered as bare metal legacy technology. we
however will argue that there may well be reasons, why submit/response style
interfaces are here to stay because of subtle cognitive advantages.

We want to reflect on the main properties of submit /response style interfaces.

e Submit/response style interfaces collect user input in the style of input
forms. Input forms can be understood as a metaphor, namely as a direct
translation of paper forms into human-computer interfaces. Input forms
are composite structures of input elements.

e The notion submit /response style refers to the screen update policy, namely
that all screen updates have to be triggered by a dedicated user action.
The user actively submits data or a query, instead of watching a constantly
updated view.

6.3.1 Cognitive Advantages

Form-based interfaces have clear advantages for the self-explanatory charac-
ter of a system. The usage of the system is intuitive, since it is guided by a
paper form metaphor. Notable is however the importance of the submission
process, because of which we want to characterize the metaphor as submission
form metaphor. The difference between temporary input and submission, or
”sending”, is intuitive and fosters the user’s understanding of the system. The
form-based metaphor has a multi-tier structure in its own, without fixing an
implementation. The two classes of interactions structure the work of the user



72 CHAPTER 6. CONCLUSION AND REFLECTION

into the work intensive frequent page interactions and the punctual and atomic
interactions of the ”serious” kind, namely the page changes which also happen
to be the conclusion and separation of logically disjoint bunches of work. The
submit /response style character brings the user in command of the timing of her
system usage. It protects her from irritating disruption of her work by incoming
information.

In form-based interfaces the submission of a form is an operation that has
exactly the semantics indicated by the metaphor. In computer science terms
we have compared the submission of an actual parameter list with a method
name. The submission form metaphor views interaction with the system as
filling out virtual paper forms and submitting them to a processing instance,
which represents the core system.

The metaphor has the qualified name submission form metaphor, because
other form interface types can be found as well. E.g. desktop databases as they
are found in office suites allow form style interfaces, which possess page naviga-
tion buttons. Input in this form immediately changes the model. We call such
a form style interface a formlike view Applications using formlike views are in
principle required to have synchronous views on the data: if two formlike views
currently open show the same data, and the data are changed in one formlike
view, then the other formlike view is immediately updated. Many implemen-
tations however have to stick to polling mechanisms, which leads to latency
effects in the update process. Well-known and even worse examples are file
managers, which recognize state changes frequently only after manual refresh.
It is important to recognize, that the necessary refresh is in this case a bad
implementation, while the reload is a feature in the case of the submit/response
style applications.

In desktop databases the model state is the persistent state. Other applica-
tions with formlike views have nonpersistent state, e.g. spreadsheets.

The submission form metaphor has the advantage of having a clear seman-
tics. The two-staged state change due to the two-tiered model is integral part of
the metaphor. This is quite in contrast to e.g. the important desktop metaphor:
Consider the important drag and drop feature, which is at the very heart of the
desktop metaphor. Drag and Drop means regularly either copy or move, hence
can lead to two different effects.

The submission form metaphor is accompanied by the response page princi-
ple for showing reponses of the core system. The submission of a form is a page
change, i.e. the page that hosted the form is hidden and a new page is shown.
This new page is the response from the server. The response page has three
important functions:

e Notifying the user of the of the submitted form.
e Showing new information to the User.

e Offering new interaction options.



6.4. SUMMARY 73

The immediate status of the submitted form is the systems immediate re-
sponse to the form. Depending on the business logic this may or may not be
the completion of the form processing.

e Consider the entry of a new date in a web calendar tool. The response
page is the new calendar view with a short notification message. The form
has been completely processed.

e Consider the submission of an order in an online brokerage system. The
response page is a notification of reception. The execution of the order
however is taking place asynchronously.

e Consider the submission of an email in a Mail account on the Web. The
response page logically is only a notification of some overall validity of
the submitted data, e.g. the recipient’s address contains an at-sign. The
completion of the intended effect, namely the delivery of the email, is not
acknowledged at all.

6.3.2 Advanced Form Concepts

There are advanced form and widget concepts, which are not ubiquitous in
current types of submit/response systems, but which show, that form based
interfaces can have a comfortable appearance and functionality.

Strongly Typed Direct Input Widgets

Direct input widgets are in the first place textual input fields. Strongly typed
input widgets allow only input of correct primitive type. Strongly typed widgets
are directly related to formatted widgets. Examples are fixed length, integer,
fixed point, date, IP numbers. Certain special formatting widgets can be seen
as widgets for complex data types. E.g. IP address widgets can be built by four
integer widgets. In this case it is desirable, that the framework allows to define
the dot key as an alternate key for focus shift: hence, if the user enters the IP
address in the keystroke sequence with dots, the IP address is correctly placed
across the four widgets.

Auto Complete Widgets

If the user is required to enter a selection from a large set, neither radio buttons
nor select lists are applicable. An example is the input field for a train station.
Here an adequate input widget is an auto complete widget. If the user enters
a character sequence, a list with all choices with this sequence as a prefix is
offered.

6.4 Summary

Submit /response style applications are a widespread class of important systems.
We have seen that focusing on this system class allows us to define a rich analysis



74 CHAPTER 6. CONCLUSION AND REFLECTION

method, which allows the convenient specification of such applications. We
have also experienced that this analysis method yields valuable insights into
the semantic structure of such systems, as well as interesting contributions to
modeling in general.



