
Chapter 5

The Formal Semantics of
Form Charts

In this section we give a formal semantics for the final artifacts of Form-Oriented
Analysis, form charts and the data model. The focus is herein naturally on the
semantics of form charts, later the semantics of the data model and the data
dictionary are introduced in UML.

5.1 Form Charts in UML

Form charts have been defined as bipartite state transition diagrams. The for-
mal semantics in this chapter is motivated by the goal to define state transition
diagrams in such a way that they easily support the dialogue constraint lan-
guage, DCL. The main problem is here to give semantics for path expressions.
This is achieved in this chapter by two contributions. Path expressions are gen-
eralized in Section 5.5 to arbitrary UML class diagrams. The semantics for form
charts are defined in such a way that the path expressions in DCL map exactly
with our general definition of path expressions. In other words, DCL with its
path expressions can be seen as a subset of our OCL extension.

In this section we give an operational semantics for general state transition
diagrams — not only for bipartite STDs as they are needed for form charts
— in order to clarify the general character of the introduced semantics. Our
operational semantics are based solely on the semantics of the most important
UML diagram type, namely core class diagrams. Within the UML specification
operational semantics are known under different terms, they are called seman-
tics, detailed semantics or dynamic semantics. The term behavioral semantics
can be found, too, but refers typically only to semantics of behavioral features.
We use the term operational semantics. We will give operational semanics for
state transition diagrams by introducing so called state history diagrams, or
SHDs for short, our own version of state transition diagrams. The main idea
behind SHDs will be, that they are defined as a restriction of class diagrams. In

45

46 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

the concluding discussion of this section we will compare our approach with the
definition of state machines in UML. As we will see, our semantics are based
only on the fundamental semantic concept of core class diagrams, which serve
as the semantic foundation in the modeling universe in which UML is located.
As a consequence SHDs allow the specification of temporal constraints on fi-
nite state automata without any need for further temporal formalisms, solely
through the combination of the already defined concepts. Form charts, the key
diagram of Form-Oriented Analysis will then be a simple application of SHDs,
though we will support it with an own semantic framework. We then also give
precise semantics to the dialogue constraints introduced in DCL.

One may allow us to modestly point out that the approach chosen here
achieves a sound formal basis for all the special constructs introduced in Form-
Oriented Analysis in a rather short and lightweight way. This is achieved
through maximal reuse, mainly because we were able to fully reuse the semantics
of class diagrams for our new artifacts.

In the subsections 5.1.1 to 5.1.3 we explain state history diagrams. In sub-
Section 5.1.4 we model form charts as bipartite SHDs. In subSection 5.1.5 we
introduce the dialogue constraint language, DCL.

5.1.1 State History Diagrams

If we model a complex system as a finite state machine, this finite state machine
is typically only a part of the model. The behavior may depend further on a
classical data model. But in many cases the system behavior may especially
depend on the history of state transitions. State history diagrams give a conve-
nient general modeling tool for such systems. Submit/response style interfaces
will be a special application case.

State history diagrams, SHDs for short, are a semantic unification of class
diagrams and state transition diagrams. If a system is modeled with an SHD,
the history or trace of the finite state machine is a part of the actual system
state. In other words, for each state visit an instance of some class is kept in
the actual system state, so that these instances together form a log of the state
transition process so far. On this object net we can define constraints concerning
the history of state transitions. Hence we can define certain temporal constraints
without having to introduce a temporal extension into the constraint language.

Form charts are a specialization of SHDs used in Form-Oriented Analysis.
Form charts are bipartite SHDs with the Dialogue Constraint Language DCL,
which is mapped on OCL.

In state history diagrams the log of the state visits is kept as a linked list of
object instances. The links represent the transitions between state visits. SHDs
are based on the idea to choose the class diagram for this log in such a way that
it is isomorphic to the state transition diagram.

This is possible since state transition diagrams and core class diagrams can
be modeled by a similar metamodel. The basic metaclasses are nodes and
connectors. In STDs the nodes are states and the connectors are directed tran-
sitions. In core class diagrams the nodes are classes and the connectors are

5.1. FORM CHARTS IN UML 47

binary associations.
A state history diagram is now a special class diagram which can be read

as an STD at the same time. The consequence of this approach is that a single
diagram describes the state machine on the one hand and on the other hand
serves at the same time as class diagram for the aforementioned history of state
transitions. Such a class diagram must however adhere to rigorous restrictions
that will be given in due course.

We adopt the following rules for speaking about SHDs. The diagram can be
addressed as SHD or as STD or as class diagram, emphasizing the respective
aspect. The nodes are called state classes, the connectors are called transitions
and they are associations, their instances are called state changes. A run of
the state machine represented by the STD is called a process. The visit of a
state during a process over the STD is identified with an instance of the state
class and is called a visit. Hence a process is the object net over the SHD. This
object net is a path from the start visit of the process to the current visit. This
path is seen as being directed from the start visit. Each prefix of the path is a
part of the whole current path. This matches the semantics of the aggregation.
Hence all transitions are aggregations. The aggregation diamond points to the
later state. In SHD however, the transitions are not drawn with diamonds but
with single arrows. The associated state classes are called source and target.
We will use the SHD for the modeling of form charts. If a system is used by
several clients, each client lives in an own object space. Therefore the singleton
property is local to the client’ object space. If one would like to model all
clients accessing a system in a single object space, this could be done by using
several SHD’s in a single object space. In that case one has to use a slightly
modified framework in which the StartState is not a singleton, but there is
one StartState instance for each run of the finite automaton.

5.1.2 Modeling SHDs as Class Diagrams in UML

In the previous subsection we have defined SHDs as a restriction of a class dia-
gram, not as a new diagram type. In this subsection we give a formal treatment
of this approach in the context of UML. We achieve the definition of SHD’s
as restricted class diagrams in the following way: SHDs are class diagrams in
which all elements are derived from a special semantic modeling framework, the
shdframework. Note that we use model level inheritance here. In the UML
context a specification alternative would be a package with stereotypes in which
the SHD is defined by metamodel instantiation, instead of model inheritance.
But first we adhere strictly to the economy principle, and argue that modeling
is more lightweight than metamodeling, therefore we use modeling wherever
possible. Secondly our approach allows for a quite elegant formulation of the
central SHD semantics, namely that the object nets are paths. In Section 5.2
we will discuss the benefits of our modeling approach.

However, we want to use the stereotype notation for pure notational conve-
nience. For that purpose we introduce an auxiliary stereotype package in which
for each public element of our framework a stereotype of identical name is in-

48 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

<<singleton>>
StartState ModelState

<<singleton>>
CurrentEnd

State

ServerAction ClientPage
serverPage

pageServer

source

target

1

0..1

1

1

1

source

currentTarget

targetinitialSource

transition

0..1

1
1

state history
diagrams

form charts

{xor}

{xor}

modelTransition

shdframework

formchartframework

Figure 5.1: Frameworks for state history diagrams and form charts

troduced which has the metalevel constraint that its instances must inherit the
framework class of same name.

The shdframework is depicted in Figure 5.1 together with the form chart
framework, which extends the shdframework.

In the shdframework we define a hierarchy for classes as well as for asso-
ciations as shown in Fig. 5.1. Indeed we make intensive use of the concept
of association inheritance. The basic class is State and it has an aggregation
to itself called transition. The ends of transition have roles source and
target.

Before we explain, how the framework introduces the desired semantics to
SHDs, we explain, how it should be used in creating SHDs. As mentioned earlier,
all elements of an SHD must be derived from the following public elements in the
shdframework. All state classes in the SHD must be derived from ModelState
and all transitions must be derived from modelTransition. The marker for the
start of the SHD is derived from StartState, and its transition to the first state
is derived from the unnamed transition to ModelState. Only these four elements
of SHDs are public. All elements except the class CurrentEnd are abstract, only
the classes derived by the Modeler can be instantiated. The singleton stereotype
of StartState requires that the whole class hierarchy derived from StartState
has only one instance.

In a concrete SHD of course the generalization dependencies of SHD ele-

5.1. FORM CHARTS IN UML 49

ments to the framework are not depicted. Instead we make use of the auxiliary
stereotypes mentioned earlier. Therefore we are entitled to change the graphical
appearance of stereotyped classes in the SHD as we will do especially in form
charts.

5.1.3 Constraints on the Object Net

We now explain, how the shdframework in Figure 5.1 formalizes our constraints
on the process as the object net over an SHD. We show that the shdframework
enforces that the object net is a path.

For this purpose it is necessary that every visit but the start visit must have
exactly one predecessor, and every visit but the last visit must have exactly one
successor. The formalization of this demand poses two separate problems: on
the one hand the formalization of the constraint that each inner node of the
path must have exactly one predecessor and successor, and on the other hand
the exemption of the start and the end visit in exactly the correct manner. The
important problem of guaranteeing, that the object net is cycle-free is already
achieved by the use of aggregations since aggregations are defined to be cycle-
free on the object net level.

We first address the problem of exempting the terminal nodes.
There are two flavors of formalization: first one could exempt the start

visit from the general rule. The second way is to use a technique similar to
the sentinel technique in algorithms: an artificial predecessor to the start node
is introduced. This artificial visit is of a StartState class, which cannot be
revisited. We choose this second method, since it has the advantage, that it
delegates the semantic details to auxiliary classes. Both classes StartState
and ModelState are derived from State. In the same way, the current visit has
always an artificial successor from the class CurrentEnd. All states created by
the modeler in the SHD shall be derived from ModelState. Each time a new
state A is visited, a new instance of A must be created. This new visit gets the
old current state as a predecessor and the current end as a successor.

We now discuss, how the cardinalities expressed in the class diagram in
Figure 5.1 give the desired semantics and address the second problem, namely
the formalization of the constraint that each inner node of the path must have
exactly one predecessor and successor.

We sum up these deliberations in the following

Theorem 1 The object net over a state history diagram is a directed path.

Proof. If two classes A and B are connected with an association r, then
in OCL for an object a : A the group of associated objects a.r is an OCL
collection, i.e. a multiset or bag. The cardinality on the association end specifies
the number of elements of the collection, i.e. multiple occurences counted, not
ignored. Objects associated by a derived asociation q < r are always elements
of the collection concerning r, hence a.q ⊂ a.r. This relation is the key for the
following cardinality discussion; if an association end of an abstract association

50 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

has a cardinality 1, then exactly one derived association must have exactly one
link.

As we have said about SHDs, each transition in the SHD must be derived
from ModelTransition in the diagram, and each model state must be derived
from ModelState. This implies that if a model state has several outgoing tran-
sitions, they are all derived from modelTransition. Hence for an instance of
this state only one of these transitions can be instantiated at the same time
due to the cardinalities for modelTransition. In this way the shdframework
introduces an implicit Xor constraint on all outgoing transitions, and vice versa
on all ingoing transitions of a model state. Hence each instance of a model state
derived from modelState must have exactly one predecessor and one succes-
sor. The Xor constraints that are explicitly modeled in the shdframework take
care, that an instance of a model state can have one of the terminal nodes as
a predecessor or successor. We will discuss this for the StartState. The Xor
constraint responsible for the treatment of the start node is the Xor constraint
that connects the modelTransition with the transition from StartState to
ModelState. This Xor constraint allows that an instance of a model state can
have either another model state instance or a StartState instance as a prede-
cessor. In the same way an instance of a model state can have either another
model state instance or a CurrentEnd instance as a successor. The instances
of StartState and CurrentEnd have only one transition with cardinality 1, so
the instances of these states must have exactly one link attached. Since both
classes are singletons, the object net over a form chart contains exactly only one
object with a single outgoing link, exactly one object with a single ingoing link,
and otherwise only objects with exactly one in- and one outgoing link. Together
with the fact, that all associations are aggregations and therefore the object net
must not contain cycles, it follows, that the object net must be a single directed
path. �

5.1.4 Form Charts as SHDs

Form charts are bipartite state transition diagrams, which we will model now
as SHDs. For this purpose we introduce the formchartframework, which intro-
duces specializations of the ModelState and ModelTransition elements of the
shdframework, as shown in Figure 5.1. Form chart model elements must be de-
rived from the formchartframework elements, except the rather technical start
elements, which are still derived from the shdframework directly. Elements
of form charts are therefore also derived from elements of the shdframework,
though indirectly. Hence form charts are SHDs.

The form chart framework enforces in itself that form charts are bipartite
and introduces the known names for form chart elements.

We introduce two subclasses to State, namely ServerAction and ClientPage.
All states in the form chart have to be derived from these classes. We derive
aggregations pageServer and serverPage between them from the transition
aggregation in order to enforce that form charts are bipartite: In the form chart
all transitions must be derived from either pageServer or serverPage. The

5.1. FORM CHARTS IN UML 51

q
p b

a

ServerActionClientPage

pageServer

ServerPage

formchartframework

StartState

shdframework

Figure 5.2: A form chart is derived from the semantic framework

usage of the framework for modeling frameworks is shown in Figure 5.2. Only
the derivations of the states are shown, the derivations of the transitions are
omitted.

We assume again that each form chart framework element is accompanied
by a stereotype of same name. Each stereotype introduces its own graphical
representation. The << ClientPage >> stereotype is depicted by a bubble, the
<< ServerAction >> is depicted by a square. In the form chart, bubbles and
squares contain only their names.
The << serverPage >> and << pagePerver >> associations are depicted as
arrows, even though they are aggregations.

Figure 5.3 shows a form chart and an example object net over this form
chart, depicted actually below the form chart. The start state is omitted. The
object net is a path alternating between client states and server actions. If a
ModelState in the form chart has no outgoing transition, this state is a terminal
state for the dialogue; the dialogue is completed, once the state is entered.

5.1.5 Dialogue Constraint Language

Form charts have new constraint stereotypes. We call OCL plus the new con-
straint stereotypes the dialogue constraint language DCL. The important well-
formedness rules concerning the bipartite structure of form charts are already
specified by the class diagram in Fig. 5.1.

In this section we define the well-formedness rules of the different constraint
stereotypes introduced in DCL. The placement of the DCL constraints is de-
picted in Figure 4.1.

52 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

a
q

b r

singleInstance:
CurrentEnd

Figure 5.3: The object net over a form chart is a path.

5.1.6 Well-Formedness Rules

In this section we give the formal rules where the new DCL constraints are
allowed. These rules are well-formedness rules for form charts. They are OCL
metamodel constraints assigned to the newly introduced stereotypes.

Two kinds of DCL constraints are placed on classes, namely client input
constraints and server input constraints. The other kinds of constraints are
placed at the ends of transitions.

Formally, we define stereotypes for constraints, similar to the stereotypes
<< invariant >> , << precondition >> and << postcondition >> for OCL. The
new stereotypes apply to constraints at transition ends and are called dialogue
constraints. They are derived from the << dialogueconstraint >> stereotype.
They are all contained in the formchartframework so that they can be used in
a form chart. They conclude the allowed elements within the form chart.

Two of the dialogue constraints, namely client output and server output
constraints share important semantic properties, as we will see in the section
on the semantics of dialogue constraints. This leads to the intuitive approach
to make them specializations of a single constraint type, which we will call
<< stateoutputconstraint >> . This constraint type can now be understood
as a natural constraint already on the SHD level. So the two types of output
constraint in the form chart can be understood as the natural dichotomy of this
single SHD constraint due to the bipartite structure of the form chart.

The dialogue constraint stereotypes have metamodel constraints as presented
in the following. They primarily argue over the constrained element, which can
be accessed as constrainedElement in the metamodel.

enablingcondition

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(pageServer) and

constrainedElement.aggregation=none

5.2. DISCUSSION 53

clientoutputconstraint

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(pageServer) and

constrainedElement.aggregation=aggregate

serveroutputconstraint

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(serverPage) and

constrainedElement.aggregation=aggregate

flowcondition

constrainedElement→instanceOf(AssociationEnd) and

constrainedElement.association→instanceOf(serverPage) and

constrainedElement.aggregation=none

serverinputconstraint

constrainedElement.stereotype=ServerAction

clientinputconstraint

constrainedElement.stereotype=ClientPage

In the metamodel constraints for << serverinputconstraint >> and
<< clientinputconstraint >> we use the fact that we have for each framework
class a corresponding stereotype which must be assigned to each subclass of the
framework class.

Informal metamodel constraints are: Only one constraint of the same stereo-
type is allowed for the same context. The numbers of flow conditions must be
unique. They must not be strictly ascending in order to facilitate feature de-
composition. For each ServerAction there may be only one flow condition that
is not numbered.

5.2 Discussion

We have modeled form charts by frameworks, the shdframework and the form-
chartframework. The presented semantics is directly motivated by our appli-
cation domain, however, it is also is a novel operational semantics for state
transition diagrams in general, independent from the presented motivation. We
outline and discuss modeling alternatives in the following.

5.2.1 SHD’s and form charts by strict metamodeling

As we mentioned earlier, a modeling alternative would be a pure metamodel
for form charts. The most general method of introducing new diagrams in the

54 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

UML is given by the metamodeling technique. We therefore could define the
form chart elements by strict metamodeling [109], i.e. purely as a framework
of stereotypes for metamodel elements of class diagrams. The intention of this
approach would be still to define form charts (or more generally SHDs) as a
variant of class diagrams in such a way that it is guaranteed that the object
net is a path. The constraints expressed in our framework modeling approach
would have to be expressed within the stereotype description. A related topic
is the use of the composition notation. One could think of expressing certain
cardinalities in the framework implicitly by using composition instead of aggre-
gation. However, composition would be able to express only one direction of
the cardiality at best, furthermore there are different opinions about the ex-
act meaning of composition. Therefore it seems more convenient to stick to
aggregation, and to use explicit cardinalities, as it was done in the framework.

The diagram in Figure 5.3 resembles a message sequence chart. However,
the diagram is completely different. Above the horizontal line are classes, not
instances. Below the line are instances, not method invocations.

5.2.2 Modeling form charts with state machines

UML has its own diagram type for state automata called state machines. State
machines are based on David Harel’s statecharts [46]. However, in UML state
machines have no operational semantics defined within UML, indeed no formal
operational semantics is part of the specification. Instead, operational semantics
is given by reference to a state machine that is described verbally. A semantics of
statecharts based on pseudocode is given in [137]. Our definition of state history
diagrams has an operational semantics based solely on core class diagrams, the
semantic core of UML.

One could model form charts with UML state machines. For this approach
one has to drop the SHD semantics and hence loses support for temporal path
expressions. Nevertheles we present the alternatives in the following for rea-
sons of completeness. UML state machines models the behavior of objects by
modeling the life cycle of a single object as a finite automaton. There are again
two alternatives for us to employ them, namely modeling the form chart as a
bipartite state machine or transforming the server actions. The latter alter-
native means that each page server transition will be transformed to as many
statecharts transitions, as the targeted server action has outgoing transitions.
In that case the flow conditions would become guard conditions directly on the
page, the server actions do not appear. In the example of the delete page, the
page would have two outgoing transitions with event submit, one of them with
the guard condition ”password valid” the other with guard condition ”password
invalid”, as shown in Figure 5.4. The guard conditions have to be made exclu-
sive in order to prevent nondeterministic behavior. A variant would be to omit
the self transition with guard condition ”invalid password”. However, there is
a subtle semantic difference between both variants. Namely in the first variant,
the history of state visits could have repeated adjacent visits of the deletePage
state, while in the later alternative there would be only one instance of this

5.2. DISCUSSION 55

list deletePage

submit
[invalid password]

submit
[valid password]

Figure 5.4: The deletion subdialogue as UML state machine

state instead.

The second major alternative would be to model the form chart as a bipartite
UML state machine. We need no compound states for form charts, but we would
have to enforce bipartite structure. Server actions would be required to have
completion transitions that are triggered automatically upon completion as it is
known from activities in activity diagrams. The flow conditions in form charts
can be mapped to guard conditions of the server action. However, the flow
conditions in our form chart semantics are exclusive since they are mapped to
elsif branches of an OCL condition. For the state machine modeling one has to
make the guard conditions exclusive, otherwise the semantics of state machines
would prescribe nondeterministic behavior.

Except for flow conditions and enabling conditions, DCL constraints cannot
be mapped to guard conditions. This is due to the fact that the other condi-
tions like server output and client output constraints are in principle design by
contract annotations. These DCL conditions would have to be mapped to pre-
or postconditions of actions assigned with the transitions in the state machine.

The fact that Form Charts use only flat state transition diagrams in contrast
to hierarchical statecharts does not restrict the expressibility of form charts due
to the fact that form charts are coupled with a semantic data model. Form
charts can be easily combined with statechart notation if the statechart notation
is interpreted as visualization of parts of the session objects of the semantic data
model.

A proposal for representing states by classes can also be found in the State
design pattern [6], which describes, how an object can delegate its state change
to a state object. The object appears to change its state within a finite set
of states. The set of states is finite, since each state is represented by a class.
The pattern does not prescribe how to model a finite automaton over the state
set, but discusses procedural implementations. First it proposes implementing
the transitions in the so called Context class using the pattern. An alternative
proposal is a table lookup. Both are nonequivalent to the SHD model using
associations to model state transitions.

56 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

5.2.3 Petri Nets

Petri Nets are a state transition formalism based on bipartite graphs. Form
charts resemble Petri nets due to the fact that server actions resemble Petri net
transitions. Petri nets as a finite state machine model are classically conceived
as being never in a state corresponding to a transition. The main difference
between Petri nets and bipartite state diagrams is therefore that the state of
a Petri net is not necessarily a single bubble, but possibly a compound state,
depending on the type of Petri net, e.g. a function from bubbles to numbers for
place/transition nets.

It is possible to give form charts a Petri net semantics. We have outlined, how
to define the semantics of form charts based on non-bipartite state machines. A
Petri net semantics can be given in a similar way by defining only client pages
as places and introducing a Petri net transition for every path of length two
to another client page. Such Petri net semantics however involves only trivial
transitions i.e. transitions with one ingoing and one outgoing edge.

5.3 Data Modeling in Form-Oriented Analysis

The whole analysis data model is divided into two main layers, data dictionary
and semantic data model. Both parts may share records of business data, which
are then packed into a business signature repository. This is a part of the data
dictionary, which is open for reuse in the semantic data model.

The data dictionary contains the signatures of server actions and client pages,
together with their parts.

5.3.1 Semantic Data Model

The semantic data model represents the system state between user interactions.
Remember, that OCL itself has no fixed rule, when OCL invariants given for a
class in the semantic data model have to hold [32]. For Form-Oriented Analysis
therefore we fix this ambiguity and prescribe, that these class invariants have to
hold every time a server action is left. In defining the semantic data model we are
not concerned with technical transactionality. Instead access to the semantic
data model is governed by the same analysis-level atomicity as it is used in
other analysis techniques, namely Modern Structured Analysis. Analysis-level
atomicity has in Form-Oriented Analysis the following semantics: The system
modeled by FOA is at a single point in time only with regard to one user in a
server state.

5.3.2 Data Dictionary Metapackage

The data dictionary is the model of the message signature types appearing in
the FOA Model. Data dictionary types are also called object-by-value types, or
messages. They represent immutable values. Such immutable types are familiar

5.3. DATA MODELING IN FORM-ORIENTED ANALYSIS 57

also from OCL, where results of OCL expressions are conceived as immutable
types, they are called value types in OCL. [32].

The concept of a data dictionary plays a key role in Structured Analysis.
We use a reconstruction of the data dictionary concept in the context of UML.
In this context the data dictionary is obviously a class diagram with restricted
features. Data dictionary types are simple and straightforwardly hierarchical
in their structure. In Structured Analysis data dictionaries are constructed by
sum and product operations and additional list constructs. In the context of
UML all these mechanisms can be modeled as composition, and the distinction
between sum, product and lists is expressed by cardinality.

Formally we introduce two stereotypes for data dictionary types, namely
<< messagePart >> and << message >> . Messages represent data dictionary
types that are used as super parameters. As said above, messages are con-
structed by composition from message parts. << message >> is derived from
<< messagePart >> . Hence they may only have message parts as composite
parts. They may use recursive composition. They can contain special opaque
references to objects of the data model, which we discuss in the next section.

5.3.3 References to the Semantic Data Model

Since our semantic data model corresponds within Structured Analysis to a sin-
gle consolidated store [78], references to the semantic data model could be given
as a foreign key, referencing to artificial primary keys in the data model. This
foreign key would not be protected by referential integrity, since the data dic-
tionary object must remain the same even if the object is deleted. Furthermore
we make mandatory that artificial primary keys are not reused. This however
is not the elegant solution we would like to see in our analysis model. In our
high level considerations we clearly prefer to replace primary key mechanisms
by associations since a foreign key is a low level realization of an association.
However, UML associations unfortunately behave semantically different from
foreign keys. Namely foreign keys can be compared after the referenced ob-
ject is deleted, UML links on the other hand are deleted as soon as one of the
corresponding objects is deleted.

We call associations that represent foreign key based references as opaque
references. We use for such references a stereotype << opaque >> in our data
dictionary. Opaque references are the only kind of references to the data model
that are allowed within the data dictionary. The term opaque refers to the fact
that opaque references behave semantically like foreign keys, but their value
is guaranteed to be hidden by the mechanism. Opaque references must not be
explicitly declared opaque within the Data dictionary, instead we use the conven-
tion that references to the data model must be denoted as attributes of the data
dictionary class. This notation is conceived as specification that the reference
is opaque. Opaque references may remind weak references types in imperative
garbage-collecting languages, i.e. references without referential integrity. How-
ever, in conceptual modeling the term weak reference is used for a completely
different concept, namely references to semantically weak objects, i.e. for com-

58 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

position style relationships [145]. We therefore recommend speaking of opaque
references, motivated by the fact, that they correspond to opaque references
known from the programming language MODULA-2, since the semantic data
model can be seen as a single data abstraction unit. Within Modern Structured
Analysis [66], the key fields correspond to our opaque references. Key fields are
denoted by a sign.

Summing up the requirements for messages given so far, we conclude that a
data type that is part of the data dictionary can have the following components:

• Primitive valued attributes.

• messageParts associated by composition.

• References to objects from the semantic data model. They are stereotyped
as opaque references.

Each message object represents with its object ID a single event of message
passing. For that reason, if the same information is sent twice, we model this
information still as two distinct message objects. A naive modeler may view
this as waste of space, therefore it is important to be aware of the purpose of an
analysis model once more: The analysis model is designed for clear semantics,
not for efficient implementation. The actual design and implementation is not
required to chose the same representation, it is not even required to actually
keep a log of all messages sent in the same way as it is done in the analysis model.
Together with a state visit of a model state, a message of a data dictionary type
forms a superparameter. We recall that this terminology refers to the fact, that
a message is a single object, but it has to be seen as the analogue of a whole
list of actual parameters provided for that state visit.

5.4 Semantics of Dialogue Constraints

Dialogue Constraints have been introduced as stereotypes for constraints. In
this section we give the formal semantics of dialogue constraints by giving for
each dialogue constraint a translation into parts of standard OCL constraints.
As we will see, all DCL constraints are related to OCL method constraints in
their semantics. Accordingly, it is a reasonable choice to map them onto parts
of OCL preconditions.

For that purpose we have to make a formal construction that makes explicit
and utilizes the aforementioned unification of structural and behavioral features
of form charts. We have argued that SHDs and therefore form charts achieve a
unification of structural and behavioral semantics, since the relevant temporal
evolution of SHDs is already represented in the evolution of its object net, and
not only in the evolution of method calls. Now, in order to integrate this view
with standard behavioral modeling, especially with OCL method constraints,
we have to construct a behavioral semantics which is a perfect mirror of the
structural features of SHDs. Hence behavioral semantics of SHDs has the task

5.4. SEMANTICS OF DIALOGUE CONSTRAINTS 59

to introduce methods which are called in a defined mandatory way in connec-
tion with state changes. These methods serve as contexts for standard OCL
constraints, i.e. preconditions and postconditions. The DCL constraints are
then mapped onto parts of these constraints.

As we have done in the case of the form chart framework, we first give a be-
havioral model of state history diagrams and then give a more restrictive model
for form charts. The behavioral model has the purpose to prescribe, which
method calls have to be performed in the course of state changes. Partly these
method calls can be enforced by the specification tools of our UML notation.
Partly however, we again reach the limits of UML semantics, this time for the
behavioral models. As it was observed in [118] message sequence charts are un-
suited for giving behavioral semantics because they even lack the expressibility
to specify mandatory behavior. Message sequence charts just specify example
interaction sequences. Harel and Damm proposed Live sequence charts with
richer semantics, which also allows for specification of conditions. We do not
need this expressibility for our purposes since in the semantics of form charts
mandatory behavior will be unconditional, as we will see. Therefore we simply
specify mandatory behavior as pseudocode, where necessary.

We define in the abstract class ModelState three methods, enterState(),
makeASuperParam() and changeState(), which perform the handshake between
subsequent state visits. The central method is the enterState() method for each
state, which has to be called on each newly inserted visit. For that purpose the
enterState() method is declared abstract in the ModelState class. Each modeler
defined derived state must overwrite the enterState method. The new visit has
to be seen as being the conceptual parameter of its own enterState() method.
ModelState has an attribute signature, which has to be from the correspond-
ing data dictionary class and which replaces the parameter list, therefore we have
assigned the name superparameter to the ModelState instance. Each state has
a makeASuperParam() method, which must be called when the state is left,
and which constructs the superparameter. The superparameter is passed to the
enterState() method in sigma calculus style. This means that the enterState()
method is called on the superparameter without method parameters. State
changes are performed by a single method changeState() in the old state. The
changeState() method of one state calls its own makeASuperParam() and the
enterState() of the next state. makeASuperParam() and enterState() must not
be called from any other method. changeState() is defined final in ModelState.
In Java-like pseudocode:

abstract class ModelState extends State {

//

abstract ModelState makeASuperParam();

abstract void enterState();

final void changeState(){

ModelState aSuperParam = makeASuperParam();

aSuperParam.enterState();

}

}

60 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

The control logic that invokes changeState() of the current visit is not pre-
scribed. However, the only way to change the state is by calling changeState()
of the current visit.

State Output Constraints

When we introduced the dialogue constraints, we characterized two of them
as the specializations of StateOutputConstraint, the single new constraint type
already available on the SHD level. The formal reason for SHDs having a new
constraint context is that this new context is conceptually placed on the edge
between two states, and it is therefore called transition context. In this newly
introduced transition context there is no self keyword, but the role names of
the transition ends can be used, especially the role names source and target
from the general transition. The role names refer both to the ModelState as well
as to the corresponding data dictionary object (the attribute name signature
can be omitted. The central added value of the state output constraint is the
fact that source as well as target are properly typed, i.e. they have as type the
ModelState at the respective end.

From the final specification of changeState() as given above it is known that
the precondition of enterState() is immediately executed after the postcondition
of makeASuperParam(), hence the system state is the same in both constraint
contexts. The state output constraint is intended to be executed in that point in
time, which can be seen as a single instant, therefore in principle one could use
one of the mentioned contexts instead. Semantically therefore we map the state
output constraint either onto the post condition of makeASuperParam() or onto
the precondition of enterState(). However, in both context there is less typing
information available than in the state output constraint. The state output
constraint makes use of the fact that in SHDs for each enterState() method the
possible predecessor are known from the diagram, and for each changeState()
method the possible successors are known. This is captured by the properly
typing of source and target.

The more specific dialogue constraints defined for form charts pay tribute
to the more elaborate model of form charts. In the case of form charts, the
two classes of states have more specializes semantics than in the case of general
SHDs as we will explain in the following.

It is important to realize that state output constraints must not be mistaken
for guard conditions known from state machines. Guard conditions are in state
machines specify behavior. State output constraints are on the other hand
design by contract constraints. They constrain the possible implementations.

5.4.1 Semantics for Form Chart Dialogue Constraints

ClientPage Visits

ClientPage visits are the superparameters computed by the preceding ServerAc-
tion makeASuperParam() and offered to enterState(). The ClientPage methods

5.4. SEMANTICS OF DIALOGUE CONSTRAINTS 61

however have to be seen as provided by a Browser. enterState() and makeA-
SuperParam() of a ClientPage are therefore not individually modeled, but con-
ceived as being interpreted by a generic browser concept. This concept is called
the abstract browser. The browser therefore is a parametric polymorphic con-
cept. The named ClientPage methods are not implemented, but interpreted by
using type reflection on the ClientPage class.

The ClientPage class contains the information that has to be shown to the
user together with interaction possibilities, links and forms. Since form charts
are used in the analysis phase, the ClientPage superparameter is assumed to be
a pure content object. The ClientPage superparameter is a hierarchical constant
data type constructed with aggregations. As explained earlier, in Form-Oriented
Analysis we consider an abstract browser as given. The analyst’s view of the
browser is a black box taking the content object and delivering a state change
to a ServerAction later. The presentation of the content to the user and the
construction of the method calls to the allowed server actions according to the
SHD is the task of the abstract browser. The analyst assumes that the page
offers a form for each outgoing transition of the ClientPage. However in a current
ClientPage visit certain forms may be disabled. For this purpose the ClientPage
is assumed to have for each outgoing transition A a flag formAenabled which
specifies whether the transition is enabled. They are specified by the enabling
conditions.

Generation of ServerAction Visits

ServerAction visits are the actual superparameters that are given in a state
change to a ServerAction. The objects are created whenever the user triggers a
state change in the dialogue. The ServerAction superparameter is constructed
by the browser by using the ClientPage visit as a page description. Since form
charts are in contrast to concrete technologies like HTML a strong typed con-
cept, the type description of the serverAction has not to be contained in the
ClientPage visit, but the default parameters and the enabled flags have to be
provided. The abstract browser constructs the new ServerAction visit from the
user input.

The semantic data model is updated by a sideeffect of the server action,
for which Form-Oriented Analysis makes explicitly no strict specification re-
quirements. OCL offers means for specifying updates with the postcondition
constraint stereotype, which uses a rudimentary temporal calculus given by the
modal operator pre. However, this calculus may lead the average modeler easily
to nonoperational specifications without any need. Instead we use in our ex-
ample an SQL like update pseudocode notation as an extension for OCL. This
pseudocode is using three types of directives: insert, delete, update. Note how-
ever that from the standpoint of Form-Oriented Analysis these operations are
deliberately informal in contrast to the DCL constraints. A typical specifica-
tion of the side effect would be to specify a single method call in the side effect.
Business operations can be decomposed; the top layer is formed by the side
effects of server actions. Server actions are executed atomic and are therefore

62 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

multi-user safe operations on the semantic data model.

Enabling Conditions

The outgoing transitions in the class diagram for each ClientPage depict the
statically allowed page changes. Often a certain form shall be offered only if
certain conditions hold, e.g. a bid in an auction is possible only if the auction
is still running. Since the page shown to the user is not updated unless the user
triggers a page change, the decision whether to show a form or not has to be
taken in the changeState() leading to the current ClientPage visit. The enabling
condition is mapped to a part of a precondition of enterState().

enterState()

pre: formAEnabled = enablingConditionA

pre: formBEnabled = enablingConditionB

Alternatively each enabling condition can be seen as a query that produces
the Boolean value that is assigned to formXenabled. Typically, the same con-
straint has to be re-evaluated after the user interaction. In the example above,
the auction may end while the user has the form on the page. Then the same
OCL expression is also part of another constraint stereotype, especially
<< serverinputconstraint >> or << flowcondition >> .

Server Input Constraint

These constraints appear only in incomplete models or models labeled as TBD,
to be defined [48]. A server input constraint expresses that the ServerAction is
assumed to work correctly only if the server input constraint holds. In a late
refinement step the server input constraint has to be replaced by transitions from
the ServerAction to error handlers. Context of the server input constraint is the
ServerAction visit. Server input constraints are not preconditions in a design
by contract view, since server input constraint violations are not exceptions but
known special cases.

Flow Conditions

Flow conditions are constraints on the outgoing transitions of a ServerAction.
Context of flow conditions is the ServerAction visit. The semantics of flow
conditions can be given by mapping all flow conditions of a state onto parts of
a complex postcondition on this.makeASuperParam(). This postcondition has
an elsif structure. In the if or elsif conditions the flow conditions appear in
the sequence of their numbering. The flow condition must be evaluated on the
system state before executing the state change, hence the flow condition has to
be transformed by adding the modal operator pre to all state accesses.

In the then block after a flow condition, it is assured that a visit of the
targeted ClientPage is the new Current State. In the final then block the same

5.4. SEMANTICS OF DIALOGUE CONSTRAINTS 63

a

s1

s6

s2

s4

b c

d

s3

s5

enabled:[subdialogue].a → along()

a
s6

s5
d

sub form chart
decomposition

s1

s6

s2

s4 s3

s5

b c

a
d

sub
sub

semantic as
state history diagram

enterstate()
boolean formAEnabled

pre: formAEnabled = ({oclIsKindOf(sub),{sub}}.a → exists())

Figure 5.5: Semantics of path expressions in DCL

check is performed for the target of the serverPage transition without a flow
condition.

Client Output Constraints and Server Output Constraints

Client output constraints and server output constraints are specializations of
state output constraints and live in the new transition context.

5.4.2 Path Expressions in DCl

As an introduction to the general concept of path expressions in OCL we explain
path expressions in DCL. Path expressions allow expressing a condition about
the path that was taken up to now by the dialogue within the state diagram.
In form charts a test on whether the dialogue has chosen a fixed single path
can be tested with the new along OCL feature. The path is written backwards

64 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

in time. The along feature simply test whether the chosen object exists. More
generally constraints are important in which it is tested whether the path has
certain properties as long as it remained in a subdialogue. Hence the path has
to be restricted to a subdialogue. The concept of form chart features is viable
to this approach. Form chart features must not be mistaken for OCL features.
The word feature is derived in the context of form charts from the requirements
engineering community.

Path expressions that are restricted to paths allowed in a feature are written
in DCL by the feature name in square brackets. Formally this concept is a
shorthand. DCL path expressions are mapped to general path expressions as
introduced in Section 5.5. For this purpose, form chart features are not just
diagrams, but come along with a class definition. For each feature diagram a
ModelState with the name of the diagram is created with a transition to itself,
again with the feature name. All model states in the feature as well as the
transitions shown in the feature are implicitly derived from these two elements.
This is made explicit in Fig. 5.5.

5.4.3 Discussion

We have given semantics for DCL constraints by mapping them to OCL pre-
and postconditions. For that purpose we have introduced behavior into our
semantics for state history diagrams. In this section we want to discuss briefly
an alternative model. As it turns out, it would be possible to model DCL
constraints as OCL constraints of the stereotype invariant. As the authors of
OCL state explicitly in [32], OCL is ambiguous with respect to the question,
at which point in time an invariant must hold. In hat respect it differs from
Eiffel [105], where invariants are specified to hold at each instant at which the
instance is observable to clients. We can specify for our model that all OCL
class invariants must hold immediately after each state transition of our form
chart. At this instant we assume the superparameter of the new state to be fully
constructed. Astonishingly, we can now map all DCL constraints to invariants.
Generally, pre- and postconditions cannot be mapped to invariants. Since we
have seen that DCL constraints map easily to pre- and postconditions, it is
at least remarkable that such a mapping of DCL constraints to invariants is
possible. Indeed, this alternative semantics of DCL will be possible only due
to the unified character of our STD semantics. The key argument is that we
can give an OCL expression which can be used as part of an invariant, and
as such specifies that this OCL invariant is executed only for the current visit
and therefore only once for each visit. This condition is simply the check,
whether the current visit is the currently last in the path. Due to the sentinel
technique used in modeling SHD’s, this can be recognized by checking, whether
the succeeding state is the currentEnd:

self.target->isTypeOf(CurrentEnd)

The key technique by modeling a DCL constraint A as invariants is now the

5.5. PATH EXPRESSIONS 65

conjunction of this expression to A. By doing so we achieve that A is evaluated
only for the current visit.

The technique shown above may have the advantage that no behavioral
model is needed for form charts, but has also disadvantages, namely in context
with flow conditions. The result of flow conditions has to be stored in the state.

5.5 Path Expressions

We now define path expressions for collecting objects along the transitive closure
of link paths, called gathering in the following. The notation is needed to give
semantics to the ”along” notation of the dialogue constraint language used e.g.
in writing enabling conditions during Form-Oriented Analysis. However path
expressions have a justification in their own right. We start with an unrestricted
wildcard notation for expressing path navigations. Consider the following OCL
expression.

A
�.C

For every arbitrary fixed object of the context type A the expression denotes the
bag of objects of target type C that are reachable from the context type object
along a path of links, i.e. not only directly connected objects, but all reachable
objects are gathered. Consider the example given in Fig. 5.6. It shows the bag
resulting from the application of the above expression to a concrete object net.
An object that is reachable along several link paths occurs more than once in
the bag, one time for each path. Only cycle-free link paths in the object net
are considered, i.e. link paths, in which each object is visited only once. This
ensures finiteness of the result bag.

Theorem 2 A path expression specifies a finite bag.

Proof. By definition of the path expession there is a one-to-one correspon-
dence between the object occurrences in the result bag and the cycle-free paths.
There can be only as many cycle-free paths in the object net, as there are per-
mutations of the objects.Hence the number of cycle-free paths and therefore te
number of bag elements is finite. �

66 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

aB1:B

aB2:B

aB’:B’

aA:A aC1:C

aC2:C

aC3:C

aC2:C

aC1:C aC1:C

aC2:C aC2:C

duplicate

A B

B'

C D
v

w

x
y

v

v

w

x
y

y

y

z

z

w
result bag

Figure 5.6: An example class and object diagram, together with the result bag
of the path expression *.C, applied to the only instance of Class A.

With respect to a possible generalization hierarchy of the classes only such
link paths are considered for which the links are instances of connected, but
strictly interchanging associations in the class diagram. Therefore the object
aC3:C in the current example does not belong to the result set of the above ex-
pression, because following the link path, from the viewpoint of the start object
the connected object aB’:B’ if of type B and has no link to the object aC3:C.
The above expression has the same meaning as the following OCL expression.

A
self.v.y→union(self.w.y)→union(self.x)

Recall from the latter expression that in OCL a multi-step navigation is a short-
hand notation for the repeated application of collect and therefore yields a bag.

The wildcard notation may be used straightforwardly for writing constraints
on cyclic class diagrams based on aggregations, too. The semantics remains the
same, except that a path is only considered, if all aggregation links point in the
same direction.

5.5. PATH EXPRESSIONS 67

parent

InnerNode

Node

Leaf

Root
{xor}

parent
11..*

1..*

1

singleton<< >>

Figure 5.7: UML tree definition

Consider the example in Fig. 5.7. The following constraint yields the set of
leaves for an object tree which is accessed through its root node.

Root
�.Leaf→asSet

This expression has only non-trivial counterparts in UML. A notation like path
expressions is clearly needed. Cyclic class diagrams with aggregations are the
backbone of proven object-oriented patterns, both from problem domains and
solution domains, e.g. the structural kernels of both the composite design pat-
tern and the organisation hierarchies analysis patterns [74] are trees.

We proceed with the general notation for path expressions, which is sum-
marized in the following expression:

ContextType

{oclConstraint,{package.associationName,..}}.GatheringType

The path expression consists of a structured wildcard and the type of the ob-
jects that are to be gathered. The structured wildcard is a constraint on the link
paths that may be followed to gather objects. The wildcard consist of an OCL
constraint and an association constraint which is a set of association specifica-
tions. In a valid link path, every object must fulfill the given OCL constraint.
There are subtle typing aspects of this mechanism. The OCL constraint of a
path expression is not tight to a single context; it must be evaluated with re-
spect to objects of possibly different types. This is not a problem if all classes
of the underlying class association path have a common supertype and the OCL
constraint is written in terms of this type. Otherwise the expression must be
made general enough by first questioning the type of the object.

Furthermore in a valid link path every link must adhere to the association
constraint. This constraint is a set of association specifications. A link in a
valid link path must be an instance of an association which is a generalization

68 CHAPTER 5. THE FORMAL SEMANTICS OF FORM CHARTS

of one of the association specified in the association constraint. The modeler
specifies an association by giving its qualified name consisting of a package name
and the association name. If the model is not structured by packages, only an
association name suffices. Association names are unique in packages. If the
association specification is an empty set, the link path is not constrained with
respect to the links.

The structured wildcard is a powerful narrowing mechanism, e.g. to exclude
object net cycles from constraints involving path expressions. It is exploited in
section to give semantics to path expressions of dialogue constraint language
used in form charts.

At least consider the first path expression in unrestricted wildcard notation
in the preceding section. It is a shorthand notation for the following verbose
path expression.

A
{true,∅}.C

5.5.1 Multiple State occurrences, Enabling Conditions, Path
Expressions

In Figure 4.2 we have shown, how an enabling condition based on path expres-
sions can be shown graphically by multiple occurrences of a state in the form
chart. Now we have to give precise semantics to this method in the following
way: If a state occurs more then once in a form chart diagram, these occur-
rences represent distinct anonymous subclasses of the state, called substates. If
the same system is specified with a form chart with only one occurrence of the
state, then whenever this state is visited an instance of the according substate
is instantiated. The parent state is effectively abstract since it cannot be in-
stantiated through the form chart operational semantics. Therefore the state
named s5 has to get path dependent enabling conditions because for each of its
substates can proceed only through one of the outgoing edges.

The menu feature can be understood by the above semantics for multiple
state occurrences, too. In a menu, an edge between two state sets represents the
complete bipartite graph of edges between the elements of the page set. We can
either see the menu feature as a graphical abbreviation for the complete graph.
We can interpret the elements of the state set as multiple state occurrences of
the same state. In this way we yield semantics for the menu feature equivalent
to the interpretation as abbreviation.

