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1 INTRODUCTION  

Brain function is primarily studied by observing correlations between 

behaviors and environmental events. Behavioral responses are considered to be 

stereotypic patterns of reflexes driven by immediate environmental stimuli. This 

view can be traced to the early work of Sherrington (Burke, 2007; Levine, 2007; 

Sherrington, Charles Scott, Sir, 1920), who emphasized the role of sensory inputs on 

reflexive behavior. This finding stimulated a number of studies, on animals from 

single cell organisms (Jimenez-Sanchez, 2012) to humans (Churchland et al., 2010; 

Müller et al., 2013; Sommer et al., 2013), that were designed on the assumption 

that external cues elicit appropriate responses or, stated another way, that brain 

function is best understood in terms of input-output transformations (Borst & 

Egelhaaf, 1989; Borst & Bahde, 1988; Dickinson et. al 2013; Huston & Jayaraman, 

2011; Maimon & Dickinson, 2010; Murray & Wallace, 2011; Wessnitzer & Webb, 

2006).  

For example, behavioral studies of insects are conducted by manipulating 

various stimuli that are known to cause behavioral responses.  Insects have several 

sensory modalities that receive external cues and relay relevant information to 

central processing circuits for successful motor output (Dickinson, 2005; Frye & 

Dickinson, 2004). The major sensory modalities of insects are olfaction, taste, 

mechanoreception and vision. These have been studied extensively using 

behavioral, genetic and neurophysiological methods. (Frye et al., 2011; Götz, 1987; 

Borst et al., 2011; Nachtigall & Wilson, 1967; Renn et al., 1999).  This behavioral 

research illuminates brain function by focusing on the neural mechanisms of insects 

that process sensory stimuli to produce complex behaviors (Comer & Robertson, 

2001; Renn et al., 1999; Strauss, 2002; Venken, Simpson, & Bellen, 2011).  
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1.1 Neuronal basis of visually guided behaviors 

Most of the behavioral studies of insect flight have been conducted by 

presenting visual stimuli in the form of gratings (Borst & Bahde, 1988; Tammero & 

Dickinson, 2002). Flies are better able to abstract fast-moving stimuli than many 

other species. Tethered flight studies are conducted in a flight simulator where the 

flies are partially immobilized in the center of a panorama on which visual cues are 

projected (Götz, 1968; Frye et al., 2008; Wang et al., 2008; Wolf & Heisenberg, 1980; 

Reinhard Wolf & Heisenberg, 1991). Studies involving free and tethered flight have 

successfully addressed the underlying neuronal processes governing visual-motor 

transformation during such events as obstacle avoidance (Horridge, 2009; May, 

2012), object discrimination ( Borst & Egelhaaf, 1989; Comer & Robertson, 2001; 

Griffith, 2012) and escape behavior (Card & Dickinson, 2008; Conner & Corcoran, 

2012; Dewell & Gabbiani, 2012; Domenici, Blagburn, & Bacon, 2011; Roeder, 1962). 

These studies have shown that a visual cue that reaches the visual system is 

encoded, processed through central circuitries, integrated by mechanosensory 

feedback, and finally transformed into a specific flight maneuver (Borst & Haag, 

2002; Frye & Dickinson, 2004). The pathways that route visual information toward 

descending interneurons have been studied extensively ( Borst & Egelhaaf, 1989;  

Borst & Reiff, 2010; Borst, 2009; Collett, 2002; Götz, 1968; Jung et al., 2011; Gong & 

Liu, 2012). These descending interneurons are believed to carry  stimulus 

information from sensory units that is essential for flight motor circuitry (Maimon 

et al., 2010). However, the mechanism involved in triggering motor patterns by 

central circuitry is largely unstudied. 

It has been shown that fast-moving cues are recognized by a set of wide- and 

small-field neurons. These neurons are specialized cells that detect the direction of 

motion and the movement of a small object against its background (Card & 

Dickinson, 2008; Borst, & Haag, 2005). A pair of large-diameter interneurons, 

known as giant fibers, mediate the fast motor responses that initiate fly escape 

sequences (Card & Dickinson, 2008; Wyman, 2013). The relationship between 
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identified neurons and behavior is ultimately established by observing sensory-

motor processing. Such findings support the assumption that control of the motor 

units involved in any flight behavior is stimulus-regulated and eliminate the 

possibility of endogenously generated motor actions.  

1.2 Neuronal causes for spontaneous behavioral variability 

 

1.2.1 Spontaneous occurrence of animal behavior and its variability 

Spontaneous behavior is ubiquitous in several biological systems (Miller, 

1997; April, 1970). The movement dynamics of many animals show relatively 

variable and spontaneous behavior. The copepod Temora longicornis Müller is a 

small crustacean that floats on water and feeds on unicellular algae. Copepods 

initiate movement toward the algal rich zone, but when they are reared in a lab 

environment providing no algae in the water, they travel in a straight line with 

interspersed spontaneous quick turns (Schmitt & Seuront, 2001). This is considered 

to be a spontaneous exploratory movement. The giant water bug Belostoma 

flumineum displays alternation between left and right turns in a T-maze in a 

seemingly random fashion. Goldfish switch between a slow and quick swimming 

pattern in a uniform visual environment. Most importantly, the duration of the 

activity is variable (Nepomnyashchikh, 2013).  

1.2.2 Variability in behavior is an adaptive trait  

Spontaneous behavior generated by animals is highly variable (Maye et al., 

2007; Nepomnyashchikh & Podgornyj, 2003). It is therefore difficult to predict every 

move that an animal will make. It has been suggested that brains have evolved over 

time to generate unpredictable adaptive variability in behaviors such as those 

involved in competition, courtship and chasing (Nepomnyashchikh & Podgornyj, 

2003; Nepomnyashchikh, 2013; Wilkinson, 1997). This view began with the 

‘Machiavellian Intelligence’ hypothesis, which states that animals and humans 

developed specific cognitive skills for predicting and manipulating the actions of 

other beings. Individuals have developed a protean strategy to prevent other 
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animals from successfully predicting their behavior (Miller, 1997; April, 1970). 

Behavior that is unpredictable favors survival and is thus adaptive. These 

unpredictability strategies were first identified in the 1960s, in studies of the escape 

strategies of moths and the facultative defensive behaviors of rats (Chance, 1957). 

Moths execute combinations of loops, rolls, and dives to evade bats ( Roeder, 1964; 

Roeder, 1962). Rats randomly exhibit convulsions upon hearing noxious tones. 

These behaviors would confound a predator and make it more difficult for it to catch 

prey. If animals actions were automata, every action would be released by a 

stimulus that determines behavior (Wilkinson, 1997).         

These examples of predator-prey interaction show that unpredictable 

behavior is certainly advantageous for survival. Consistency in stereotyped predator 

avoidance responses would make prey more vulnerable. Unpredictability is not 

limited to predator-prey interactions. Variability also maintains orderly behavior at 

several levels of animal organization. Some examples are posture maintenance 

(Oullier, Marin, & Stoffregen, 2006), landing on objects (Saint-germain, Drapeau, & 

Buddle, 2009) and perceptual scanning (Estes, 1965). Variability is utilized at 

several levels of physiological organization. Complex behavioral repertoires are 

developed by reinforcement of behavioral variants, for example in random 

exploratory behavior (Miller, 1997). Nevertheless, unpredictability is observed in 

animal actions, movement signals, and social interactions. However, variability 

could be highly disadvantageous if it is entirely randomly generated. Prey could be 

falling directly on top of a predator during truly random predator avoidance. 

1.2.3 Intrinsic neuronal properties for spontaneous variability 

Evolution is largely assumed to produce deterministic mechanisms of animal 

behavior. Unpredictability is disregarded as a noisy component according to the 

computational principles of the input-output hypothesis (Selen & Wolpert, 2008; 

Series & Note, 2000; Gossen, & Jones, 2005). The sensorimotor integration principle 

also does not provide a sufficient interpretation of the spontaneous behavioral 

variability that occurs in a wide range of species. Brain functions are complex, and 
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studies of sensorimotor integration have not produced a complete picture of brain 

function. To the best of our knowledge of brain structure, function arises through 

the transmission of information from sensory to motor networks. Variability thus 

does not arise from completely random or chance components in the brain. The 

combination of inevitability (e.g., primary goal, escape) and variability favors 

unpredictable behavior. The precision of the required behavior is largely dependent 

on the needs of an animal in a particular environment.  Neuronal circuits in the fly 

brain are proposed to mediate such organized behavioral architecture (Maye et al., 

2007). 

In higher-order brain systems, spontaneous activity occurs at the neuronal 

level (Andrews-Hanna et al., 2008; He et al., 2010; Proekt, Banavar, Maritan, & 

Pfaff, 2012; Raichle, 2010). Variability in the timing of evoked neuronal spiking is 

reported as well. This variability in the timing of neuronal firing is associated with 

spontaneous brain activity. Specific neuronal networks called default mode 

networks (DMNs) have been shown to interact and thus induce brain activity 

(Raichle, 2010). This interaction is a primary cause for variability in the human 

brain. However, a direct comparison with invertebrate brain structures is not 

productive given the huge gap in brain complexity. However, Drosophila and 

humans share certain brain properties, as evidenced by similarities in mediating 

action selection and time allocation by the insect and human brains (Van Alphen, & 

Pierre, 2010; Reiter & Bier, 2002).  

  Maye et al., 2007 proposed a neuronal cause for spontaneous variability after 

investigating the temporal structure of behavioral variability in Drosophila. 

Restrained Drosophila can spontaneously produce yaw torques in a flight simulator 

with no visual cues that could potentially elicit turning responses (Maye et al., 

2007; Wolf and Heisenberg, 1984). The yaw torque generated spontaneously by the 

flies is highly variable, with random alternation between left and right turns. These 

actions are proposed to be dependent on active and voluntary brain activities (Maye 

et al., 2007). The interval between alternating turns shows a fractal order 
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resembling levy flights, suggesting the role of initiation by an endogenous neuronal 

entity(ies). This endogenous neuronal entity is proposed to act as a deterministic 

system to keep variability under neural control.  

The few studies of endogenous animal behavior highlight some yet-

unanswered ultimate questions, such as ‘Is there a neural entity mediating such 

processes with negligible external cues?’ and ‘If so, how is the endogenous 

generation of spontaneous variability in Drosophila organized without external 

input?’  

1.3 Neuroethological approach to neuronal circuit investigation 
 

1.3.1 Endogenous flight behavior of Drosophila as measured by a wing beat 

analyzer  

In general, measuring endogenously generated motor output is required for 

finding the neuronal causes of spontaneous behavior. External cues should have 

minimal or no influence over the measured output.  Flight simulators have been 

used for several decades to measure visual-motor responses in a controlled 

environment. Flight simulators have been used widely to study such topics as visual 

motion detection, visual learning, orientation, reafference controls, and optomotor 

responses (Brembs, 2002; Liu et al., 2006; Wolf & Heisenberg, 1991). Display 

systems that are based on light-emitting diodes (LEDs) (Reiser & Dickinson, 2008) 

have recently been used to display panoramic visual motion at high spatial and 

temporal resolution. The inter-ommatidial distance of the Drosophila eye is more 

than the individual pixel size of an LED display unit (Chow et al., 2011; Mamiya & 

Dickinson, 2011; Reiser et al., 2011). The fly retina is thus able to detect any minute 

spatial movement in an arena. For spontaneous behavioral studies, flies are 

tethered and the flight arena is programmed to display a uniform, unchanging 

display environment. The feedback loop between the behavior and the environment 

is open. This uniform environment is suitable for measuring endogenous flight 

behavior because it excludes external stimuli. Drosophila can fly under these 
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conditions, and the wing beat amplitude is measured for computing yaw torque. 

Tethering also limits the fly’s mobility, but this procedure offers several advantages 

in addition to environmental control. For example, because the tethered flies have 

no spatial movement, there can be no angular rotation feedback to the flight motor 

center such as that from halters (Chow et al., 2011; Huston & Krapp, 2009; 

Sherman, 2003).  

The electronic visual flight arena and the wing beat analyzer have proven to 

constitute a suitable system for delivering controlled visual stimuli and measuring 

yaw torque motor output (Dickinson, 2005; Dickinson, 1993; Reiser & Dickinson, 

2008). The optical sensor-based wing beat analyzer measures the wing beat 

amplitudes of individual wings. The left and right wing beat amplitude difference is 

equivalent to a yaw saccade turn detected during free flight. This yaw torque 

measurement under homogenous spatial scenery is used as a measure of 

endogenous motor output production. Therefore, yaw turning actions generated by 

the flies are not triggered by visual cues, and any modulation in yaw turning 

originates intrinsically from the fly brain.     

1.3.2 Dissection of neuronal circuits using the Gal4-UAS system coupled with a 

tetanus toxin light chain (TeTxLC):  

A noninvasive targeted expression tool known as the Gal4-UAS tool system is 

widely used to identify the causal neuronal bases of a specific behavior (Duffy, 2002; 

Martin & Sweeney, 2002; Renn et al., 1999; Venken et al., 2011). The basic concept 

of this system is accessing a behavioral function in the absence of a specified 

neuronal population to determine the causal circuitries by elimination. This system 

allows the expression of a gene of interest in any neuronal cell or group of tissues. 

For example, the tetanus toxin light chain (TeTxLC) is widely used to investigate 

the role of a particular brain region on a specific behavior. The usefulness of this 

approach is due to the mechanism and action of the tetanus toxin light chain. The 

light chain inhibits exocytotic neurotransmitter release by proteolytically cleaving a 

protein called synaptobrevin. Synaptobrevin (Sweeney et al., 1995) is found to 
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interact with presynaptic proteins to mediate an evoked transmitter release by 

effectively silencing the neuronal region affected by this toxin.  This concept has led 

to the identification and molecular characterization of several neuronal bases and 

associated pathways in olfaction, mechanoreception, higher order locomotion and 

vision in fruit flies. 

 

 

 

Fig. 1. The Gal4-UAS system.  

This figure depicts the working principles of 

Gal4-UAS system. Effector lines consist of a 

Gal4-binding upstream activation sequence 

(UAS) with the sequence of the gene of interest 

(tetanus toxin gene). In UAS-TNT-E flies, the 

tetanus toxin light chain gene is placed next to 

UAS elements. The toxin is only expressed in 

cells of the progeny that express Gal4 (adapted 

from Griffith, 2012).  

 

 

 

The Gal4-UAS system is used to express tetanus toxin into the neural cells. 

Gal4 is a transcriptional activator protein that activates transcription in the yeast 

Saccharomyces cerevisiae induced by galactose. Gal4 directly binds to a defined site, 

called the "Upstream Activating Sequence" (UAS) and has no target in the fly 

genome. The tool uses a transposable "P-element" construct that can be inserted 

into the fly genome at different sites. The P-element contains the Gal4 sequence 
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with either a known promoter (promoter-fused Gal4 lines) or a weak promoter that 

will "trap" enhancers close to the insertion site (enhancer trap line) (Brand & 

Perrimon, 1993). GAL4, in turn, directs the transcription of the GAL4-responsive 

UAS target gene in an identical pattern. This bipartite approach, which uses two 

separate parental lines, i.e., the driver (Gal4) line and the effector (UAS) line, has a 

major advantage: the ability to target the expression of any effector gene in a 

variety of spatial and temporal ways by crossing it to distinct Gal4 drivers. Wide 

ranges of Gal4 driver fly lines are available commercially with expression patterns 

ranging from a group of cells to entire brain regions. 

1.3.3 A dynamic systems approach for investigating neuronal circuits 

There is spontaneity in a given system that is independent of the stimulus. A 

stimulus-behavior unit is a deterministic linear system when a sensory stimulus 

triggers central circuitries and directly facilitates the resulting behavior. However, 

spontaneity is manifested in a nonlinear dynamic system. The system with 

spontaneous behavior is said to be a nonlinear dynamic system because the 

behavioral actions are not specifically proportional to the external sensory 

parameters. This endogenously generated behavior could have an unpredictable or 

deterministic nature and reflects the nonlinear nature of the system (Abarbanel & 

Rabinovich, 2001; Nepomnyashchikh & Podgornyj, 2003; Sugihara & Mayf, 1990; 

Wilkinson, 1997). The internal nonlinear circuits of the system modulate the 

variability in the spontaneous behavior (Maye et al., 2007).   

For example, flies generate unpredictable behavior in the torque meter under 

a uniform visual environment (Maye et al., 2007). This system of behavior 

generation without any external input implies a nonlinear system. The behavioral 

actions of the flies are computationally unpredictable but are initiated by an 

intrinsic neuronal process. However, the neural circuits act as a deterministic 

system to mediate the behavioral variability. Nonlinear prediction tools such as S-

Map analysis (Maye et al., 2007; Sugihara & Mayf, 1990) are available to categorize 
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the properties of a system to help understand the nature and origin of behavioral 

actions.  

If external factors do not trigger intrinsic spontaneous processes, the system 

can be perturbed according to dynamic laws (Wilkinson, 1997). In other words, 

external cues could only perturb but not trigger the processes (neurons) that 

produce stimulus-oriented behaviors. The nonlinear nature of the system thus 

involves the role of neuronal circuitries in modulating given behavioral actions.  As 

an ideal example, bacteria actively move in one direction and turn sharply in 

different directions when they perceive a chemical stimulus ( Griffith et al., 2012; 

Jimenez-Sanchez, 2012). The stimulus immediately alters the behavior, and the 

organism moves away from the chemical stimulus. The neuronal components 

(nonlinear structures) mediating spontaneous turns are quantitatively altered and 

stimulate behavior that is more suited to the external situation.      

1.4 A strategy to establish the link between a neuronal circuit and 
spontaneous behavioral generation 
 

The strategies employed in this study to elucidate the neural circuits for 

spontaneous behavioral variability are explained below. The ultimate aim is to use 

genetic and mathematical tools to identify the neuronal structures involved in 

spontaneous yaw turning behavior in Drosophila. The central focus of this study is a 

behavior called spontaneous yaw torque behavior. It was essential to provide a 

detailed description of this behavior, including the environmental conditions under 

which the fly generates the behavior. We had to acquire instrumentation to 

measure the behavior and identify any other variables that are necessary to 

describe the behavior. Much of the information on the properties of spontaneous 

variability was obtained from the study of Maye et al., 2007. After describing the 

characteristics of the behavior in detail, we attempted to identify the circuits 

involved in the spontaneous behavior by measuring the spontaneous yaw turning 

behavior of various transgenic flies and screening for linear temporal properties 
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using the S-Map procedure. The major advantage of the Drosophila model is the 

ability of the Gal4-UAS genetic tool system to silence different brain regions. Gal4 

fly lines are readily available (Jenett et al., 2012), with a wide range of expression 

patterns covering different parts of the fly brain. The screening procedure involves 

using the results from the S-Map analysis to find candidate fly lines that do not 

show the nonlinear signature that is observed in wild type flies. The yaw turning 

actions had to be measured under the uniform visual environment that is produced 

by the previously validated combination of an LED-based flight arena and a wing 

beat analyzer.  

Specific neuronal structures are recognized as necessary for spontaneous yaw 

torque behavior when disturbance of the structures changes the behavior’s temporal 

properties. The effects of circuit ablation on behaviors such as walking and flight 

also allow better understanding of circuit function. Descriptors of the neural 

circuitries are important for understanding the crucial functional role of these 

circuits. A simplified approach would involve the characterization of behaviors 

associated with the circuits in transgenic animals. Because variability is observed 

in flight measures, a logical step would be to assess the candidate fly lines’ motor 

abilities to generate invariable yaw torque maneuvers. Walking competence can 

concomitantly be measured to link general locomotor function to the circuits that 

generate variability. A reliable repertoire of spontaneous behavioral properties can 

be established by evaluating and implementing behavioral data from a candidate 

line. 
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2. MATERIALS AND METHODS 
 

2.1 Flies  

All flies used in the experiments were raised on a standard 

cornmeal/molasses/agar medium, on a 12-/12-hour light and dark cycle at 25°C with 

60% humidity. The transgenic fly lines used in the experiments, with their 

respective flybaseID, were c819-Gal4 (FBti0018454), 210y-Gal4 (FBti0004605), 

MB247-Gal4 (FBtp0012869), c105-Gal4 (FBti0018459), 078y-Gal4 (FBti0015362), 

007y-Gal4 (FBti0015361), and c232-Gal4 (FBti0002929).  

The UAS-TNT-E line (FBtp0001264) was used to express the tetanus toxin 

light chain in the Gal4 lines. Wild type Berlin (WTB) flies were used as a control 

group during the screening procedure.  A web resource 

(http://www.virtualflybrain.org) known as “virtual fly brain” was used to gather 

information on expression data for the Gal4 fly lines.  

P[Gal4] line Expression pattern 
 C819-Gal4 

  
 

210y-Gal4 
    
     
  mb247-Gal4 

 
C105-Gal4 

 
78y-Gal4 

 
 

007y-Gal4 
 
 

C232-Gal4 
 
 
 

Ellipsoid body ring neuron R2 & R4, pars intercerebralis and large field 
neurons. 
 
Fan shaped body, Protocerebral bridge, median bundle, nodulus, 
subesophageal ganglion, mushroom body and lobula complex. 
 
Mushroom body alpha, beta and gamma-lobes. 
 
Ellipsoid body ring neuron R1. 
 
Pb-eb-no neuron, small field neuron, pars intercerebralis, ellipsoid body, 
Protocerebral bridge and nodulus. 
 
Ellipsoid body, nodulus, small field neurons, pb-eb-no neurons and 
Protocerebral bridge, K.C. 
 
Ellipsoid body ring neuron R3 & R4d. 
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2.2 Spontaneous yaw torque measurement 
 

2.2.1 Tethering flies for yaw torque measurements 

 Female flies were collected at an age of 24-48 h for the tethering procedure. 

An individual fly was cold anesthetized briefly in a cold chamber, and a V-shaped 

tungsten rod (length ~4 mm) was glued between the head and thorax using a dental 

cure IR-sensitive adhesive (Locktite UV glass glue, Henkel Ltd, HP2 4RQ, United 

Kingdom). The rod was glued perpendicularly to the longitudinal axis of the fly. 

Flies were transferred after gluing to a small container containing sugar pellets. 

These small containers were kept overnight with a continuously moisturized filter 

paper in an environmentally controlled chamber.  

2.2.2 Optical wing-beat analyzer           

Wing-beat analyzer equipment (purchased from the James Franck Institute, 

University of Chicago, USA) was used to measure characteristics of the wing stroke 

during the flight of a tethered Drosophila in real time. The wing-beat frequency and 

amplitude of each wing was measured. The difference in the wing-beat amplitudes 

of the two wings was used to calculate the fly’s yaw torque (Götz, 1987; Theobald, 

Duistermars, Ringach, & Frye, 2008).  

Hardware component setup 

The wing-beat analyzer consisted of a main circuit unit, a photosensor and an 

infrared LED unit (Fig. 1). Each fly was tethered to a tungsten rod and placed 

inside the arena such that its pitch angle was 45° from the vertical plane. An 

infrared light-emitting diode (IR-LED HSDL-4230, Conrad Electronics, 

Schloßstraße 34-36, Berlin, Germany) with an emission peak at 875 nm was placed 

above the fly.   

The photosensor unit was placed under the fly. It consisted of two infrared-

sensitive silicon wafers, placed so that the shadow of one wing would be recorded by 

one sensor and the shadow of the other wing would be recorded by the other sensor. 
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Each sensor was connected to an adjustable current amplifier. A crescent-shaped 

cutaway mask was positioned above the photosensor (Fig. 2). A wavelength-specific 

visible light attenuator (400-700 nm, FWHM 400 nm, Filcom Photomask Inc. 

Japan) was kept above this mask to ensure that only the light from the IR LED 

reached the sensor.   

The relative position of a fly was calibrated by moving the fly holder using a 

micromanipulator, such that the shadow caused by the wing fell on the cutaway 

mask. The size of the shadow was adjusted by moving the fly and the IR-LED so the 

shadow was laterally centered over the cutaway mask (Fig. 2). The mask and 

amplifier ensured that the final output was proportional to the position of the 

shadow cast by the beating wing. The output voltage represented the shadow of the 

wing beat, which increased during the forward excursion of the wing. 

The photosensor unit transmitted a current proportional to the shadow of the 

wing, which was not blocked by the mask. These analog signals were filtered with a 

low pass filter (LPF) with the LPF cut-off set to 1 KHz.  The main unit calculated 

the frequency and the amplitude of individual wing beats. Finally, the calculated 

wing beat amplitudes were routed to the output connectors.  
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Fig. 2. Schematics of the wing-beat analyzer experimental setup.  

A. A tethered fly was placed in a hovering position inside the flight arena. Each fly’s 

wing stroke amplitude was measured by optically tracking the wing shadows cast 

by the infrared LED. Yaw turning was calculated by subtracting the wing-beat 

amplitudes of the left and right wings. B. Alignment of the wing shadow (striped 

area) over the cutaway mask (grey area). The shadow cast by the wings was 

laterally centered over the cutaway mask.  
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Fig. 3. Typical wing-beat signal obtained from the wing beat analyzer. 

Plotted are the two peaks that represent the downstroke and upstroke of an 

individual wing during a single wing stroke. The larger peak is followed by a 

smaller peak (Source: JFI electronic laboratory, Chicago). 

Inputs to wing beat analyzer equipment 

The gain level was adjusted to produce 4 V at the final amplitude signal from 

the signal-out connectors. Flip excursion was set to 1.5 ms. The gating pulse widths 

R2 and R29 were set to 1.2 ms for the left and right channels. A source was selected 

from left or right to set the gating level. The low-pass filter (LPF) cut-off was 

adjusted to 1 kHz, fine gain to 0.2, coarse gain to 100, trigger lever to 0.40 and gate 

width to 9.8. The potentiometer in the sensor was adjusted to a unit gain of 5 out of 

11.  

 2.2.3 Signal optimization 

The photocurrents obtained from the sensors were transmitted to the main 

unit to calculate the frequency and amplitude of the wing stroke. The end analog 

signals corresponding to the calculated yaw torque were converted to computer-

readable digital signals using a sampling frequency of 250 Hz. Converter equipment 

with 12-bit successive approximation (ADC-USB-120FS, Measurement Computing 
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Inc., USA) was purchased for analog-to-digital data conversion.  These converted 

digital signals were reformulated by employing a moving average filter in MATLAB 

software (MATLAB 2011a, version 7.12.0, MathWorks Corporation, USA.). The 

following equation was applied to govern the filtering strategy, used with an 

averaging factor (M) of 13:   

 

where x = the input signal, y = the output signal and M = the averaging factor. 

 

2.3 Modular Display system 
       

An electronic display system was used to display an unvarying visual 

environment in the flight arena. A fly was usually tethered and surrounded by the 

cylindrical flight arena. Earlier studies utilized a rotating mechanical cylinder to 

display the visual stimulus (Götz, 1968). This original apparatus has recently been 

improved by replacing the mechanical components with an electronic controller 

system (Reiser & Dickinson, 2008). This display system, combined with wing beat 

analyzer equipment, was used for the spontaneous flight behavior studies. A 

homogeneously illuminated electronic arena was used in this study. There was only 

nonpatterned, uniform green illumination on the arena wall. 

 Hardware setup 

The electronic display system contained a circular array of light-emitting 

diodes (LED) panels (BM-10288MI, American Bright Optoelectronics Corp., 

Magnolia Ave, Chino, USA), two panel controller boards (PCB) and a Panel Display 

Controller (PDC) (Mettrix Technology Corp., Hopewell Junction, New York, USA). 

Each LED module (32 mm × 32 mm × 19 mm) consisted of an 8 X 8 matrix array of 

green LEDs with an attached microprocessor unit. The cylindrical arrays of LED 
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panels were assembled in 4 X 12 LED panel formations making up a volume of 1448 

cm³. This cylindrical unit was positioned between two panel controller boards 

(PCB). One of the PCBs was connected to the PDC (Fig. 4). In this specific setup, no 

coupling was established between the flight arena and the wing beat analyzer’s left 

(L) and right (R) wing beat amplitudes, thereby leaving open the feedback loop 

between the fly’s behavior and the panorama.  

The angle between adjacent LEDs was 1.7°. The luminescence of the arena 

was 72 cd/md², and the contrast level at maximum display was 92%.  Each LED was 

refreshed at 370 Hz (Reiser & Dickinson, 2008), which is below the flicker fusion 

rate of the fly (~200 Hz). The spectral intensity was ~0.4 at an intensity level of –3, 

and the wavelength of each LED was ~560 nm. This wavelength has been shown to 

drive R1-R6 photoreceptors in Drosophila (Wu & Pak, 1975). The room lights were 

turned off during the machine operation. Because this methodology of assembling 

the arena and programming the panels and control programs was adapted from a 

web resource https://bitbucket.org/mreiser/panels/wiki/Old_Panels_Info, no detailed 

steps to program individual LED panels and assemble the arena are provided in 

this section. 
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Fig. 4. Schematics of the LED arena setup.  

An insect Panel Display Controller (PDC) retrieves display patterns from a memory 

card (CF) and transmits them to each panel (P) through a TWI connector. A control 

program in the computer (PC1) connected with the PDC via RS232 offers GUI-based 

controls to access the display parameters. All units are powered by a 5 V DC power 

supply unit (PSU1). 

Overview of working components 

PC software: We used a MATLAB-based software program for communication with 

the PDC. This program is accessible via the MATLAB software to generate 

patterns, control intensity and communicate with the controller boards. The 

intensity level was set to 3 units to maintain constant illumination. 
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Panel Display Controller (PDC): The panel display controller consists of a dual 

microcontroller circuit unit. A flash microcontroller unit (ATmega8, Atmel Corp., 

San Jose, CA, 95110, USA) reads pattern data from the CF card and delivers it to 

the main microcontroller unit. The main controller receives the data from the PC 

control program over the serial port (RS232) and maintains display updates. It also 

communicates with external devices over Analog Input (AI), Analog Output (AO), 

and Digital Input/output (DIO) ports. 

Computer system (PC1):  Intel Pentium 4 CPU 1.60GHz, 2 GB RAM, NVIDIA 

Quadro4 700 XGL, Maxtor 53073H6 75GB HDD, Windows 7. 

An Atmel AVR ISP MKII in-system programmer (SKU: ATAVRISP2, Atmel 

Corporate Headquarters, 1600 Technology Drive, San Jose, CA 95110, USA.) was 

used to program the microcontroller units (MCUs) of the LED panels and the panel 

display controller (PDC). This flash programming was done using a soft kit Atmel 

AVR studio 4 software package (http://www.atmel.com/tools/avrstudio4.aspx). 

A CompactFlash card (CF): Traveler CompactFlash, 64 MB, was used to store the 

pattern data.   

Panel unit (P): The panels are individual display modules with an 8 X 8 green dot 

matrix array of LEDs and a supporting microcontroller unit (MCU) to refresh the 

display locally. An MCU receives the pattern data and refreshes the LED display in 

every LED panel.  

2.4 Analysis of yaw torque data 
 

2.4.1 Fast Fourier Transform (FFT)  

Fast Fourier Transform (FFT) was used to detect the frequency components 

of any oscillations arising from the fly behavior or the equipment. The FFT function 

in MATLAB transforms the time domain of a discrete time series sequence into a 

frequency domain. MATLAB software functions 
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(http://www.mathworks.de/de/help/matlab/ref/fft.html) were used for these 

transformation. These functions utilize the following equation.  

The functions Y = fft(x) and y = ifft(X) implement the transform, given for vectors of 
length N by 

 

where 

 

is an Nth root of unity (Duhamel P, 1990). 

The window length of the raw data was converted to a length (N) to increase the 
calculating efficiency for the relatively larger datasets. 

2.4.2 S-Map procedure 

The S-Map procedure was applied to the yaw torque signals obtained from 

the wing beat analyzer equipment.  S-Map stands for a sequentially locally 

weighted global linear map. The S-Map procedure is a tool that can be used to 

quantify the nonlinearity of given time series data by utilizing nonlinear forecasting 

analysis. This tool is able to detect a pattern in data that otherwise appear to be 

random using sample prediction and the complexity of the dynamic system. The 

given dataset is broadly considered to arise from a dynamic system that is bound to 

dynamic rules. The dynamic system determines the unique successor stage at any 

consecutive time after sampling the first half of state variables. If the system is 

linear, the initial conditions can be used to determine the subsequent state of the 

linear system. When the system does not follow the linearity equation, the system 

tends to deviate from an ideal linearity. In that case, the system can be a nonlinear 

dynamic system.  
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 The S-Map procedure takes the first half of the points in a time series and 

predicts the second half of the data series. The first half of the data points is 

embedded to create attractor values, which are then used to predict the second half 

of the time series. Embedding is basically plotting time values against past values 

of the data. The general idea is that past values can be used to reconstruct the 

equation that generated those values. The shape that emerges from this embedding 

is called an “attractor”. The second half of a time series of values can be predicted 

using this equation. An algorithm selects points that have histories similar to the 

initial points and that fall near the predicted values of the attractor. A new 

regression is computed for every prediction such that the vectors that are most 

similar to the predicted values are weighted more heavily. The points near the 

predicted values have more influence on the shape and direction of a line. All (not 

just some) of the points chosen are projected, and those points are exponentially 

weighted (Maye et al., 2007). If the system is globally linear, the best forecasts use 

all of the points in the attractor and not under-represent any of them. The accuracy 

of these predictions is evaluated by the coefficient of correlation between the 

predicted and the observed series. 

However, if the relationship between actual and predicted data is more 

complicated, then the models increase the weighting parameter (Φ) to access the 

nonlinear status of the system (higher correlation values when Φ > 0). If the 

manifold is dominated by noise, it appears as being only weakly nonlinear. So the S-

Map method offers more skillful forecasts. 

The function w is used to weight the library vectors by their distance to the 

prediction vector: 

 

For Φ = 0, a linear map is obtained. Increasing Φ puts increasingly greater 

emphasis on the library vectors close to the prediction vector. MATLAB scripts for 
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the S-Map analysis were obtained from Dr. Alexander Maye, University Medical 

Center Hamburg-Eppendorf, Germany. 

 

Fig. 5.  A simplified interpretation of the S-Map analysis.  

The correlation coefficient of the actual and predicted data against the weighting 

parameter is plotted. A shallow curve results if the relationship between the actual 

and predicted matrices is globally linear. When this relationship is complicated, 

weight is given to the predicted dataset to access the nonlinearity of the system 

(Maye et al., 2007). Thus, by increasing the weighting parameter, the steepness of 

the curve would indicate the presence of a nonlinear signature.          

Quantification of the S-Map procedural results 

 The steepness of the curve over an increasingly weighted parameter in S-

Map analysis determines the level of nonlinearity. A shallow curve indicates a 

globally linear signature in the S-Map procedure (Maye et al., 2007). Thus, the slope 

of a least-square regression line is calculated to estimate the nonlinearity of a time 
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series. A first-degree polynomial curve, in a least square sense in MATLAB software 

(function: ‘polyfit’), was used to calculate the slope coefficients. The increase in the 

slope value denotes the estimated increase of a nonlinear signature.  

2.4.3 Spike detection algorithm 

Torque spikes were detected by applying spike detection algorithms. The 

spike detection algorithms written in the MATLAB software were adapted from 

Maye et al., 2007. 

Raw yaw torque data were first filtered by a direct form II transposed 

implementation of the standard difference equation. Maximal and minimal values 

were detected from the filtered matrices by shifting the filtered values step-by-step 

in an array according to the user-defined threshold and step length. These 

maximum and minimum values were sorted out as spikes over the defined step 

length. The variables closest to a sorted variable were ignored using defined step 

lengths. Amplitude threshold levels were set from -1 to 1, depending on the filtered 

signal’s amplitude. A detection frequency of 150 Hz was used. 

2.4.4 Geometric Random Inner Product (GRIP) analysis 

A GRIP analysis was implemented on the intervals between each torque 

spike. The GRIP procedure, developed by Maye et al., 2007, was used in this study 

to quantify the deviation from theoretically expected ideal randomness. 

Randomness is defined in terms of radioactive decay (Krane, 1988), whereas non-

randomness was quantified by excess repetitions (i.e., repeats) or alternations 

between the successive bits (i.e., switches). The GRIP analysis assumes that a given 

vector represents a randomly distributed sequence. The average inner product of 

randomly distributed vectors in n-dimensional geometric objects is aggregated 

according to object-specific constants. The deviation from these constants was used 

as a measure of the randomness of a given dataset. This method is applied to the 

inter-saccade intervals (ISI) and inter-activity interval datasets with the Buridan 

paradigm to assess the randomness of the inter-event interval distribution.  
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 2.5 The Buridan Paradigm 
 

2.5.1 Flies 

Experimental flies (mixed sex unless otherwise stated) 2-3 days old were 

anesthetized by briefly exposing them to carbon dioxide gas. One-third of a wing 

was left intact and rest was clipped using a pair of fine scissors. Wing-clipped flies 

were kept overnight in small containers with sugar granules and moistened tissue 

paper.  

In brief, the Buridan paradigm (Colomb et al., 2012) device was used for 

automatic tracking of a walking fly given free choice between two visual landmarks 

in order to assess general locomotor competence. General characteristics of walking 

flies such as duration of walking, speed, etc. was calculated from this paradigm. 

2.5.2 Hardware components 

The Buridan paradigm consists of three components: a cylindrical arena, a 

standard USB camera (Logitech Quickcam Pro 9000) and a computer system.  

The cylindrical unit consists of a round platform measuring 117mm in 

diameter. The cylinder was illuminated by four circular fluorescent tubes 

surrounding it (Osram, L 40w, 640C circular cool white).The four fluorescent tubes 

are located outside the cylindrical diffuser positioned at a distance of 147.5 mm 

from the center of the arena. Alternating current (1 kHz) was provided to the tubes 

by an electronic control gear (Osram Quicktronic QT-M 1×26–42). The inner area of 

the cylinder was outfitted with two opposing horizontal stripes inaccessible to the 

flies. The stripes were taped to the inside of the diffuser and each stripe measures 

30mm X 313mm X 1mm. A standard USB camera was placed above the arena as 

depicted in Fig. 5 and the camera is connected to the computer running tracking 

programs. A wing-clipped fly was placed in a center of the platform during an 

experiment. The temperature on the platform during the experiment was 27°C, and 
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the luminosity ranged from 7.5 to 8 klx, with light intensity ranging from 370 to 850 

nm. 

 

Fig. 6. Picture of the Buridan paradigm setup:  

A wing-clipped fly was placed in the middle of a platform (117 mm diameter). The 

cylindrical arena surrounding the platform was constantly illuminated by 

fluorescent tubes. This arena was furnished with two horizontal black stripes 

measuring 30 mm wide, 313 mm high and 1 mm thick.  A water canal between the 

arena and platform prevents the fly from reaching the stripes. The fly’s position is 

captured on video using the standard USB webcam and transmitted to the tracking 

algorithm for extracting fly trajectory coordinates. (Cartoon Source Colomb et al., 

2012).     

2.5.3 Tracking software BuriTrack 

An open source Buridan paradigm software package containing the tracking 

programs and analysis scripts were downloaded from http://buridan.sourceforge.net/ 

and installed on the computer. BuriTrack is a tracking program that captures the 

darkest spot in a given pixel range determined by a user threshold. This spot is 

taken as the assumed position of the fly. The tracking program stops and records a 

burst event whenever the fly jumps outside of the platform boundary. The final 
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trajectory data (X, Y in pixels), the time stamp and burst counts were saved as a 

text file (ASCII). The total duration of the experiment was set to 20 min. The 

graphical user interface offers the flexibility of choosing the threshold and other 

tracking factors. 

2.5.4 CeTrAn Centroid Trajectories Analysis software 

The dataset generated by a BuriTrack algorithm was analyzed using a 

CeTrAn trajectory analysis algorithm written in open source statistics package R 

(http://r-project.org/).  The graphical user interface given in the package (Colomb et 

al., 2012) was utilized to import the trajectory dataset. The median speed, meander, 

and activity parameters were computed using the analysis program.  

2.5.5 General activity measurement  
 

Activity and median speed 

The algorithm considers every movement an activity and every absence of movement 

longer than 1 s is taken as a pause (shorter periods of rest were considered active periods). 

Activity was calculated in seconds. Speed was calculated by dividing the distance over instant 

speed of each movement of a fly (mm/s). The mean of the median speed of each fly was 

calculated to measure the speed performance of the group. Speed value exceeding 50 mm/s was 

considered a jump and was not included in the calculation. 

Computer-generated walking data 

The computer-generated data was obtained from the following web source:  

http://buridan.sourceforge.net/. These data samples were generated by modifying 

the R code from an adehabitat package. The direction was set to follow a correlated 

walk. An initial angle was chosen randomly and the next one was generated 

following a wrapped normal distribution around the previous angle. The correlation 

strength between two consecutive turning angles was determined by a variable ‘r’. A 

step length for the 8999 movements (900 seconds at 10 Hz) was created by 

multiplying a Boolean variable simulating pauses (1 or 0, randomly generated using 

a uniform distribution with adjustable frequency “f”) with a speed value that was 
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created by drawing from a Chi distribution around a mean value “h” (correlated 

walk) (Colomb et al., 2012). 

The position was calculated iteratively, starting at the center of the arena. 

When the position fell outside the boundary, it was replaced by the nearest point 

within the limits of the arena and the angle sequence was recalculated taking the 

first angle randomly. Accordingly, the next movement will lie outside of the 

platform with a probability >0.5. 

2.5.6 Inter-activity interval extraction 

Activity intervals were extracted from Buridan activity datasets. The time 

interval between each start of activity was considered an inter-activity interval. In 

Buridan’s paradigm, every movement is considered an activity and every absence of 

movement longer than 1s is a pause (shorter periods of rest were considered active 

periods). These inter-activity intervals were tested for randomness using GRIP 

analysis.  

2.6 pySolo assay 
 

2.6.1 Flies 

Experimental flies 2-3 days old were kept overnight in small fly containers 

with a few sugar granules and moistened paper. The next day, the flies were loaded 

into a pySolo chamber for experimentation.  

pySolo is a python-based tracking program designed for drosophila sleep and 

locomotor pattern analysis (Gilestro, 2012).  pySolo was used to measure the 

locomotor activity performance of the Drosophila. All tracker programs, analysis 

scripts and detailed instructions on setup and usage were obtained from a web 

resource www.pysolo.net.  
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2.6.2 Hardware components 

The setup consists of 12 test tubes, each measuring 70mm X 3mm, a 

cardboard box, low voltage infrared light emitting (IR-LED) diode stripes (BLO106-

15-29, Conrad electronics, Germany), a USB camera (Logitech Quickcam Pro 9000) 

and a computer.  

Each tube was sealed with food on one side and a cotton stopper on the other. 

These tubes were placed together a few millimeters apart inside the box and closed 

with a transparent sheet. Infrared red light emitting diode stripes were placed 

above these tubes to illuminate the setup without any reflective glare. The camera 

was placed above this box, in such a way that the individual test tubes were visible 

in the pySolo video monitor. The IR filter was removed from the USB camera to 

capture the infrared illumination (Fig.7). 

2.6.3 Configuration 

pySolo tracking software was installed on the computer with an Ubuntu 

operating system (10.04.4 LTS-Lucid Lynx) as per the instructions given in the web 

tutorials from www.pysolo.net. Once installed on the computer, pySolo is accessed 

through the command line by typing the following command: 

 pysolo_anal.py -c alternative_options.opt 

This will start a program along with an optional file for editing any user 

preferences. An intuitive graphical user interface offers the flexibility of editing 

preferences. The following parameters were set to record from a single camera 

monitoring system.  

The essential data to be filled in are in the first window, under ‘Files and Folder’. 

They are 

• the DAM folder 

• the output folder 
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• the extension of the input files 

• the RAW data structure 

The RAW data structure was set to record the virtual beam split functionality of the 

monitoring system. The output file format was set to .txt. 

2.6.4 Midline crossing events 
 

Before the experiments began, each individual fly was reared inside a tube 

using a mouth pipette. Infrared-illuminated flies appear brighter than the 

background image in a video. A tracking program uses a camera placed above the 

tubes to track the movement of the brightest spot. The resulting trajectory units for 

individual flies were stored as a multi-dimensional array of objects in a text file. 

An activity event was recorded whenever a fly crossed the imaginary midline 

of a tube (Fig. 7 A). These counts were registered in the output text file. The bin 

width of sampling was 1 minute. The total duration of tracking was 24 hours, and 

daytime data were used for analysis. 
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Fig. 7. (A)  The pySolo experimental setup.  

An individual fly was secured inside the test tube with access to fly food. The red 

line indicates the imaginary midline of the tube. (B). All tubes with flies were placed 

on a cardboard stage. (C) A USB camera was positioned above the fly tubes. The 

tracking program recorded each instance of a fly crossing the imaginary midline as 

a separate event for each fly. This entire setup was illuminated by an infrared light 

strip. (Image adapted from Gilestro, 2012). 

2.7 Fly Siesta and Burstiness analysis 
 

FlySiesta, a MATLAB based program, was used to analyze burstiness, i.e., 

long pauses with clustered activity, of the midline crossing activity event intervals 

from the pySolo assay. Various studies (Barabasi, 2005; Gilani & Hövel, 2012; 

Sorribes et al., 2011; Webb, 2002) have demonstrated that activity intervals 
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generated by biological systems follow certain statistical properties. The dynamics 

of many events offer quantitative understanding of complex mechanisms. For 

example, the Poisson process can be used to characterize physiological events. While 

each event is independent of any other event at any other time, i.e., the event has 

no “memory”, a point Poisson process is often used to describe the events.  

A Weibull distribution was applied to the entire inter-activity interval 

distribution to assess the burstiness parameter. The scale (ƛ) and shape (k) 

parameters of the Weibull distribution help determine the degree of burstiness. The 

scale parameter is linearly correlated with the mean Inter-activity intervals (IAIs), 

and the shape parameter is useful to parameterize the given distribution. A k-value 

of less than 1 denotes bursty behavior of the distribution, whereas a k of 0 

corresponds to a Poisson distribution.  

The pySolo midline crossing event datasets were transformed into activity 

bouts (ABs) using tState2eps.m. IAI’s were calculated from midline crossing event 

vectors using the tstate2ievs.m function in the FlySiesta toolbox. The burstiness 

parameter was calculated using these bouts and intervals. All of these programs 

were downloaded from (https://github.com/dePolaviejaLab/FlySiesta/downloads) Ms. 

Amanda Sorribes, Universidad Autonoma de Madrid, Spain, who kindly provided 

the base programs.  

2.8 Statistical analysis 
 

          Statistical analysis was performed using One-Way Analysis of Variance 

(ANOVA) in the MATLAB software for between-group comparisons. The 

Kolmogorov-Smirnov test was used to check the distribution of a given dataset. All 

error bars represent one standard error of the mean (s.e.m), and the p-value of a 

statistical test is represented by stars: one star (p<0.05), two stars (p<0.01), three 

stars (p<0.001). 
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3.  RESULTS 
 
3.1 No-noise frequency components from the wing beat analyzer  

Highly accurate and precise measurement of the wing beat amplitudes of 

fruit flies in a wing-beat analyzer requires suppression of noisy signals from the 

equipment. This would guarantee that the obtained wing stroke amplitudes 

represent only the frequency components from the fly behavior and are not 

contaminated by the instrumentation. Wing-beat amplitude signals were first 

measured without using an actual WTB fly to identify any frequency noise 

components from the equipment. Wing stroke amplitudes were optimized by analog 

signal band pass filtering and moving average filtering of the yaw torque digital 

signals (see Methods, 2.2). MATLAB software functions were used to perform power 

spectral analyses to identify frequency components from the yaw torque signals 

before and after signal optimization. Before signal optimization, power spectral 

analysis (Fig. 8A) detected frequency components ranging from 4 – 11 Hz in the 

higher power range.  After signal optimization, peak frequency components of the 

oscillations were effectively suppressed (Fig. 8B), and no visible frequency 

components appeared even in the lowest power range. 
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Fig. 8. Power spectral analysis on a yaw torque signal obtained from the wing beat 

analyzer.  

This graph illustrates the average power spectral densities of the yaw turning 

signals obtained from the wing beat analyzer before (A) and after (B) signal 

optimization without using an actual fly. Average power spectra of 0 - 20 Hz 

calculated from 30 trials of open loop experiments; duration of each trial was 500 s. 

A. Frequency components of 4 – 11 Hz in the higher power range were identified. B. 

No peak frequency components were observed in the lower power ranges.    

 

 

  

 

A B 
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Fig. 9. A typical yaw torque signal.  

Plotted is the typical yaw torque signal obtained from the wing beat analyzer 

equipment from a single WTB fly for 15 min. Yaw torque was calculated from the 

difference between the left and right wing beat amplitudes (L minus R).   

 
3.2 S-Map analysis can be used with variable flight duration 

Correlations between the duration of flight and S-Map procedural results 

were estimated to determine the minimum length of the yaw torque dataset 

required for the S-Map procedure. Transgenic flies were expected to have highly 

variable flight durations during the open loop control. This tool has been used on 

flight datasets with fixed flight durations of 30 min. over several trials.  Therefore, 

it was necessary to evaluate the correlation between the time duration of flight 

behavior and the S-Map procedural results.  The slope of the S-Map procedural 

results was taken to correlate with the duration of flight in minutes (Fig. 10). WTB 

flies that flew for various durations were used. In general, no correlation (Pearson's 

correlation coefficient r = 0.34) was observed between the duration of flight and the 

Right turns  

Left turns 

Left turns 
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S-Map nonlinearity curve in the wild type flies (WTB). However, the linear 

correlation was robust in the lower left quarter of the graph (below 6 min.), and the 

rest of the points (pink) were randomly distributed. Therefore, the yaw turning 

dataset values below 6 min. were excluded from the analysis described below.  

 

Fig.  10.  The correlation between the flight durations of WTB flies and the slopes of 

the S-Map signature.  

Plotted is the slope of the S-Map curve against the duration of flight (s). Black 

points indicate the cluster of slope values below 6 min. The rest (pink points) were 

the slopes of S-Map results above 6 min. (N=78). A Pearson product-moment 

correlation coefficient was calculated (r=0.34, P < 0.001) after removing the slope 

values below 6 min., and the corresponding linear fit is indicated by the black line 
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3.3 Screening for neuronal candidates that generate linear signatures in 

S-Map analysis 

To identify specific groups of neuronal cells that might be responsible for 

spontaneous yaw torque behavior in Drosophila, offspring of several enhancer trap 

P [Gal4] lines, with an expression pattern in distinct regions of the central complex 

and mushroom body regions, crossed with UAS-TNT-E were screened for linearity. 

Yaw turning behavior was recorded from these transgenic flies and S-Map analysis 

was performed on the resulting flight datasets. The slope of the S-Map procedural 

results was taken as a measure of nonlinearity. Screenings were done on 9 P [Gal4] 

lines, with WTB flies serving as a control group. A majority of tetanus toxin-

expressed fly lines produced an increasing nonlinear signature (Fig. 11). However, 

one fly line (double transgenic c232; c105-Gal4 X UAS-TNT-E) with silenced 

ellipsoid body ring neurons showed a linear signature. This was the only fly group 

that did not show nonlinearity in the screening process, indicating that the 

hypothesized neuronal circuitry for spontaneous nonlinear generation. Previous 

work by Neuser, Triphan, Mronz, Poeck, & Strauss, 2008 presented an expression 

pattern in ellipsoid body ring neurons R3-R4d and R1 in c232-Gal4 and c105-Gal4 

fly lines, respectively. The fly line that showed nonlinearity consisted of these two 

transgenic c232-Gal4 & c105-Gal4 lines.      
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Fig.  11.   Comparison of the average slopes of the nonlinearity curve obtained from 

the S-Map procedure from a variety of P [Gal4] lines expressed with tetanus toxin. 

Mushroom body lines (mb247-Gal4 and 210y-Gal4) showed improved nonlinearity 

skills along with the control group (WTB, dark grey). In addition to the 78y-Gal4, 

the c819-Gal4 line showed relatively better nonlinear signals. The double line C105; 

C819 Gal4 was not affected by the expression of tetanus toxin for nonlinear 

generation. However, double C232; C105 Gal4 flies displayed a linear signature 

(light grey). However, the c105-Gal4 and c232-Gal4 flies exhibited nonlinear 

prediction skills in the analysis. Error bars represent the mean ± s.e.m.   

3.4 Linear structure in S-Map analysis from double c232; c105-Gal4 

caused by tetanus toxin expression  

  Ellipsoid body ring neuronal cells R1, R3 and R4d were previously found to be 

a necessary component of a nonlinear signature in spontaneously generated yaw 

torque behavior. The double c232: c105-Gal4 X UAS-TNT-E fly line was tested 
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earlier, using WTB flies as a control group. Generally, transgenic fly lines tend to 

drift toward other genotyped fly lines over several generations (Belle & 

Heisenbergt, 1996). A double transgenic fly line that showed linear prediction skills 

was tested with its genetic control groups (c232; c105-Gal4 X WTB and WTB X 

TNT) to determine the influence of genetic background on the ability to generate a 

linear phenotype and to reveal any false positive results in the screening procedure. 

Measurements of yaw torque behavior of these three groups were taken 

simultaneously to nullify any effect of environmental variables. The genetic controls 

exhibited increased slope values, suggesting a nonlinear signature. In contrast, the 

tetanus toxin-expressed group (double c232; c105-Gal4 X UAS-TNT-E) showed a 

linear signature that was significantly different from that of the control group (Fig. 

12, p<0.001). These results were similar to those of the screening experiments. 

Thus, the linear phenotype is produced by tetanus toxin expression, not by genetic 

background. This result in turn confirms the presence of neuronal cells that are a 

necessary component of nonlinear generation of spontaneous behavioral variability.  

Fig.  12. Genetic ablations of R1, R3 and R4d ellipsoid body ring neurons abolish the 

nonlinear signature.  

 The double transgenic c232; c105-Gal4 X 

TNT generated linear signature in the S-

Map procedure is indicated by lower slope 

values compared to nonlinear trend 

generation with increased slope values by 

control groups (c232; c105-Gal4 X WTB and 

WTB X TNT, dark grey). One-way ANOVA 

(***p<0.001).  

Error bars represent the mean ± s.e.m. 
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3.5 Neuronal organization for nonlinearity generation  

Individual transgenic fly lines of a double transgenic line were tested, and the S-Map 

procedure was implemented to narrow the search to specific parts of the identified candidate 

neuronal cells.  The way in which an identified neuronal population is organized into functional 

ensembles to mediate nonlinear behavior is not known. Thus, we further dissected the identified 

neuronal substrate to investigate this organization.  

Tetanus expression of the candidate neuronal cells in the ellipsoid body was driven by the 

combination of two transgenic fly lines, i.e., c232-Gal4 and c105-Gal4. The linear phenotype 

was exhibited in this double transgenic fly line. The double transgenic line, when separated, 

yields two individual transgenic fly lines, c232-Gal4 and c105-Gal4, each with a reduced 

expression pattern on a specific pool of neuronal cells.  

The offspring of individual lines (c232-Gal4 and c105-Gal4) crossed with UAS-TNT-E 

were tested for nonlinear generation. Both lines generated yaw torque signals with increased 

nonlinear prediction skills. In both cases, there was no significant difference between them and 

their respective genetic control group (Fig. 13, P > 0.05).  

 

       

A B 



47 | P a g e  
 

Fig. 13.  There is no change in nonlinearity generation when any of the ellipsoid 

body ring neurons (R3, R4d or R1) is silenced alone.  

Plotted (A and B) are the average slope values from the S-Map analysis of the 

tetanus-expressed c105-Gal4 and c232-Gal4, and their genetic controls (dark grey). 

The c232 X TNT, c105 X TNT lines and their respective genetic controls showed a 

nonlinear signature. Error bars represent the mean ± s.e.m. 

3.6 Locomotor competence of candidate fly line 

We measured the general locomotor competence of the double c232; c105-

Gal4 X TNT fly line to determine whether the ellipsoid body ring neurons (R1, R3 

and R4d), whose mediation generates a nonlinear signature, were involved in 

controlling locomotor behavior. This fly line was chosen as an ideal candidate for 

further characterization. 

  Although the linear signature provided evidence that certain neurons were 

mediating the nonlinear signature in spontaneous behavioral variability, causality 

could not be established without characterizing the role of these neurons in other 

associated behaviors. The perturbation of specific ellipsoid body ring neurons might 

result in loss in the nonlinear phenotype of associated locomotor behaviors. The 

linear phenotype could possibly have arisen due to a defect in locomotor activity. 

For this reason, we assessed the yaw torque generation functionality and walking 

activities of the candidate fly line. We also quantified the inter-torque spike interval 

distribution of yaw torque and the inter-activity interval distribution of walking. 

The activity assays also made it possible to scrutinize the correlation between the 

linear phenotype and any defect in locomotion. The data (Figs. 14, 15 and 16) 

suggested that torque spike generation, walking activity and walking speed were 

unaffected in the candidate fly lines. The results from these studies strengthened 

our finding of the specific role of identified neuronal circuits in nonlinear 

generation. 
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3.6.1 Measurement of yaw torque spikes   

Yaw torque spikes were calculated as a measure for yaw torque generation 

functionality. During tethered flight, flies generate abrupt, short bursts of turns 

with changing turn orientation (Fig. 9). Automated algorithms of spike sorting were 

used to count the spikes from raw yaw torque data. The results indicate that the 

frequency of spike generation (~1 Hz) by the candidate fly lines was not different 

(Fig. 14, p>0.05) from that of the control groups. Candidate fly lines were able to 

generate torque spikes during tethered flight conditions under a uniform visual 

environment.    

       
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 14.  Candidate fly lines were able to generate unaffected torque spikes.  

Plotted bars are the frequency (Hz) of torque spikes generated by double c232; c105-

Gal4 X TNT and its genetic controls c232; c105 X WTB & WTB X TNT (dark grey). 

Error bars represent the mean ± s.e.m. 
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3.6.2 Walking Activity measurement 

We performed a Buridan paradigm activity assay with wing-clipped flies to 

evaluate the walking activity of the candidate fly lines. Walking activity period and 

speed were calculated from the trajectories of the flies steadily walking back and 

forth when black stripes were presented as visual cues. Each trial lasted for 20 

min., and the candidate fly lines and their respective genetic control groups were 

tested in parallel. Total walking activity time of c232; c105 X TNT was statistically 

distinguishable (Fig. 15, p<0.01) from one genetic control group c232; c105 X WTB. 

However, another control group, WTB X TNT, showed walking activity that was 

indistinguishable from that of the tetanus-expressed group. However, no severe 

walking activity deficiency was identified in the tetanus toxin-expressed fly group. 

Additionally, the mean of the median walking speeds of all of the groups (Fig. 16) 

ranged from 16-18 mm/s, and candidate fly groups were able to generate normal 

walking speeds.    

 

Fig. 15.  No deficit in time course of walking 

activity.  

Plotted are the mean total activity times (s) 

by candidate fly line double c232; c105-Gal4 

expressed with tetanus toxin and its genetic 

control (dark grey) groups (c232; c105-Gal4 X 

WTB & WTB X TNT). Statistics were 

performed as a One-Way ANOVA (**p<0.01). 

Error bars represent the mean ± s.e.m.  
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Fig. 16.  Mean walking speed in transition 

between two landmarks in the Buridan 

Paradigm.   

Plotted are the means of the median speed of 

candidate fly line c232; c105-Gal4 X TNT and 

its two genetic control (dark grey) groups. Bars 

represent the mean ± s.e.m.  

 

3.6.3 Inter-event interval distribution analysis 

Previous results have shown that the yaw torque spikes in overall locomotor 

activity, such as the duration of walking and walking speed, display the 

characteristics of functional locomotor apparatus. A quantitative analysis of the 

inter-event intervals was performed using GRIP analysis and burstiness parameter 

analysis to determine whether a specific group of neurons, i.e., ellipsoid body ring 

neurons (R1, R3 and R4d), was also involved in maintaining the temporal pattern of 

locomotor activity in Drosophila. The inter-torque spike intervals and inter-walking 

activity intervals from the Buridan paradigm were chosen for the GRIP analysis. 

Flies from the line c232; c105 Gal4, with tetanus expression in ellipsoid body ring 

neurons R1, R3 and R4d, deviated from perfect randomness (SD = 0 is random) in 

their inter-torque spike interval distribution (Fig. 17) and inter-walking activity 

distribution (Fig. 18). The standard deviations of randomness in both measures in 

genetic controls also indicated that their walking intervals were distributed 

nonrandomly. Inter-walking activity intervals were obtained by subtracting the 

time (s) between each start of walking activity in the Buridan paradigm.  
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Fig. 17.  GRIP analysis on inter-torque 

spike intervals (ISIs).  

Plotted are the mean standard deviations of 

a theoretically predicted random value for 

the fly ISI series and the Poisson process. 

C232; c105 Gal4 X TNT and its respective 

genetic control groups (dark grey) deviated 

from the Poisson process (yellow), which 

remained close to random values. A 

standard deviation (SD) value of 0 would 

indicate perfect randomness. Bars represent 

the mean ± s.e.m.  

 

 

Fig.  18. Inter-walking activity intervals were 

non-random: GRIP analyses on time 

intervals. 

Bars represent the mean standard deviations 

from a perfect randomness value calculated 

from the intervals between each start of 

walking activity from double c232; c105-Gal4 

expressed with tetanus toxin, and its genetic 

control (dark grey) groups (c232; c105-Gal4 X 

WTB and WTB X TNT). GRIP analysis 

results on inter-activity intervals extracted 
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from computer-generated walking (correlated walk) are plotted in dark grey. Bars 

represent the mean ± s.e.m.  

Burstiness parameter 

The candidate neuronal circuits were further tested for their role in 

burstiness generation. Midline crossing activity from the pySolo experiments was 

used to generate inter-activity intervals on which to perform behavioral burstiness 

analysis. The expression of tetanus toxin in the ellipsoid body ring neurons had no 

involvement in generating behavioral burstiness in the candidate line or its genetic 

control. These results (Fig. 19) were consistent with the finding that impairment of 

the central complex function does not affect burstiness (Sorribes et al., 2011).     

 

 

Fig. 19.  Impairment in ellipsoid 

body ring neurons does not affect 

burstiness.   

Plotted is the burstiness parameter 

(B) generated by the Double Gal4 

c232; c105 X TNT line and its 

genetic controls (dark grey). All 

three groups generated bursty 

activity as indicated by a burstiness 

parameter value B>0 that was well 

above the Poisson process. Error 

bars represent the mean ± s.e.m.  
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4. DISCUSSION  
 

The neuronal basis of spontaneous behavior was explored in this study using 

a combination of interdisciplinary approaches. Drosophila offered a unique and 

advantageous model system for studying the neural basis of spontaneous yaw 

turning behavior. This study probed the neuronal cells contributing to variability in 

spontaneous yaw turning behavior in Drosophila, using genetic dissection and 

mathematical tools such as the S-Map procedure and GRIP analysis. This approach 

proved to be effective in identifying the part of neural circuits that facilitates a 

nonlinear temporal structure in spontaneous flight behavior and in identifying the 

neuronal architecture of the circuits. The temporal properties of spontaneous yaw 

turning behavioral variability were shown to be mediated by a group of cells (R1, R3 

and R4d) in the ellipsoid body neurons of Drosophila. The identified neuronal cells 

were further characterized for their role in associated locomotor behavior. This 

characterization, using walking activity assays, supported the specific role of the 

identified neural cells in nonlinearity generation. The temporal pattern of locomotor 

activity was also measured to discover its role in fine regulation of locomotor 

activity.  

4.1 Neural circuitry underlying spontaneous behavioral variability 
 

4.1.1 Ellipsoid body ring neurons mediate the nonlinear structure in 

spontaneous flight behavior 

  Our initial screening showed that spontaneous actions generated by fruit flies 

are possibly mediated by specific neuronal regions (Fig. 11). Among eight different 

fly lines, only those with silenced ellipsoid-body ring neurons R1, R3 and R4d did 

not show nonlinear structure in the S-Map procedure. The fly lines with a silenced 

mushroom body did exhibit an increased nonlinear signature. Thus mushroom body 

integration is not required for nonlinear configuration in spontaneous behavior. 

Additionally, fly lines in which other substructures of the central complex (the 
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proto-cerebral bridge, the fan-shaped body and noduli) were silenced did confirm a 

nonlinear prediction. To summarize, the genetic ablation of specific ring neurons in 

the ellipsoid body region alters the temporal structure of spontaneous yaw torque 

behavior toward a more linear signature. These results might suggest the presence 

of designated circuits for mediating spontaneous variability. The screening 

procedure was able to identify the neuronal components that were responsible for a 

nonlinear structure in spontaneous flight behavior.   

Linear structure was confirmed by testing the candidate fly lines and their 

appropriate genetic control groups (double c232; c105-Gal4 X WTB and WTB X 

UAS-TNT). Linear structure could have been influenced by a false positive genotype 

factor and by other environmental conditions that prevailed during the screening 

procedure. However, the test results indicated that the changes in nonlinearity 

were caused by the expression of tetanus toxin on the R1, R3 and R4d region of the 

ellipsoid body and were not influenced by any other variables. Initial studies of the 

behavioral variability indicated the presence of intrinsic brain components that 

could act as a deterministic system to generate nonlinear spontaneous variability 

(Maye et al., 2007). In our study, we most likely isolated only that part of the 

neuronal circuitry that mediates temporal properties of spontaneous behavior in 

fruit flies.  

4.1.2 The temporal pattern of spontaneous behavioral variability and its 

independence from associated locomotor activity 

Tetanus toxin (TeTxLC) expression, especially on central complex sub-

structures, has been shown to cause severe locomotor defects (Martin et al., 2002; 

Martin, Raabe, & Heisenberg, 1999; Strauss, 2002; Martin & Robinow, 2003). In our 

study, the candidate line had an expression pattern in the ellipsoid body ring 

neurons R1, R3 and R4d, which are part of the central body substructure. Still 

unanswered is the question of whether the circuits for nonlinear structure 

generation are part of the circuits maintaining general locomotor behavior.  
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Our results showed that candidate flies were endogenously generating 

stereotyped, short bursts of yaw torque in a uniform visual surrounding. The flies 

appeared to be able to generate normal short bursts of yaw torque, and the 

temporal characteristics of yaw turning had a linear signature in the S-Map 

analysis. This result generates the interesting hypothesis that the neural 

components involving yaw torque can be divided into two components: stereotyped 

yaw torque spike generators and a turning orientation initiator.  One component 

circuit presumably generates the stable bursts of yaw torques independently of the 

other neural components, which initiate left- or right-turn orientation in a uniform 

visual environment. Support for this hypothesis also comes from the results of the 

inter-torque spike interval distribution analysis. The time intervals between 

subsequent torque spikes are distributed nonrandomly, following non-Poisson 

statistics, indicating that the ring neuronal cells might have an influence over the 

turning initiators.  

Additionally, the time course of walking activity and walking speed showed 

no abnormalities. The reported walking speed of the WTB flies is from 11-18 mm/s 

(Neuser et al., 2008; Strauss et al., 1992). We showed here that the walking speed 

was nearly the same in the candidate fly line. Subsequently, the interval between 

each start of walking activity was distributed nonrandomly, deviating from 

computer generated random values. The burstiness parameter, i.e., bursts of 

activity followed by long periods of inactivity, also describes a nonrandom 

phenomenon (Kerster & Schaeffer, 2013; Sorribes et al., 2011). The candidate line 

with silenced ellipsoid body ring neurons exhibits bursty dynamics that are 

significantly different from Poisson processes in the flies’ midline-crossing walking 

activity. The temporal dynamics of walking activity thus appear to be normal. 

These results indicate that there are specific neural components that mediate 

nonlinear behavior but are not involved in generating locomotor behavior. A 

nonlinearity component in spontaneous behavior is thus generated robustly by the 

intrinsic brain structures of Drosophila.  
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This finding raises another question. If the fine regulation of spontaneous 

yaw torque behavior generates a nonlinear structure in the temporal pattern that is 

mediated by the ellipsoid body ring neurons and if the flies are able to initiate intact 

locomotor functionality as indicated by normal torque spikes and walking activities, 

then how could fine temporal pattern generation be organized with flight 

architecture?  One probable answer is that the nonlinear circuits that depend on 

reduced sensory stimulus-response coupling may interact with the hard-wired 

circuit that generates stereotypic behaviors.  Blocking a small number of neural 

cells in the central complex disturbs one particular property of the temporal pattern 

of endogenous flight behavior while associated flight behavior remains functional. 

Earlier studies reported that the substructures of the central complex are involved 

in the temporal pattern of walking activity (Strauss, 2002). Blocking the neurons 

that arborize the ellipsoid body affects the power law distribution of the 

spontaneous walking time interval (J Martin & Ernst, 2001a). However, these 

defects in temporal properties were shown to be independent of the fly’s locomotor 

activity level. An earlier study suggested two possibilities regarding the 

relationship between normal walking activity and the temporal properties of 

walking (Martin & Ernst, 2001b). A general activity defect might be accompanied 

by disruption in temporal dynamics, or a defect in temporal dynamics coexists with 

normal behavioral activity. Our findings suggest the latter: a central complex 

substructure is responsible for the fine regulation of temporal pattern in flight 

behavior without affecting active flight generation.   

However, any leaky expression of tetanus into, for example, other neurons or 

muscles during an animal’s development could have profound detrimental effects on 

its normal development, which in turn could influence spontaneous behavior. The 

measures of the general flight and walking activity of our flies indicated no 

apparent defect in their locomotor physiology. It might have been helpful to take 

further behavioral readouts during the flies’ development to better understand the 

role of candidate neural circuits in facilitating spontaneous behavioral variability. 
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For instance, the UAS-shi tool could have been used to temporarily manipulate 

synaptic activity.      

 4.2 Functional neuronal architecture for nonlinear structure generation  

Because a specific group of cells in the fly brain functions as a neuronal 

substructure for regulating spontaneous variability, we further dissected parts of 

this circuitry. The double transgenic Gal4 line that showed linear structure 

consisted of two individual lines, c105 Gal4 and c232 Gal4. The ring neuron R1 and 

R3-R4d of the ellipsoid body region are silenced by tetanus toxin expression in 

individual fly lines c105-Gal4 and c232-Gal4 (Neuser et al., 2008). The yaw torque 

characteristics of these individual lines showed increasingly nonlinear solutions in 

the S-Map analysis. While nonlinearity was abolished when silencing the 

combination of ring neurons, selectively silencing an individual (R1) ring neuron or 

a combination of ring neurons (R3 and R4d) did not have any effect on nonlinearity. 

This result reveals an organized neural entity for mediating nonlinear structure in 

spontaneous behavioral variability. When either of the ring neurons (R1 or R3 and 

R4d) was severed, the other could possibly have been supplemented by another 

surrounding neuronal population to form a local network that served as a functional 

entity to generate nonlinear functionality in fly behavior. In any event, ellipsoid 

body ring neurons are essential components of the neuronal circuitry mediating 

variability in flight behavior.  

Earlier flight control studies (Ilius, 2007) examined mutant alleles of the 

gene ellipsoid body open (ebo) of Drosophila. The central complex substructures of 

the ebo mutants show such defects as a divided fan- shaped body, a ventrally open, 

flattened and occasionally divided cleavage in the ellipsoid body and a proto-

cerebral bridge with bead-like appearances. These mutant flies execute normal 

motion-induced torque modulations but their spontaneous torque amplitudes are 

reduced compared to wild type flies. These defects in the central complex 

substructure were associated with spontaneous flight behavior. The ebo mutations 

broadly affected the ellipsoid body, fan-shaped body and mushroom body calyx 
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structures. This wide range of structural defects (Strauss et al., 1992) could affect 

several locomotor parameters. Though these ebo mutation studies initiated 

behavioral studies of spontaneous flight, they did not include in-depth examination 

of the neural entities and their underlying functional structures. We were able to 

identify the group of ring neuronal cells that are responsible for the temporal 

characteristics of spontaneous flight behavior.  

4.3 Level of brain organization: Connecting endogenous flight behavior 

with intrinsic brain organization 

The nonlinear temporal structure generated during behavioral variability is 

controlled by ellipsoid body ring neurons. This finding, as well as that of Maye et 

al., 2007, demonstrates that deterministic components control behavioral 

variability. We showed that the interruption of a specific neural circuit obstructed 

nonlinearity in temporal yaw torque behavior. This shift toward linear dynamics 

has implications for understanding neural circuit functionality. 

The spontaneous actions generated by flies are highly variable. We have 

shown in this study that variable behavioral components have a particular temporal 

structure and are modulated by neuronal components. The behavioral variability is 

controlled by neuronal components instead of occurring randomly. Conversely, flies 

orient toward stripes while fixating on objects by reducing their variability in 

turning attempts (Dickinson 2005; Götz 1968; Götz 1987). Behavioral variability 

has to be reduced to execute a specific task. It would be interesting to know how a 

fly switches between spontaneous actions and a stereotyped, stimulus-induced 

response such as stripe fixation in tethered flight. 

Default mode network (DMN) activity in humans, which has been shown to 

be the primary cause of  behavioral variability, is negatively correlated with task-

induced brain activity (Fox & Raichle, 2007; Raichle, 2010). Spontaneous neuronal 

activity in the default mode network is suppressed during the task, and task-

induced brain networks become active. The comparison of spontaneous variability 
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in insects with higher order biological systems is useful because the arthropod 

central complex brain region and vertebrate basal ganglia are homologous. The 

complex modulatory circuits of the ellipsoid body in arthropods share organizational 

features with the pallidum of vertebrate basal ganglia. The pallidum of ganglia 

plays an important role in action-selection among behavioral modules and their 

corresponding adaptive behaviors (Reiter & Bier, 2002; Strausfeld & Hirth, 2013). 

These similarities suggest the value of a direct comparison of the organization of the 

default mode network and the spontaneous behavior architecture supported by 

ellipsoid body regions. If spontaneous behavioral properties across these two 

biological systems are indeed homologous, the switch from spontaneous neural 

activity to task-specific activity could occur in the fly brain as well (e.g., as in stripe 

fixation). Independent functional connectivity studies on fly neuronal networks are 

required to shed light on endogenous brain organization.  

This present study suggests that intrinsic properties of the ellipsoid body 

neurons facilitate temporal variability in yaw torque behavior in an environment 

that is known to cause no yaw turns. Thus, a simple  “sensory-input-triggering-

motor-output (yaw torque)” analogy (Censi et al., 2013) is not sufficient to explain 

the spontaneous actions generated by tethered flies. The finding of neuronal cells 

being responsible for spontaneous behavior could open up an avenue to apply 

intrinsic output-input transformations to an understanding of flight control 

mechanisms.  

4.4 Future outlook: Do nonlinear circuits control operant activity 

initiation?   

  It has been proposed that operant learning requires the active initiation of 

behavior rather than simply responding to stimuli (Maye et al., 2007; Wolf & 

Heisenberg, 1991). According to this proposal, the sensory cues present in the flight 

simulator do not necessarily initiate the yaw turns. The temporal correlation 

between the presence of complex stimuli and motor commands may merely indicate 

a motivation for learning. In our study, flies initiated yaw turns voluntarily in an 
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environment known to cause no yaw turns.  During spontaneous behavior, an 

ecologically relevant search strategy (Wolf & Heisenberg, 1984) might engage the 

motor commands to initiate yaw saccade turns to learn the consequences of actions. 

The present study has postulated the involvement of neural circuits in the fine 

maintenance of yaw torque turning in a uniform visual environment. If the 

identified neural circuits were indeed necessary for spontaneous actions, the next 

phase of study would be to access the candidate fly’s ability to actively initiate 

actions and learn the consequences of the actions during the presence of aversive 

cues. Such a study could impose a new characterization of the candidate neural 

circuits that has relevance to operant activity and operant conditioning. The ideal 

paradigm to access the learning strategy would be to use the closed loop flight 

torque meter with no visual cues.  

Flies would be placed in a flight simulator with a uniform visual 

environment, and subjected to aversive stimuli e.g., laser heat shock, that would be 

applied while the fly was attempting to turn to one side (either left or right). If the 

flies were able to comprehend the negative consequences of the actions, as indicated 

by avoiding the punished left or right side, operant modulation could be silencing 

the candidate neuronal cells. Alternatively, the candidate neural circuits might 

have a profound effect on the operant conditioning. This perspective could provide 

insight into understanding the neuronal mechanisms for action-selection and self-

learning. 
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5. SUMMARY: 

Neuronal cells interact to produce a diverse behavioral organization. 

Cooperation among designated neuronal populations of several cells leads to 

endogenous behavioral generation that is not driven by stimuli. This property 

distinguishes the brain from an automated, stimulus-driven artificial entity. These 

spontaneous behaviors represent intrinsic properties of the specific neuronal 

circuits. The primary aim of this study was to identify the neuronal components 

underlying the mediation of spontaneous yaw torque behavior in Drosophila. The 

role of various neuronal populations in spontaneous behavior generation was 

investigated using genetic dissection and mathematical tools, such as the S-Map 

procedure and GRIP analysis. A screening procedure was implemented on a group 

of Gal4 fly lines with an expression pattern in various cells of central complex 

structures and mushroom bodies in the fly brain to identify the candidate neurons. 

Locomotor assays were performed using Buridan and pySolo paradigm to 

complement the role of candidate neuronal circuitry on associated locomotor 

behavior. The present studies were performed using Drosophila melanogaster, 

whose flight was studied using an optical wing beat analyzer. This insect offers an 

advantageous and powerful model system for a study such as ours that requires 

genetic accessibility and quantifiable flight behaviors.  

Our screening procedure indicated that groups of ellipsoid body ring neuronal 

cells (R1, R3 and R4d) were associated with the temporal structure of spontaneous 

flight behavior. The nonlinear temporal structure observed in wild type flies shifted 

toward a linear signature in the S-Map procedure. The candidate fly line with 

silenced ellipsoid body ring neurons (R1, R3 and R4d) was tested with comparable 

genetic controls to rule out any false positive, genetic or other environmental 

influence over the shift in temporal structure in the screening procedure. This test 

confirmed the role of the ellipsoid body ring neurons R1, R3 and R4d in the 

temporal structure of spontaneous yaw turning behavior of fruit flies. Finally, these 
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neuronal populations appeared to have no influence over associated locomotor 

activities such as walking. To summarize, this study demonstrated the neuronal 

basis of spontaneous flight behaviors in Drosophila and may lead to future studies 

of intrinsic properties of the brain. 

ZUSAMMENFASSUNG: 
 

Neuronale Zellen interagieren um unterschiedliche Verhaltenweisen 

hervorzurufen. Die Zusammenarbeit von bestimmten Neuronenpopulationen führt 

zu Generierung von endogenem Verhalten das nicht durch Stimuli ausgelöst wird. 

Diese Eigenschaft unterscheidet das Gehirn von einer automatischen, Stimulus 

kontrollierten, künstlichen Funktionseinheit. Dieses spontane Verhalten ist eine 

intrinsische Eigenschaft von spezifischen neuronalen Schaltkreisen. Das 

Hauptanliegen dieser Studie war neuronale Komponenten zu identifizieren, die das 

spontane Gierungs-Drehmoment Verhalten in Drosophila vermitteln. Die Rolle von 

verschiedenen Neuronenpopulationen bei  der Generierung von spontanem 

Verhalten wurde mit Hilfe von transgenen Fliegenlinien und mathematischen 

Methoden wie S-Map Verfahren und GRIP Analysen untersucht. Gal4 Fliegenlinien 

mit Expressionsmustern in unterschiedlichen Neuronen des Zentralkomplexes und 

der Pilzkörper wurden analysiert um Kandidatenneurone zu finden. 

Fortbewegungsanalysen wurden mit Hilfe von Buridan and pySolo Paradigmen 

durchgeführt um identifizierten Kandidatenneurone zu charakterisieren. Die 

vorliegende Studie wurde mit Drosophila melanogaster durchgeführt, deren Flug 

mit Hilfe eines optischen Flügelschlaganalysators untersucht wurde. Drosophila ist 

das beste Modellsystem um die neuronalen Grundlagen von spontanem Verhalten 

zu antdecken aufgrund der einfachen genetischen Manipulation und des 

quantifizierbaren Flugverhaltens.  

Unsere Untersuchungen deuten darauf hin, dass eine Gruppe von 

Ringneuronen im Ellipsoid-Körper (R1, R3 und R4d) mit dem zeitlichen Aufbau von 
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spontanem Flugverhalten assoziiert ist. Die nichtlineare zeitliche Struktur, die in 

Wildtypfliegen beobachtet wird, verändert sich zu einer linearen in der S-Map 

Analyse. Die Kandidatenfliegenlinie wurde mit vergleichbaren genetischen 

Kontrollen getestet um auszuschließen, dass genetische und andere 

Umwelteinflüsse die Veränderung der zeitlichen Struktur verursacht haben. Dieser 

Test bestätigt die Rolle der Ringneurone des Ellipsoid-Körper R1, R3 und R4d bei 

dem Gier-Moment-Verhalten der Fruchtfliegen. Zusätzlich scheinen diese Neuronen 

die Laufaktivität nicht zu beeinflussen. Zusammenfassend zeigt diese Studie die 

neuronale Grundlage von spontanem Flugverhalten in Drosophila und legt die 

Basis für weiterführende Studien an intrinsischen Eigenschaften des Gehirns. 
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