Chapter 3

Related Work

In the last chapter we have gained a first impression on how we can obtain an
intuitive analysis model of a typical submit/response style system by the use of
Form-Oriented Analysis. In this chapter we give a comparison with other anal-
ysis and modeling techniques that are applicable. We will see, how in a number
of aspects Form-Oriented Analysis can be seen as a consequent extension and
continuation of existing techniques, including most recent proposals. We will
also discuss, in which aspects Form-Oriented Analysis goes beyond these ap-
proaches and solves typical problems encountered in modeling submit /response
based systems. In this chapter we give a survey of related proposals from a
number of domains. First we will discuss the two most important analysis tech-
niques, Structured Analysis and Object-Oriented Analysis. Afterwards we deal
with more particular modeling techniques e.g. modeling techniques for user
interfaces.

3.1 Structured Analysis

Early works on Structured Analysis are Gane and Sarson [126] and DeMarco
[63]. Structured Analysis is a very successful approach to both business modeling
and system modeling and even today, it is in extensive use in the industry. It
combines hierarchical data flow diagrams, sum-of-product data specification,
local functionality specification and later [66] entity-relationship diagrams. The
method is deliberately ambiguous with respect to the semantics of the several
notational elements of the data flow diagrams and therefore heavily relies on
the intuition of the modeler. The method is undoubtedly well suited for form
based tasks, as can be seen by similar early contributions [148], and it especially
works well for the analysis of combined manual and automatic processes.
Structured Analysis defines several analysis-level artifacts, namely Data Flow
Diagrams (DFD), Data Dictionaries, Pseudocode (called Structured English),
Decision Tables and Decision Trees. They together form the structured spec-
ification called target document. Conditions for the mutual correctness of the

21

22 CHAPTER 3. RELATED WORK

diagrams are defined as so called balancing rules. Balancing rules cover type
correctness rules as well as name space rules. Modern Structured Analysis
furtermore uses Entity-Relationship Diagrams [66] for the semantic data model,
which are balanced against the data dictionary.

3.1.1 Leveled Data Flow Diagrams

A DFD describes the data flow in the system between processes and other in-
stances. A data flow diagram is a directed graph. Edges and nodes are labeled.
There are three kinds of nodes: processes (bubbles), stores and terminators.
The edges are called flows. DFD’s are typed, the type system is given by the
data dictionary concept. The labels on the edges and on stores represent entries
in the data dictionary. Terminators represent incoming or outgoing data flows.
DFD’s can be decomposed, but only processes are subject to decomposition.
A single process can be replaced by a complete DFD called the subdiagram.
The dependency between edges connected to the process and the terminators
in the subdiagram is explained in a balancing rule: The data flows connected
to a process must be constructed from the data flows connected to terminators
of the subdiagram for that process. DFD’s can be conceived as a concurrency
model. The edges of the data flow diagram represent pipes capable of messages
with a fixed type specified in the data dictionary. If a process has two ingoing
data flows, the diagram does explicitly not specify e.g. whether the process
needs each time messages from both ingoing flows or only one message from an
arbitrary ingoing flow [128]. This ambiguity is designed to focus deliberations
on the aspects of pure typed flow of data. The decomposition of DFD’s is func-
tional decomposition. Since the processes are decomposed by subdiagrams, this
resembles the specification of subprograms in programming languages. How-
ever, the sub-DFD’s cannot be reused in different places of the specification.
The hierarchical decomposition is hence only targeted at the partitioning of the
specification.

3.1.2 Data Flow Diagrams vs. Form Charts

Data flow diagrams may seem superficially similar to form charts, but are com-
pletely different. While a form chart is bipartite, a data flow diagram is not.
In a data flow diagram the different types of nodes may be combined freely.
Moreover, the semantics of a dataflow diagram is different from the form chart
semantics. Especially the data flow diagram is no state diagram; on the con-
trary it exhibits parallelism and nondeterminsm as explained above. There are
no strict temporal relations between ingoing and outgoing messages in a DFD.
In a form chart obviously a state must be entered before it can be left exactly
once on exactly one outgoing edge. Furthermore the decomposition mechanisms
are completely different. While in DFD’s a process can be decomposed into a
complete dataflow itself, in form charts such a decomposition is neither intended
nor possible. Instead the powerful feature decomposition of form charts is used,

3.1. STRUCTURED ANALYSIS 23

Passwd
check

User

enrollment

Passwords

register
Particpants

IDdata

Figure 3.1: Data flow diagram of the seminar registration system

which has been defined as graph union. Figure 3.1 shows a data flow diagram
for the seminar registration system.

3.1.3 Data Dictionary

The data dictionary is a list of hierarchical data type definitions. Formally this
means that data dictionary entries are algebraic data types. Data dictionary
types represent messages sent along flows or stored in data stores. The data
dictionary in Form-Oriented Analysis is essentially the same as in Structured
Analysis with minor changes. Data dictionary entries are immutable values. A
change to an entry in a store has to be understood as an exchange of whole
messages.

The data dictionary of Form-Oriented Analysis differs chiefly in two points,
first in the dealing with EITHER-OR type construction, secondly through the
concept of opaque references. Concerning the dealing with EITHER-OR type
construction, there is no special structural concept necessary in Form-Oriented
Analysis, instead the EITHER-OR is an Xor constraint on a compound type,
expressing that only one of the components can be given at a time. The second
difference is with respect to references to stored entities. In Structured Analysis
there is most remarkably no explicit concept for keys. Keys are just primitive
values. In Form-Oriented Analysis, the key concept is made explici in form of
the opaque references.

3.1.4 Object-Oriented Extensions of Structured Analysis

Given the success of Structured Analysis, some work has been done in con-
structing object-oriented extensions of Structured Analysis. The Object-Process
Methodology OPM [112] [113] deliberately avoids the partition of different mod-

24 CHAPTER 3. RELATED WORK

eling artifacts in different diagrams and uses a joint representation of processes
and object-oriented information. It sets itself in contrast to object-oriented
modeling techniques as they are discussed in the next section. In the FOOM
methodology [115] [116] an object-oriented extension of Structured Analysis is
given in such a form that two initial diagram types are used, a class diagram
and a so called OO-DFD. The authors of FOOM claim to gain superior results
in a comparison with OPM [117]. These methods aim at employing the advan-
tageous elements from Structured Analysis as well as from object-orientation in
a single method.

3.1.5 Structured Analysis and Form-Oriented Analysis

As we have pointed out earlier, Form-Oriented Analysis is an artifact oriented
approach, which brings its chief innovations in the semantics of form charts.
Form charts can be used immediately in Modern Structured Analysis simply as
a further document type, since the form chart relates itself to a semantic data
model and a data dictionary as it is already used in Modern Structured Analysis.
The semantic data model for form charts is in this thesis presented as an UML
class diagram, but it uses only such features, which can be directly translated
into Entity-Relationship Approach. In that sense Form-Oriented Analysis is a
contribution to Structured Analysis, too.

3.2 Object-Oriented Analysis

Object-Oriented Analysis (OOA) has become from 1990 onwards a widely dis-
cussed analysis technique [83]. There is a remarkably huge number of differ-
ent OOA methods. OOA is based on the intuition that the object-oriented
metaphor, which was at this time already firmly introduced in the program-
ming languages world can serve as a viable metaphor for analysis as well.

3.2.1 Origin of Object-Orientation and its Application in
Design

Object-orientation itself was introduced by the language Simula [131][129][130],
later the language Smalltalk developed at Xerox PARC took up the object-
oriented metaphor. Object-orientation is indeed successful on the design and
implementation level. Let us first recall some facts about Object-Oriented De-
sign (OOD) before we discuss OOA in depth. OOD is especially relevant with
respect to the justification of OOA, since one of the main goals in a pervasive
object-oriented development process is to create synergies through the tight
paradigmatic integration of the different development steps. Several principles
that describe the advantages of OOD have been identified [143] [144] [94]. One
important principle is the Hollywood Principle don’t call us, we call you, which
refers to the object-oriented style of customizing behavior by overwriting meth-
ods. Another key principle is the don’t ask, what kind principle, which refers

3.2. OBJECT-ORIENTED ANALYSIS 25

to the way in which subtype polymorphism is used by client objects. Both
principles support separation of concerns.

3.2.2 Identifying Analysis Classes

Object-Oriented Analysis takes a different approach to system modeling than
Structured Analysis. Structured Analysis proceeds by describing the key func-
tional processes in the problem domain and structuring them in the data flow
diagram. The data model takes originally the form of a data dictionary that
annotates the data flow diagram.

In Object-Oriented Analysis according to Coad and Yourdon [83] the analysis
starts by identifying the concepts of the problem domain, which are conceived
as classes of objects. Objects are seen as encapsulations of data in form of
attributes. In a second step the interconnections of classes are elicited in form
of associations and generalization hierarchies. Behavioral aspects are identified
in the next stage in the form of services offered by objects.

The results of Object-Oriented Analysis vary strongly. Kamath et al. report
significant advantages [125]. It has been observed in [141] that OOA is best
applied to a new project and does not work well with reengineering of legacy
applications.

3.2.3 The Use Case Driven Approach

Object-Oriented Analysis through a use case driven approach was popularized
by Jacobson [50]. The use case driven approach begins by identifying use cases
of the problem domain, together with actors which use them, in a coarse grained
diagram. A use case diagram for the seminar registration system is shown in
Figure 3.2. Use cases are described by scripts that have the task to storyboard
scenarios of user interaction [85]. The scripts are textual, sequential descriptions
of user interactions. Based on the use cases analysis classes are identified, espe-
cially boundary objects, with which the actors are conceived to communicate.
The scripts can now be transformed to interaction diagrams showing the actors
enacting on the boundary classes.

The use case driven approach to object-oriented software engineering has
become a widely acclaimed analysis technique. From the beginning [114] [50] to
state-of-the-art versions [51] of this approach the recommended human computer
interface specification techniques are oriented towards the modeling of object
oriented GUIs in contrast to form based interfaces. As a consequence the use
case driven modeling does not have the two staged structure of interaction as it
is introduced for form-orienetd analysis.

The use case driven approach may yield a description specification of an
analysis-level system interface description which is not a specification in the
strict sense: The system usage is described only through singular cases, which
are depicted in a sequential manner, e.g as a message sequence chart. Message
sequence charts are expressively weak [118]. Furthermore the system usage is

26 CHAPTER 3. RELATED WORK
<

Figure 3.2: Jacobson style use case diagram of the seminar system.

Student

depicted in a nonhierarchical manner. The interaction with form-based systems
is modeled as a fine-grained sequential activity [50].

Use case driven modeling becomes even for small examples unwieldy. Use
case driven modeling is intended to cover all system types from bottle receivers
to warehouse management systems.

3.2.4 Object-Oriented Analysis and Form-Oriented Anal-
ysis

Comparing the artifacts of OOA and Form-Oriented Analysis shows us, that
they differ in information content, but are in prinicple compatible. The form
chart is a specification document, in that it specifies all possible behavior con-
cerning the part of the model expressed in the form chart. An interaction
diagram on the other hand specifies only exemplary behavior. However, if an
interaction diagram is seen as useful for the undestanding of the system, inter-
action diagrams and form charts can be combined for the same system. Fur-
thermore the form chart is related to a class diagram, as it can be used in OOA.
Hence again, as in the case of Structured Analysis, especially form charts are
compatible with Object-Oriented Analysis.

3.3 The Specification Language Z

A well-known approach to formal specification is the language Z [149]. The aim
of Z is perhaps best pointed out in the phrase specification using mathematics
[151]. In Z systems are specified as functions. For stateful systems Z uses an
automaton model for the specification of system states. The model, called state
machine model in [150], describes the system as an automaton with a state from
a potentially infinite state space and a state transition function. The system
description therefore consists of a specification of the space of possible states
and the operations on the state. Z allows to specify update operations that lead
to state changes, A operations for short, and pure queries, called = operations.

There are certain connections between Z and our approach as well as notable
differences. First of all Z as well as our approach uses an automaton model for
the system description, but it is important to understand that the counterpart

3.4. USER INTERFACE MODELING 27

to the state in a Z specification is not the state of the form chart, but the cur-
rent object net over the semantic data model in Form-Oriented Analysis. It is
the form chart, where Form-Oriented Analysis goes beyond the Z specification
paradigm. In Z all operations are at first hand conceived as being applicable at
any time. In Form-Oriented Analysis on the other hand operations are appli-
cable only, if they are options of the current client page. Hence Form-Oriented
Analysis offers a specification place for the availability of operations. One main
additional specification concept in Form-Oriented Analysis is therefore the sup-
port of conditional accessibility of operations based on a finite state machine.
But beyond the finite automaton as such, Form-Oriented Analysis offers support
for specifying constraints in the form of dialogue constraints. Form-Oriented
Analysis also offers support for conditional system response. Such conditional
response is a first class concept in Form-Oriented Analysis since in the form
chart server actions can branch to different client pages. In Z such conditional
system response must be coded into the single response type. Hence the return
type in Z must be an EITHER-OR type, built from the different response types.

3.4 User Interface Modeling

User interface modeling has become a recognized area of research with the ad-
vent of graphical user interfaces. A major milestone in the research on user
interface modeling is the Seeheim Model [58], which defines a reference archi-
tecture for User Interface Management Systems (UIMS). This reference model
has served as the starting point for intense research still underway [52]. In re-
cent times user interface modeling in the context of UML has become an area
of interest.

3.4.1 Classical Approaches for User Interface Modeling

State diagrams has been used for a long time in user interface specification [53]
[54], partly with the objective of user interface generation [52]. All of these
approaches target user interface specification only at a fine-grained level, in our
terminology concerning page interaction. Another early approach [47] targeted
the modeling of push-based, form-based systems like the already disussed single-
user desktop databases.

3.4.2 User Interface Modeling Approaches with UML

Within the UML Community the Discussion about dealing with the user in-
terface is still underway [108]. In [107] a visual language for presenting user
interfaces is proposed. The new artifacts are basically visualizations of page
components. The method is tightly coupled with the use case driven approach.
An example diagram from the article showing a search book functionality is
shown in Figure 3.3. In our view, the diagrams do not reach the intuitive clar-
ity of our proposed artifacts.

28 CHAPTER 3. RELATED WORK

CDTitle: SearchUI

Inputter
4
v Artist

Results: SearchUI: Artist: CDTitle
. — compose — — compose —j
Displayer Inputter v

Year

—_______ compose —j

FreeContainer

Year: Results

Inputter

(2) (b)

compose —

Figure 3.3: The right side (b) shows a CD search function specified in UMLG,
on the left side an equivalent object diagram (a) is shown. This example follows
closely the original example in [107]

name or
partial name of the
desired artist

...CD(CDtitle, year, price,
record company)

1..N (added to the
shopping basket)

Figure 3.4: A user interface diagram (UID) according to Schwabe et al. [76].
The first step of the dialogue is roughly equivalent to the UML: example in
Figure 3.3. The second step is the selection of a CD for purchase. This UID
follows closely the original example from [76].

Schwabe et al. presented a diagrammatic tool for representing web interac-
tion [65], [76]. The diagrams are called user interaction diagrams (UID). They
resemble page transition diagrams without server actions. An original diagram
is shown in Figure 3.4. Very restricted and very specific annotations are placed
on the transitions concerning required selections by the user.

A stereotype framework specifically for web applications is presented in [72]
by Conallen. This approach allows to model the design level concepts appearing
during web site development with a typical web application framework. For this
purpose the Conallen approach uses a set of stereotypes. The approach targets
rather design than analysis.

3.4. USER INTERFACE MODELING 29

3.4.3 Approaches to the Conceptual Modeling of User In-
terfaces

The conceptual modeling of hypertext is a separate domain, which has been
intensively studied since the beginning of interest in hypertext [138]. A reference
model for hypertext based on formal specification with Z is [136]. A complete
methodology for hypermedia design called RMM is presented in [135]. The aim
to reduce the necessary navigation primitives is adressed in WebML [139], which
we discuss in the next section. The conceptual modeling of navigation was also
addressed in the ViewNet approach [132]. The named approaches are modeling
content in logical collections of information elements. As such these approaches
are related to modeling of information architectures as they are represented by
content management systems.

All the named hypertext modeling approaches do not use bipartite transition
descriptions. The system response in these approaches is unconditional. These
approaches have therefore also no direct connection to constraint writing.

A special topic in the domain of interface modeling not considered in this
thesis is the dealing with dynamically changing environments in which user
interfaces are used. A broad discussion to this problem of human computer
interaction in heterogeneous and dynamic environments can be found in [122].

3.4.4 Modeling Web sites with WebML

WebML is a visual language for conceptual modeling of complex web sites [139],
in which all concepts are defined visually as well as in XML. WebML offers
icons for page elements for composing web sites, e.g. catalogue pages and sin-
gle item views. The model of the web sites involves a number of orthogonal
divisions, called structural model, composition model, navigation model, pre-
sentation model and personalization model. The structural model is in principle
a semantic data model described in XML. The composition model is a desrip-
tion of page content based on the data model. The navigation model describes
hyperlinks between the pages, with a distinction between so called contextual
links, which are induced by the structure of the data model, and non-contextual
links, which are freely defined. The WebML approach can therefore be seen as
an advanced and customizable successor of model driven interface generators
like the JANUS system [79]. The basic idea of such systems is to generate all
contextual links from the model. Advanced systems like WebML offer on the
other hand the possibility to chose between the contextual links as well as to
use freely defineable links. Links in WebML are directed edges, which lead typ-
ically from pages to pages and form therefore a non-bipartite navigation model.
WebML also offers a mechanism for accessing so called generic external oper-
ations by model elements called operation units [140]. Operation units have
conditional output similar to server actions in Form-Oriented Analysis, how-
ever operation units perform asynchronous computations. They are activated
by a designated link and can afterwards perform operations of arbitrary length.
They can then leave content in other WebML-modeled units.

30

CHAPTER 3. RELATED WORK

