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Summary

The aim of this thesis is to study the late-time asymptotics of cosmologi-
cal models with accelerated expansion in which the acceleration is caused by a
non-minimally coupled scalar field. While the dynamics of such models is well-
understood in the case of spatially homogeneous and isotropic solutions, only a few
mathematical results exist in cases with less or no symmetry at all. The method
used here, originally developed by Rendall, is based on formal power series solutions
and requires a positive lower bound on the potential of the scalar field.

In a first step, after making precise the notion of generalized formal power series
solutions and the sense in which they are supposed to solve the Einstein-scalar field
system, their existence and uniqueness is proven inductively and some of their basic
properties are established. In a second step it is shown that, given a solution of the
Einstein-scalar field system which exists globally towards the future with respect
to a Gaussian time coordinate and satisfies certain decay conditions, there exists
precisely one formal power series solution of the type considered that is asymptotic
to the given solution. The fact that there actually exists a large class of solutions
of the Einstein-scalar field system fulfilling the above hypotheses is proven in a
final step. For this, the system is reduced to first order and, using a formal series
solution, put into Fuchsian form. This system can then be solved in the analytic
setting to yield a solution that exists globally towards the future with respect to a
Gaussian time coordinate and with its late-time asymptotics given by the formal
power series.

In addition, spatially homogeneous scalar field models are considered, where
the extra symmetry allows more general potentials without a positive lower bound
and the presence of matter to be treated. By establishing conditions for accelerated
expansion and isotropization for models with a direct coupling to the matter, state-
ments about the late-time behaviour of curvature-coupled scalar field models with
exponential potentials can be deduced using a conformal transformation. It turns
out that any arbitrarily small positive coupling of the field to the scalar curvature
of space-time results in a late-time asymptotics which, in the minimally coupled
case, can only be expected in the presence of a positive cosmological constant.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Langzeitasymptotik von Lösungen
kosmologischer Modelle mit beschleunigter Expansion, im Besonderen solcher, bei
denen ein nichtminimal gekoppeltes Skalarfeld für die Beschleunigung ursächlich ist.
Während die in derartigen Modellen auftretende Dynamik in Fällen hoher Symme-
trie, das heißt im Speziellen von räumlich homogenen und isotropen Lösungen,
ausreichend gut verstanden ist, gibt es in allgemeineren Situationen nur wenige
mathematische Resultate. Mit Hilfe einer von Rendall zur Behandlung der Asym-
ptotik von Lösungen mit positiver kosmologischer Konstante entwickelten Methode
soll dazu ein Beitrag geleistet werden.

Ausgangspunkt dafür sind verallgemeinerte formale Potenzreihenlösungen der
Einstein-Skalarfeldgleichungen unter Voraussetzung einer positiven unteren Schran-
ke an das Potential des Skalarfeldes. Nach einer geeigneten Präzisierung des Begriffs
dieser formalen Reihen und des Sinns, in welchem solche Reihen die Einstein-
Skalarfeldgleichungen lösen sollen, werden Existenz und Eindeutigkeit formaler
Lösungen induktiv bewiesen und einige ihrer grundlegenden Eigenschaften fest-
gestellt.

In einem nächsten Schritt wird gezeigt, dass es zu einer gegebenen tatsächlichen
Lösung dieser Gleichungen unter geeigneten Voraussetzungen eine formale Lösung
gibt, welche dazu asymptotisch ist. Genauer wird, unter Annahme der Existenz
einer Gauß’schen Zeitkoordinate global in die Zukunft sowie minimaler Abfallbe-
dingungen entlang dieser, nachgewiesen, dass es genau eine asymptotische formale
Reihe von der betrachteten Form gibt und diese die Einstein-Skalarfeldgleichungen
formal löst. Aufgrund der Tatsache, dass damit eine vollständige und darüber hin-
aus beliebig oft differenzierbare asymptotische Entwicklung der gegebenen Lösung
für späte Zeiten vorliegt, kann ihr Langzeitverhalten ausschließlich anhand der ver-
allgemeinerten Potenzreihe diskutiert werden.

Letztlich wird festgestellt, dass in der Tat eine große Klasse von Lösungen mit
der betrachteten Asymptotik existiert. Dazu wird das Einstein-Skalarfeldsystem auf
erste Ordnung reduziert und vermöge der formalen Lösungen in Fuchs’sche Form
gebracht. Unter Anwendung eines Satzes über die Existenz und Eindeutigkeit von
Lösungen Fuchs’scher Systeme werden Lösungen der Einstein-Skalarfeldgleichungen
erhalten, welche eine Gauß’sche Zeitkoordinate zulassen, bezüglich dieser global
in die Zukunft existieren und eine vorgeschriebene Langzeitasymptotik besitzen.
Das vorgeschriebene Langzeitverhalten spielt dabei die Rolle von “Anfangsdaten”
auf dem konformen Rand der zu erhaltenden Raumzeit und ist, ebenso wie das
Potential, als analytisch vorauszusetzten.

Darüber hinausgehend werden auch räumlich homogene Modelle betrachtet,
in denen es die verlangte Symmetrie gestattet, allgemeinere Potentiale, nament-
lich solche ohne positive untere Schranke, im Beisein zusätzlicher Materiefelder zu
behandeln. Nachdem für Modelle, die eine direkte Kopplung des Skalarfeldes zur
restlichen Materie erlauben, Kriterien für asymptotische beschleunigte Expansion
und Isotropisierung festgestellt wurden, werden diese Resultate benutzt, um mit
Hilfe einer konformen Transformation Aussagen über die Langzeitasymptotik ei-
nes krümmungsgekoppelten Skalarfeldes in einem exponentiellen Potential abzulei-
ten. Es zeigt sich, dass eine beliebig kleine, positive direkte Kopplung zur skalaren
Krümmung der Raumzeit in einem Langzeitverhalten resultiert, das bei minimaler
Kopplung nur in Gegenwart einer positiven kosmologischen Konstanten zu erwarten
wäre.
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Introduction and main results

1. General Relativity and Cosmology

Cosmology is the study of the universe as a whole and its description at the
largest observable scales. On these scales the dynamics is predominantly governed
by gravity and so cosmology is based on a theory of gravity which is often taken to
be general relativity. There, the basic unknown is the gravitational field described
by a Lorentzian metric g̃ on an n + 1-dimensional space-time manifold M̃ . The
gravitational field is related to the matter content through Einstein’s equations

Ricg̃ −
(1

2
Rg̃ − Λ

)
g̃ = T

where Ricg̃ and Rg̃ are the Ricci tensor and scalar curvature of the metric g̃, Λ
is the cosmological constant and T is the energy-momentum tensor of the matter
fields ψ. The Einstein equations have to be supplemented by equations of motion
for the individual matter fields. Some matter fields can be described in terms of a
Lagrangian Lm that determines the energy-momentum tensor

Tµν = 2
∂Lm

∂g̃µν
+ Lmg̃

µν

as well as the equations of motion

∇̃µ
∂Lm

∂(∇̃µψ)
− ∂Lm

∂ψ
= 0

as the corresponding Euler-Lagrange equation. Here, the function Lm is supposed
to depend on the matter fields ψ and their first derivatives ∇̃µψ where ∇̃ denotes
the covariant derivative with respect to the metric g̃.

Taking M̃ = M × I, where (M,h) is a simply connected space form and I an
interval in the reals, together with the warped product metric

g̃ = a2(t)π∗h− dt⊗ dt

and a perfect fluid matter source Tm = p a2(t)π∗h + ρ dt ⊗ dt yields the spatially
homogeneous and isotropic Friedmann-Lemâıtre models where π : M̃ → M and
t : M̃ → I are the canonical projections and ρ ≥ 0 and p are the density and
pressure of the fluid connected by an equation of state. The Einstein equations
then reduce to ordinary differential equations for the scale factor a, namely to the
Friedmann equation

1
2
n(n− 1)

ȧ2 +K

a2
− Λ = ρ

from the normal component and

(n− 1)
[
ä

a2
+
n− 2

2
ȧ2 +K

a2

]
− Λ = −p

from the components tangential to the t-hypersurfaces. The constant K is the
sectional curvature of (M,h). If t is interpreted as cosmological time and a as
a length scale within the space-like surfaces of homogeneity it is intuitive to say

1



2 INTRODUCTION AND MAIN RESULTS

that the universe is expanding if ȧ > 0, static if ȧ = 0 and contracting if ȧ < 0.
Moreover, in an expanding universe, the expansion is said to be accelerated if ä > 0
and decelerated if ä < 0. Observe that

n(n− 1)
ä

a2
= 2Λ−

[
np+ (n− 2)ρ

]
and so, within the class of Friedmann-Lemâıtre models and for n ≥ 3, accelerated
expansion is possible only if the cosmological constant is positive or the perfect
fluid violates the strong energy condition ρ+ np ≥ 0.

To get an overview of the qualitatively different types of solutions of the
Friedmann-Lemâıtre models one can for simplicity restrict to the case n = 3 and
assume the perfect fluid to be pressure-less dust, p = 0. Furthermore ρ > 0 is
supposed to hold and initial data shall be such that the solution is expanding ini-
tially. Then for Λ < 0 all solutions develop a singularity towards the past (big
bang) as well as towards the future (recollapse) where the scale factor a vanishes.
During the whole evolution ä < 0. If Λ = 0 the models with K > 0 behave in
the same way and are called closed models. For K ≤ 0 the solutions again have a
finite-time singularity towards the past but exist globally towards the future where
the scale factor a grows without bound. They are called open models and are,
while expanding forever, always decelerated too. Finally let Λ > 0. In this case the
qualitative dynamics depend on the exact measures of Λ, K and a third constant,
the conserved quantity E := ρa3/3. The solutions with K3 < E2Λ have a big bang
singularity in the past and expand forever towards the future without bound. For
small values of the scale factor, a3 < E/Λ, the expansion is decelerated while for
large values, a3 > E/Λ, it is accelerated. If K3 > E2Λ solutions with a3 < E/Λ
exhibit finite-time singularities both in the past and in the future where the scale
factor actually vanishes. Solutions with a3 > E/Λ are singularity free. Their scale
factor goes to infinity both for t → −∞ as well as for t → ∞ while attaining a
minimum (bounce) in between. During all of the evolution ä > 0. What remains
is the peculiar value K3 = E2Λ where, depending on the initial data, there is a
solution with a big bang singularity in the past and which exists globally towards
the future but now with the scale factor approaching the value M/K for late times,
one static solution with a = M/K and a global accelerating solution which tends
to M/K in the past and grows without bound towards the future.

2. Scalar fields in cosmology

In contemporary models for the evolution of the universe there are commonly
two phases of accelerated expansion, one in the very early stages known as inflation
and one in more recent epochs called late-time acceleration. For the purpose of
this work accelerated expansion shall be understood as the existence of a foliation
of the space-time manifold by level hypersurfaces of a Gaussian time coordinate t
such that the mean curvature tr k/n of the leaves with respect to the normal ∂t is
negative (expansion) and its Lie derivative along the normal satisfies the condition
∂t tr k < (tr k)2/n (acceleration). Note that in the case of Friedmann-Lemâıtre
models one has tr k = −nȧ/a and so these definitions comply with those stated
in the previous section. The motivations for considering these two accelerated
epochs are quite different. Inflation is introduced on theoretical grounds in an
attempt to “explain” the initial data for the cosmological models. For it turns
out that in order to obtain a solution with characteristics comparable to what
is observed now the initial data at the beginning of, say, radiation domination
had to be extremely homogeneous, isotropic and almost exactly flat. This need
of “highly specialized” data may be considered unsatisfactory and inflation is a
mechanism which can produce such out of “less special” data dynamically. It
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further yields a characteristic spectrum of primordial inhomogeneities which are
to evolve to the present day large scale structure and it is this spectrum that
allows inflationary models to be constrained observationally. Evidence for late-time
acceleration primarily comes from recent measurements of the apparent magnitude–
redshift relation of distant supernovae. If these observations are interpreted within
spatially homogeneous and isotropic cosmological models accelerated expansion can
be considered an experimental fact. The situation is far less clear in inhomogeneous
cosmologies. The models used to produce inflation on the one hand and late-time
acceleration on the other hand look superficially rather similar. One of the most
popular on grounds of simplicity is a non-linear scalar field. It is a smooth real-
valued function φ̃ on the space-time manifold (M̃, g̃) satisfying the equation of
motion

�g̃φ̃− U ′(φ̃) = 0

for a non-negative potential U and couples to the Einstein equations through its
energy-momentum tensor

T0 = dφ̃⊗ dφ̃−
[
1
2
|dφ̃|2g̃ + U(φ̃)

]
g̃

where d is the exterior derivative on M̃ and �g̃ the covariant wave operator asso-
ciated with the metric g̃. If U is chosen to have a critical point at zero, say, then
specifying trivial data for the field reduces the model to Einstein’s equations with
a cosmological constant Λ = U(0). The dynamics of such scalar field models is
well-understood in the spatially homogeneous and isotropic setting where a lot of
work has been done mostly aiming at the extraction of observational signatures.
Rigorous results in more general situations are less numerous. For solutions which
expand initially Wald [32] obtained late-time asymptotics for a general class of spa-
tially homogeneous models, namely those of Bianchi type I–VIII, in the presence
of a positive cosmological constant and found in particular that accelerated expan-
sion happens at an exponential rate eventually. These findings were extended by
Rendall [25] to a scalar field evolving in a potential with a positive lower bound. If
such a lower bound is missing the dynamics is much more involved. For the same
class of solutions Kitada and Maeda [17, 18] as well as Lee [19] proved acceler-
ated expansion for exponential potentials falling off not too steeply and Rendall
[26] generalized this to a large class of potentials merely assumed positive. More
precisely, supposing the fall-off condition κ = lim supx→∞(|U ′|/U)(x) <

√
2 on the

potential to hold they concluded that acceleration occurs eventually but generally
no longer at an exponential rate. One the other hand for exponential potentials
with κ >

√
2 late-time acceleration was shown to be absent. If no symmetry as-

sumptions are made at all Rendall [24] proved full late-time asymptotic expansions
for suitable solutions of the Einstein equations with a positive cosmological con-
stant. Using Kaluza-Klein reductions Heinzle and Rendall [12] were able to obtain
future stability and asymptotics for scalar fields in a countable set of exponential
potentials having initial data close to that of spatially homogeneous and isotropic
solutions. Recently, Ringström proved future stability of spatially homogeneous
solutions as well as asymptotics first for scalar fields in potentials with a positive
non-degenerate minimum [27] and afterwards for slowly decaying, i.e. κ <

√
2,

exponential potentials also.

3. Non-minimally coupled scalar fields

The models considered here are somewhat more general than those described in
the preceding section in that the field itself is complex valued and allowed to couple
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directly to the space-time scalar curvature. This non-minimal coupling manifests
itself both in the equation of motion for the scalar field

�g̃φ̃− ξRg̃φ̃− 2φ̃V ′(φ̃∗φ̃) = 0

through the presence of the term −ξRg̃φ involving the space-time scalar curvature
Rg̃ and as additional terms in the energy-momentum tensor. The real number
ξ is called the coupling constant and the potential is written as a function V of
the squared modulus of φ̃. Setting ξ equal to zero recovers the usual minimally
coupled model. The additional terms in the energy-momentum tensor contain sec-
ond order derivatives of the metric and the field so that the question whether the
non-minimally coupled system is still well-posed immediately arises. Noakes [21]
proved the Cauchy problem well-posed for a specific value of the coupling constant
known as conformal coupling and later Salgado [28] extended this result including
in particular the case at hand.

The method to obtain full asymptotic expansions followed in this work has
been developed by Rendall [24] for Einstein’s equations with a positive cosmological
constant based on a paper by Starobinskĭı [30]. Assuming the potential V (φ̃∗φ̃) to
have a positive critical point at φ̃ = 0 it is first shown that there are formal series
solutions of the coupled Einstein-scalar field system of the form

g̃(x, t) =
∑
m,s,l

π∗gm,s,l(x) tle−(m+is)Ht − dt⊗ dt

on M̃ = M × I and similarly for the scalar field in the sense that if these series are
plugged into the equations and acted upon term-wise, the equations are satisfied
coefficient by coefficient. Here, I is an interval in the real numbers and π and t the
projections from M̃ onto its factors respectively. In the series m and s take real
values, l natural ones and −H is a constant representing the asymptotic value of the
mean curvature of the foliation generated by t. Making the notion of such formal
series precise and providing existence and uniqueness of formal solutions is done in
chapter 2 and by theorem 2.11. It turns out that the data which can be specified
comprise of a Riemannian metric, a symmetric 2-tensor and two complex functions
on the future conformal boundary of the resulting space-time. The number of free
functions is thus the same as it was for an ordinary Cauchy problem where the
same data, although subject to different constraints, can be specified. From this
crude perspective the solution is therefore general. In a second step it is shown that
to a given genuine solution of the Einstein-scalar field system a formal solution can
be found which is actually asymptotic. For this to be true the genuine solution is
supposed to allow for a Gaussian time coordinate t with respect to which it exists
globally towards the future and satisfies some basic decay conditions as t goes to
infinity. Then in chapter 3 and there in particular with the theorems 3.15 and
3.18 it is shown that one can find a formal solution which, truncated at any order,
approximates the genuine solution up to an error of higher order asymptotically
and that the approximation remains valid even when differentiated as often as
desired. This permits the late-time asymptotics to be studied solely at the level of
the formal series. The assertion that there in fact is a large class of solutions with
the asymptotics just described is validated in chapter 4. Note that the de Sitter
solution

g̃ =
1
H2

cosh2(Ht)π∗h− dt⊗ dt

with φ̃ = 0 and π∗h the pullback of the standard metric h on the three-sphere
S3 by the canonical projection π : S3 × R → S3 is a particular member of this
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class provided 2V (0) = n(n− 1)H2. It is demonstrated that the approximate solu-
tions indeed satisfy the Einstein-scalar field equations approximately and that the
difference to an actual solution satisfies a Fuchsian equation. In the analytic set-
ting it is therefore possible to prove existence and uniqueness of a solutions to this
equation using a result by Kichenassamy and Rendall [16] and hence of solutions
of the Einstein-scalar field system existing globally towards the future and with
prescribed late-time asymptotics with respect to a Gaussian time coordinate. This
is summarized in theorem 4.7. In view of chapter 2 it thus suffices to give analytic
data on an analytic manifold in order to obtain a unique analytic solution with the
corresponding late-time behaviour. The analyticity assumption is certainly unde-
sirable but to go beyond that the Fuchsian system should necessarily be hyperbolic
in some sense for solvability to be expected. The system considered in chapter 4 is
not symmetric hyperbolic and so it is not obvious how to go to less regular data.
It may be pointed out that series of the kind studied here have also been used to
analyze the asymptotics of negative Einstein manifolds in Riemannian geometry
by Fefferman and Graham [9] for instance since there is a correspondence between
Riemannian metrics with negative Einstein constant and Lorentzian metrics with
a positive cosmological constant.

With the assumption of spatial homogeneity the problem of determining the
late-time behaviour of solutions becomes simplified such that a larger class of po-
tentials for the scalar field can be considered and other forms of matter can be
present. The presence of matter opens up the possibility for the scalar field to cou-
ple non-minimally to the matter. This direct coupling shall, for φ̃ real, be described
by two coupling functions C and c that modify the equation of motion for the scalar
field according to

�g̃φ̃− U ′(φ̃) = −c(φ̃) trg̃ Tm

while the energy-momentum tensor Tm for the matter goes as C(φ̃)Tm into the
Einstein equations. The second Bianchi identity then requires the matter to satisfy

divg̃

[
C(φ̃)Tm

]
= c(φ̃)

(
trg̃ Tm

)
dφ̃.

In chapter 5 it is shown that in particular for initially expanding solutions of all
Bianchi types other than IX with matter satisfying the dominant and strong energy
condition late-time acceleration and isotropization occur both for potentials with a
positive lower bound (corollary 5.4) as well as for positive potentials which are flat
at infinity meaning κ = 0 (corollary 5.9). Isotropization refers to the fact that the
trace-free part of the second fundamental form of the hypersurfaces of homogeneity
vanishes faster than its trace. The result means that the basic asymptotics is not
substantially altered by the direct coupling compared to the minimally coupled
case C = 1 and c = 0 but the flatness condition imposed on the potential is
much more restrictive. Due to possible recollapse Bianchi type IX is excluded for
simplicity but it is expected that it can be handled by an argument similar to
that in [32]. Finally, corollary 5.13 carries over these results to the case with a
direct coupling to the curvature through a conformal transformation. It shows that
for any exponential potential and any positive coupling constant ξ > 0 late-time
acceleration and isotropization happens at an exponential rate in stark contrast to
the minimally coupled case ξ = 0. This thereby gives an example of what has been
proposed by Tsujikawa [31] under the term curvature-assisted inflation. Another
fact provided by corollary 5.13 worth mentioning is the assertion that if the scalar
field fulfills the inequality 1 − ξφ̃∗φ̃ > 0, which is usually assumed and guarantees
for instance smoothness of the employed conformal transformation, initially, then
the quantity 1− ξφ̃∗φ̃ stays bounded away from zero for all future times. It implies
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boundedness of the effective gravitational constant (1−ξφ̃∗φ̃)−1, an issue addressed
by Starobinskĭı in [29].
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CHAPTER 1

The Einstein-scalar field-matter system

1. Direct coupling to the scalar curvature

This section introduces the system of equations arising when the Einstein equa-
tions are sourced by a complex scalar field in addition to some other, not further
specified matter. A peculiarity of the model under consideration is the presence of
an explicit direct coupling of the scalar field to the scalar curvature of space-time.
If there is a Lagrangian Lm for the matter content, a corresponding Lagrangian for
the Einstein-scalar field-matter system is

L :=
1
2
Rg̃ −

1
2
|dφ̃|2g̃ − V (φ̃∗φ̃)− 1

2
ξRg̃φ̃

∗φ̃+ Lm.

Here, Rg̃ denotes the scalar curvature of an n + 1-dimensional smooth Lorentzian
space-time manifold (M̃, g̃), φ̃ ∈ C∞(M̃,C) a smooth complex scalar field on M̃

with potential V (φ̃∗φ̃) for a V ∈ C∞(R,R) and | · |2g̃ the pseudo-norm given by
the fibre metrics 〈·, ·〉g̃ induced by g̃ on any tensor bundle T r

s M̃ or their exten-
sion to the complexification T r

s M̃ ⊗ C where appropriate. (For the case at hand,
|dφ̃|2g̃ = g̃µν∂µφ̃

∗∂ν φ̃ in local coordinates.) The direct coupling of the scalar field
to the space-time curvature is provided by the additional term − 1

2ξRg̃φ̃
∗φ̃ when

the coupling constant ξ 6= 0. The case where ξ = 0 is referred to as the minimally
coupled case. Another case which is sometimes of special interest is ξ = (n− 1)/4n
and is called the conformally coupled case because for real fields in certain poten-
tials, in particular those for which φ̃V ′(φ̃∗φ̃) is positively homogeneous of degree
(n+3)/(n−1) in φ̃, the equation of motion for the scalar field becomes conformally
invariant. Examples of such potentials include V (φ̃∗φ̃) = Λ + λ|φ̃|2(n+1)/(n−1) with
λ,Λ ∈ R which is V (φ̃∗φ̃) = Λ + λ|φ̃|4 in four space-time dimensions.

The relevance of the Lagrangian L stated above is that if the metric g̃, the
scalar field φ̃ and the other matter described effectively by its energy-momentum
tensor Tm satisfy the equations of motion

(1− ξφ̃∗φ̃)
(
Ricg̃ −

1
2
Rg̃ g̃

)
=

1
2

[
(1− 2ξ)dφ̃∗ ⊗ dφ̃+

(
2ξ − 1

2

)
|dφ̃|2g̃ g̃(1.1)

− 2ξφ̃∗∇ 2
g̃ φ̃+ 2ξ

(
φ̃∗�g̃φ̃

)
g̃ − V (φ̃∗φ̃)g̃ + c.c.

]
+ Tm

�g̃φ̃− ξRg̃φ̃− 2φ̃V ′(φ̃∗φ̃) = 0(1.2)

divg̃ Tm = 0(1.3)

then they satisfy the Euler-Lagrange equations corresponding to L provided, as
assumed in the sequel, that divg̃ Tm = 0 is equivalent to the equations of motion
for the matter. Additional notation used at this point include the Hessian ∇ 2

g̃ and
its metric trace, the wave operator �g̃, the covariant divergence divg̃ as well as
the abbreviation c.c. for the complex conjugate of all the preceding terms in the
bracket. As can be seen immediately from equation (1.1) a non-minimal coupling
ξ 6= 0 has interesting consequences in that it produces new second order terms and

7



8 1. THE EINSTEIN-SCALAR FIELD-MATTER SYSTEM

thus affects the principal part of the differential equation as well as introducing
a potentially singular factor 1 − ξφ̃∗φ̃ in front of the Einstein tensor. Note that
in contrast to real scalar fields where the potential energy density is commonly
written as V (φ̃) it is defined here as V (φ̃∗φ̃) for still having V a function of a real
variable. This is the origin of the probably strangely looking factor 2φ̃ in front of
the potential term in the wave equation (1.2).

2. Einstein-scalar field system

The system which most of this work is concerned with is the Einstein-scalar
field system that is obtained from (1.1)–(1.3) by setting Tm = 0 and thus supposing
that no other matter apart from the scalar field is present. A possible cosmological
constant shall be considered part of the potential. If it is further assumed that
1 − ξφ̃∗φ̃ > 0 it is possible to divide equation (1.1) by that term and obtain the
Einstein equation in its usual form

(1.4) Ricg̃ −
1
2
Rg̃ g̃ = T

with an effective energy-momentum tensor for the scalar field

(1.5) T :=
1
2
(
1− ξφ̃∗φ̃

)−1
[
(1− 2ξ)dφ̃∗ ⊗ dφ̃+

(
2ξ − 1

2

)
|dφ̃|2g̃ g̃

− 2ξφ̃∗∇ 2
g̃ φ̃ + 2ξ

(
φ̃∗�g̃φ̃

)
g̃ − V (φ̃∗φ̃)g̃ + c.c.

]
.

The validity of the Einstein- (1.4) and the scalar field equation (1.2) implies that
this tensor is covariantly conserved since

(1.6) divg̃ T =
(
1− ξφ̃∗φ̃

)−1
{

1
2

[
�g̃φ̃− ξRg̃φ̃− 2φ̃V (φ̃∗φ̃)

]
g̃

− ξφ̃
(
Ricg̃ −

1
2
Rg̃ g̃ − T

)}
· ∇g̃φ̃

∗ + c.c.

For ξ = 0 and real fields it reduces to the familiar energy-momentum tensor for
minimally coupled scalar fields

(1.7) T0 = dφ̃⊗ dφ̃− 1
2
|dφ̃|2g̃ g̃ − U(φ̃)g̃

with U(x) = V (x2) for x ∈ R.
Suppose that there exists a Gaussian time coordinate t : M̃ → I such that the

space-time is decomposed into a product of a smooth n-dimensional manifold M
and an open real interval I, M̃ = M × I. The metric hence decomposes into a
smooth family of Riemannian metrics g(t) ∈ T 0

2 (M) according to

(1.8) g̃ = π∗g − dt⊗ dt

with unit lapse and vanishing shift whilst the scalar field decomposes into a smooth
family φ(t) ∈ C∞(M,C) of complex valued functions

(1.9) φ̃ = π∗φ = φ(t) ◦ π.

The pullback of a family of metrics by the canonical projection π : M̃ → M is
thereby defined as (π∗g)(x, t) := (π∗g(t))(x, t) for all x ∈ M and t ∈ I. The
second fundamental form k(t) ∈ T 0

2 (M) of a t-hypersurface in M̃ with respect to
the normal ∂t is then given by

(1.10) k = −1
2
∂tg.
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The effective energy-momentum tensor (1.5) can be decomposed similarly into a
smooth family of energy densities ρ(t) ∈ C∞(M,R), flow forms j(t) ∈ T 0

1 (M) and
symmetric pressure tensors S(t) ∈ T 0

2 (M) as

(1.11) T = π∗S − π∗j ⊗ dt− dt⊗ π∗j + ρ dt⊗ dt

with

ρ =
1
2
(
1− ξφ∗φ

)−1
[
1
2
∂tφ

∗∂tφ−
(
2ξ − 1

2

)
|∇φ|2(1.12)

− 2ξφ∗
[
∆φ+ (tr k)∂tφ

]
+ V (φ∗φ) + c.c.

]
j =

1
2
(
1− ξφ∗φ

)−1
[
−(1− 2ξ)∇φ∗∂tφ+ 2ξφ∗

[
∂t∇φ+ k · ∇φ

]
+ c.c.

]
(1.13)

S =
1
2
(
1− ξφ∗φ

)−1
[
(1− 2ξ)∇φ∗ ⊗∇φ− 2ξφ∗

[
∇ 2φ+ k∂tφ

]
(1.14)

+
{(

2ξ − 1
2

)[
|∇φ|2 − ∂tφ

∗∂tφ
]
+ 2ξφ∗

[
∆φ+ (tr k)∂tφ− ∂2

t φ
]

− V (φ∗φ)
}
g + c.c.

]
Here ∇ denotes the Levi-Civita connection induced by g(t) on any t-hypersurface in
M̃ where, like in all other operators, the metric g is understood implicitly. Likewise,
∆ is the covariant Laplacian of g(t) and k · l is the metric contraction between the
last index of k and the first index of l for suitable tensors k, l on M .

Imposing the Einstein-scalar field equations on M̃ is equivalent to requiring the
n+ 1-decomposed tensor families to satisfy the evolution equation

(1.15) ∂tk = Ric− 1
2
k · k + (tr k)k − S +

trS − ρ

n− 1
g

together with the Hamiltonian and momentum constraints

R− |k|2 + (tr k)2 = 2ρ(1.16)

div k −∇ tr k = j(1.17)

respectively as well as the scalar field equation

(1.18) ∆φ+ (tr k)∂tφ− ∂2
t φ− ξRg̃φ− 2φV ′(φ∗φ).

In the last equation the ambient scalar curvature is given by

Rg̃ = R− 2∂t tr k + |k|2 + (tr k)2

and is used in the following as an abbreviation for this expression. A common way
to deal with this system is to solve the evolution equation (1.15) first and then
show that the constraints (1.16) and (1.17), if satisfied initially, remain satisfied
during the evolution. For doing this it turns out to be useful to define the following
evolution and constraint quantities

e := ∂t tr k −
[
R+ (tr k)2 +

trS − nρ

n− 1

]
(1.19)

E := ∂tσ −
[
R̂ic + (tr k)σ − Ŝ

]
(1.20)

c := R− |k|2 + (tr k)2 − 2ρ(1.21)

C := div k −∇ tr k − j(1.22)

where a hat stands for the trace-free part of the tensor with the first index raised,
in local coordinates e.g. Ŝa

b = Sa
b − (trS/n)δa

b, and σ := k̂ is the shear tensor.
It follows that the evolution equation (1.15) is satisfied if and only if E and e
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both vanish while the Hamiltonian (1.16) and momentum constraint (1.17) hold
exactly when c and C vanish respectively. The above-mentioned propagation of the
constraints is seen explicitly by calculating the time derivatives of the quantities c
and C as

∂tc = 2(tr k)c− 2 div C− 2〈σ,E〉+ 2
(
1− 1

n

)
(tr k)e

− 2
[
∂tρ+ div j − 〈k, S〉 − (tr k)ρ

](1.23)

∂tC = (tr k)C− 1
2
∇c + div E−

(
1− 1

n

)
∇e

−
[
∂tj + divS − (tr k)j

]
.

(1.24)

Note that the expressions in the square brackets above are the temporal and spa-
tial projections of the covariant divergence of an energy-momentum tensor (1.11)
respectively. Analogously the vanishing of the quantity

(1.25) S := ∂2
t φ− (tr k)∂tφ−∆φ+ ξRg̃φ+ 2φV ′(φ∗φ)

is synonymous for the scalar field equation to hold.

3. Direct coupling to matter

Another form of non-minimal coupling is realized if the scalar field couples
directly to the matter content described by Tm. If the scalar field is real and
furthermore the inequality 1 − ξφ̃2 > 0 holds then the two forms of non-minimal
coupling are related by a conformal transformation. This will now be explained in
some detail. Suppose two smooth coupling functions C, c ∈ C∞(R,R) and a real
scalar field φ̄ ∈ C∞(M̃,R) with potential U ∈ C∞(R,R) are given on a smooth
Lorentzian space-time manifold (M̃, ḡ). Then the matter coupled Einstein-scalar
field-matter system is defined as

Ricḡ −
1
2
Rḡ ḡ = dφ̄⊗ dφ̄− 1

2
|dφ̄|2ḡ ḡ − U(φ̄)ḡ + C(φ̄)Tm(1.26)

�ḡφ̄− U ′(φ̄) = −c(φ̄) trḡ Tm(1.27)

divḡ[C(φ̄)Tm] = c(φ̄)
(
trḡ Tm

)
dφ̄.(1.28)

Minimal coupling corresponds to the case where C = 1 and c = 0. The coupling
between equations (1.27) and (1.28) involving the metric trace of the matter energy-
momentum tensor only is of course not the most general form conceivable but
general enough to cover many cases studied in the literature, e.g. in [2] or [11],
and for demonstrating the relation to the curvature-coupled case aimed at here.
Since equations (1.27) and (1.28) imply that divḡ T0 = −divḡ[C(φ̄)Tm] it follows
that despite the fact that the energy-momentum tensors T0 for the scalar field and
C(φ̄)Tm for the matter content are not conserved separately they are nonetheless
conserved jointly as is required by the second Bianchi identity.

Let a real solution (g̃, φ̃) of the curvature coupled Einstein-scalar field-matter
system (1.1)–(1.3) on M̃ be given such that 1− ξφ̃2 > 0. Then the function

Ω := n−1
√

1− ξφ̃2

is positive too and with η := 1− 4nξ/(n− 1) the map

Φ := y 7→
∫ y

0

√
1− ηξx2

1− ξx2
dx

is a smooth diffeomorphism between the open interval

J :=

{
]− 1/

√
ξ, 1/

√
ξ[ for ξ > 0

R for ξ < 0
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and R with inverse Ψ. Moreover the conformal metric

ḡ := Ω2g̃

and a rescaled scalar field

φ̄ := Φ ◦ φ̃

solve the matter coupled Einstein-scalar field-matter equations (1.26)–(1.28) with
potential

(1.29) U =
V (Ψ2)(

1− ξΨ2)
n+1
n−1

and coupling functions

C =
1

1− ξΨ2
, c =

1
n− 1

C ′ =
1

n− 1
2ξΨ√

1− ηξΨ2
C.

Observe that a conformal coupling is characterized by η = 0 and that in this case
the diffeomorphism Φ is simply

Φ(t) =
1√
ξ

tanh−1
√
ξt.

The solution (g̃, φ̃) where the coupling to the matter Tm is minimal is said to be
in the Jordan frame. As the transformation above shows it is possible, under the
assumptions stated, to get rid of a non-minimal curvature coupling but, in the
presence of matter, at the expense of introducing a direct coupling to that matter.
The transformed solution (ḡ, φ̄) with a minimal curvature coupling is said to be in
the Einstein frame. It is emphasized that the transformation above is stated for
real scalar fields only.

4. Spatially homogeneous solutions

One way to simplify the Einstein-scalar field-matter system is to consider spa-
tially homogeneous solutions which are, in the most elementary case, modelled by
an n-dimensional Lie group G acting simply transitively on the t-hypersurfaces of

M̃ = G× I

by left translation. Here I ⊂ R is an interval with non-empty interior and t :
M̃ → I the canonical projection as before. A spatially homogeneous solution of the
Einstein-scalar field-matter system in the simplest case is then one invariant under
this action. Note that in three dimensions this includes in particular all Bianchi
models but not the Kantowski-Sachs space-times [14] where the four-dimensional
symmetry group contains no three-dimensional subgroup acting transitively on the
hypersurfaces of homogeneity. Requiring t a Gaussian time coordinate, a spatially
homogeneous solution of the matter coupled system (1.26)–(1.28) is then given by a
family of Riemannian metrics g ∈ C2(I, T 0

2 g) on the Lie algebra g of G, a scalar field
φ ∈ C2(I) and projections ρm ∈ C1(I), jm ∈ C1(I, T 0

1 g), Sm ∈ C1(I, T 0
2 g) of the

energy momentum tensor of the matter by (1.8), (1.9) and (1.11) after identifying
the elements of T r

s g with their C∞(G)-multilinear left-invariant extension to T r
s G.

It follows that k ∈ C1(I, T 0
2 g) and hence H := − tr k/n ∈ C1(I) for the negative of

the mean curvature of the t-hypersurfaces in M̃ . The Hamiltonian and momentum
constraints read

n(n− 1)H2 = φ̇2 + 2U(φ) + |σ|2 −R+ 2C(φ)ρm(1.30)

div σ = C(φ)jm(1.31)
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and the evolution equations

n(n− 1)Ḣ = −nφ̇2 − n|σ|2 +R− C(φ)(nρm + trSm)(1.32)

σ̇ = −nHσ + R̂ic− C(φ)Ŝm.(1.33)

For the scalar field equation one obtains

(1.34) φ̈+ nHφ̇+ U ′(φ) = c(φ) trg̃ Tm

and the equations of motion for the ordinary matter finally[
C(φ)ρm

]̇
+ div[C(φ)jm]− C(φ)〈σ, Ŝ〉

+HC(φ)(nρm + trSm) = −c(φ)(trg̃ Tm)φ̇

as well as[
C(φ)jm

]̇
+ div[C(φ)Ŝm] + nHC(φ)jm = 0.

Here, a dot stands for ∂t. This yields in particular the Hamiltonian constraint
(1.30), the evolution equation (1.32) and the scalar field equation (1.34) as ordi-
nary differential equations which will turn out to be suitable for an analysis of the
asymptotics.



CHAPTER 2

Formal solutions

In this chapter, a notion of formal, algebraic solutions of the Einstein-scalar
field system is developed. It is an extended version of what has been published in
[5].

1. Generalized power series

The aim of this section is to construct an algebra of generalized power series
suitable for a formal solution of the Einstein-scalar field system. Generalized power
series are usually considered with exponents from an arbitrary strictly ordered
commutative monoid. Here attention will be focussed on the the case where this
monoid is the group of real numbers and the term “generalized” merely refers to
the fact that non-integer powers in the formal series are allowed.

The formal series constructed will be supported on sets belonging to the system

A := {A ⊂ R | A is bounded below and has no limit points in R}.

It is immediate that every element of A is well-ordered and at most countable. The
system itself is closed under taking subsets, finite unions and pointwise sums, so
for A,B ∈ A and C ⊂ A it follows that A ∪ B,A + B,C ∈ A. The same is true
for the subsystem A0 := {A ∈ A | A ⊂ R+} consisting of all elements of A that are
subsets of the non-negative reals R+. A property of fundamental importance for
the inductive construction of solutions will be the following

Proposition 2.1. For every A ∈ A0 there is a B ∈ A0 such that B ⊃ A and
B is +-stable, i.e. B +B = B.

Proof. One can assume 0 ∈ A. If A = {0} then B := A is sufficient, otherwise
there exists a := minA \ {0} > 0. Now define an increasing sequence B0 := {0},
Bn+1 := A + Bn in A0. It follows that for any non-negative integers m,n ∈ N
Bn ∩ [0, an] = Bn+1 ∩ [0, an] and Bm + Bn = Bm+n. But this implies that
B :=

⋃
n∈N Bn is in A0 and has the desired properties. �

For a ring R the set of generalized finite Laurent series R〈〈X〉〉 := {f : R →
R | supp f ∈ A} in the unknown X is defined as those functions from the real
numbers into R with support in A. On this set the pointwise sum and the Cauchy
product (convolution)

(fg)(t) =
∑

t=r+s

f(r)g(s)

are well-defined owing to the properties of A stated in the preceding paragraph
and turn R〈〈X〉〉 into a ring itself. In particular, for f, g ∈ R〈〈X〉〉, supp(f + g) ⊂
supp f ∪ supp g and supp fg ⊂ supp f + supp g. If R contains a multiplicative
identity 1, then the map

1(t) :=

{
1 if t = 0
0 otherwise

(t ∈ R)

13
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is a multiplicative identity in R〈〈X〉〉. Likewise, R〈〈X〉〉 is commutative if R is. As
usual, the ring R is embedded in R〈〈X〉〉 by r 7→ r1 and is identified with its image.
Maps into R that are defined on an subset of R only will be identified with their
trivial extension to all of R. The unknown X or, more general, arbitrary real powers
Xα thereof, can be identified with the elements

Xα(t) := 1(t− α) (t ∈ R)

in R〈〈X〉〉. This allows any generalized Laurent series f ∈ R〈〈X〉〉 to be written as

f =
∑
α∈R

f(α)Xα.

To end with suggestive notation for the moment a series f ∈ R〈〈X〉〉 will be called
of at least the order α ∈ R, f = O(Xα), if α ≤ supp f , it will be called of order
higher than α, f = o(Xα), if α < supp f .

2. Substitution homomorphisms

Because of the nonlinearities in the field equation it is necessary, in an attempt
to solve these equations formally, to make sense of what a “smooth function of a
formal power series” means. This can be done by substitution homomorphisms.
Let R((X)) := {f ∈ R〈〈X〉〉 | f = O(1)} denote the subring of generalized power
series and R[[X]] := {f ∈ R〈〈X〉〉 | supp f ⊂ N} the subring of formal power series
on R.

Proposition 2.2. If R is commutative then for any g ∈ R((X)) with g = o(1)
the map

ϕg : R[[X]] → R((X)), f 7→
∑
ν∈N

f(ν)gν

is a ring homomorphism.

Proof. Since g = o(1) there is a 0 < c ≤ supp g and hence νc ≤ supp gν

for any ν ∈ N. This implies that the sequence ν 7→ f(ν)gν is summable and
therefore ϕgf is well-defined for every f ∈ R[[X]]. The fact that ϕg respects the ring
structure follows by direct calculation on a +-stable superset of supp g according
to proposition 2.1. �

The map ϕg is called the substitution homomorphism induced by g. If R has
a multiplicative identity 1 then ϕg1 = 1 and ϕgX = g. For g ∈ R[[X]], h ∈ R((X))
with g, h = o(1) the relation

ϕϕhg = ϕh ◦ ϕg

holds.

Remark 2.3. The assumption of commutativity in the proposition above is
essential!

Proof. Let R = Hom(R2,R2) be the endomorphism ring of R2, (b1, b2) a
basis of R2 with dual basis (β1, β2) and define A := b1β1, B := b2β2 elements
of R, then (A − X)(A + X) = A2 − X2 but ϕBX(A − X)ϕBX(A + X) = (A −
BX)(A + BX) = A2 + [A,B]X − B2X2 6= A2 − B2X2 = ϕBX(A2 − X2) since
[A,B] := AB −BA 6= 0. �

Two other subrings of R〈〈X〉〉 will be used later on and shall be defined at this
point. These are the ring of generalized polynomials R〈X〉 := {f ∈ R〈〈X〉〉 | supp f
is finite} as well as the ring of polynomials R[X] := {f ∈ R〈〈X〉〉 | supp f ⊂
N and finite} over R.
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3. Invertibility

In order to be able to raise tensor indices with respect to a metric given as
a generalized power series the existence and uniqueness of an “inverse” of such a
metric will be established in this section. For this, let R be a ring with multiplicative
identity 1. Recall that an element r of R is called a unit if there is an s ∈ R with
rs = sr = 1. In this case, s is unique and usually written as s = r−1.

Proposition 2.4. If for f ∈ R((X)) f(0) is a unit in R then f is a unit in
R((X)).

Proof. Let A ∈ A0 be a +-stable superset of supp f containing zero according
to proposition 2.1. The inverse will be constructed by induction over the set A.
Assume that for an a ∈ A coefficients g(r) ∈ R are given for all r < a such that∑

s≤t

f(t− s)g(s) = 1(t)

holds for any t < a. If a = 0 the assumption allows for setting g(0) := f(0)−1, if,
on the other hand, a > 0 let

g(a) := g(0)
∑
s≤a

f(a− s)g(s) ∈ R.

In both cases it follows that∑
s≤a

f(a− s)g(s) = 1(a),

so transfinite recursion yields the existence of a map g : A → R with (fg)(a) =
1(a) for all a ∈ A. Since supp fg ⊂ A it is even true that fg = 1. Finally, by
construction, g(0) is a unit and applying the same argument again proves gf =
1. �

In view of the applications to follow a series being a unit is too weak a notion
of invertibility if coefficients with negative powers in X are allowed as in the ring
R〈〈X〉〉 and the following stronger (see remark 2.6) version of it can be useful.

Definition 2.5. An f ∈ R〈〈X〉〉 is called invertible if there is an m ∈ R such
that f(m) ∈ R is a unit and m = min supp f .

Remark 2.6. Not every unit is invertible!

Proof. Let again R = Hom(R2,R2) with identity I, (b1, b2) be a basis of
R2 with dual basis (β1, β2) and N := b1β2 ∈ R. Then NX−1 + I ∈ R〈〈X〉〉 and
(NX−1 + I)(−NX−1 + I) = I = (−NX−1 + I)(NX−1 + I), since N2 = 0 and so
NX−1 + I is a unit in R〈〈X〉〉 but is not invertible. �

Proposition 2.7. If f ∈ R〈〈X〉〉 is invertible then f is a unit and f−1 is
invertible.

Proof. Let f ∈ R〈〈X〉〉 be invertible, then there is m ∈ R with f(m) a unit
in R and f = O(Xm). Consider F := X−mf ∈ R((X)). By definition F (0) is
a unit in R and proposition 2.4 yields the existence of F−1 ∈ R((X)). But then
g := X−mF−1 is in R〈〈X〉〉 with fg = gf = 1, so f is a unit. Furthermore,
g(−m) = f(m)−1 is a unit in R and g = O(X−m) and so g is invertible. �
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4. Formal derivatives

A crucial ingredient for an algebraic formulation of the Einstein-scalar field
equations is to give a meaning to partial and covariant derivatives acting on gen-
eralized power series. The general ring structures employed so far are no longer
sufficient to achieve this and will be specialized to complex algebras. The rings and
homomorphisms introduced so far carry over this additional structure. Moreover,
instead of dealing with an arbitrary number of unknowns, attention is concentrated
on three of them in a form suitable for the task aimed at.

This said, let A be a C-algebra and D a derivation on A. Then A[Z]〈〈Y,X〉〉 =((
A[Z]

)
〈〈Y 〉〉

)
〈〈X〉〉 is a complex algebra of generalized power series in the three

unknowns X,Y and Z. Furthermore, fix H ∈ R.

Proposition 2.8. The maps ∂t : f 7→ ∂tf and ∂D : f 7→ ∂Df defined by

∂tf(x, y)(z) := −(x+ iy)Hf(x, y)(z) + (z + 1)f(x, y)(z + 1)

∂Df(x, y)(z) := Df(x, y)(z)

for f ∈ A[Z]〈〈Y,X〉〉, x, y ∈ R and z ∈ N are derivations on A[Z]〈〈Y,X〉〉.

Proof. Clearly, the right hand sides are elements of A and the supports of
the corresponding series are not enlarged, so that the maps are well-defined. Their
C-linearity is immediate. Let f, g ∈ A[Z]〈〈Y,X〉〉 and x, y ∈ R, z ∈ N, then

∂t(fg)(x, y)(z) =
∑

(x,y,z)

−[(r + u) + i(s+ v)]Hf(r, s)(m)g(u, v)(n)

+
∑

(x,y,z)

(m+ 1)f(r, s)(m+ 1)g(u, v)(n)

+
∑

(x,y,z)

(n+ 1)f(r, s)(m)g(u, v)(n+ 1)

= [(∂tf)g + f∂tg] (x, y)(z)

as well as

∂D(fg)(x, y)(z) = D
∑

(x,y,z)

f(r, s)(m)g(u, v)(n)

= [(∂Df)g + f∂Dg] (x, y)(z),

where
∑

(x,y,z) is an abbreviation for
∑

r+u=x

∑
s+v=y

∑
m+n=z �

For derivations C and D on A their commutator [C,D] := C ◦D −D ◦ C is a
derivation on A as well. For the derivations defined above

[∂t, ∂D] = 0,

[∂C , ∂D] = ∂[C,D]

hold true. Since there is little risk of confusion the derivation ∂D on A[Z]〈〈Y,X〉〉
induced by D will be denoted simply by D in the sequel.

5. Algebraic Einstein-scalar field equations

The prerequisites introduced so far will now be used to postulate algebraic
Einstein-scalar field equations and to find formal, generalized power series solutions
for them. Fix n ∈ N, n ≥ 2 and let (M,γ) be a smooth, n-dimensional Riemannian
manifold. The covariant derivative associated to the background metric γ shall be
D. Denote by T r

s M and CT r
s M the smooth sections of the tensor bundles T r

sM
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and their complexifications T r
sM ⊗ C over M respectively. These sections form,

together with the tensor product, a graded algebra

CT (M) =
⊕

r,s∈N
CT r

s M

over C. Therefore, it is possible to define the complex algebra of formal tensors

T(M) := CT (M)[Z]〈Y 〉〈〈X〉〉.

The homogeneous elements (CT r
s M)[Z]〈Y 〉〈〈X〉〉 form the subspaces of formal (r, s)-

tensors that are denoted by Tr
s(M). The contraction of one co- and one contravari-

ant index in the tensor algebra T (M) =
⊕

r,s∈N T
r
sM canonically extends in T(M)

and commutes with the product there. To have a notion of reality for formal ten-
sors in T(M) define complex conjugation as a ring homomorphism f 7→ f∗ by
(f∗)m,s,l := (f)∗m,−s,l for any f ∈ T(M), m, s ∈ R, l ∈ N with (f)m,s,l an abbrevi-
ation for the coefficient f(m)(s)(l) ∈ CT (M), and call f real if f∗ = f .

The elements of Tr
s(M) can be thought of as representing an asymptotic ex-

pansion

a(x, t) =
∑
m

∑
s

∑
l

am,s,l(x) tle−(m+is)Ht

of a family of tensors t 7→ a(t) ∈ CT r
s M on M for large values of the parameter

t ∈ R. The unknown X thereby takes the role of the factor e−Ht, Y that of e−iHt

and Z that of the pre-factor t. With this in mind the peculiar definitions given so
far, particularly those for ∂t and the conjugation f 7→ f∗, become plausible since
they do exactly what one would expect the operators to do when acting coefficient-
wise on such sums. In this expansion the asymptotics is expected to be dominated
by the factors e−mHt. The contribution of the tl-factor is only logarithmic with
respect to this whereas the e−isHt-factors give rise to oscillations. Non-vanishing
coefficients with l 6= 0 are hence suggestively called logarithmic terms, such with
s 6= 0 oscillatory terms.

Let g ∈ T0
2(M) be given such that g is real, symmetric, g = O(Xm) for an

m ∈ R and g(m) ∈ T 0
2 M is a Riemannian metric on M . (Note that g(m) ∈ T 0

2 M
means that (g)m,s,l = 0 for all s, l 6= 0.) By virtue of proposition 2.7 it is possible
to invert the metric g in (CT 1

1 M)[Z]〈Y 〉〈〈X〉〉 and thus construct induced fibre
metrics on any of the homogeneous subspaces of the formal tensor space T(M) in
the usual way. Furthermore, this together with the formal derivatives introduced
in proposition 2.8 allows one to define a formal connection difference tensor

Aa
bc :=

1
2
gic(Dagib +Dbgai −Digab),

from this a formal Levi-Civita connection∇ on all Tr
s(M) and thus formal Riemann,

Ricci and scalar curvature tensors Riem,Ric and R ∈ T(M) respectively associated
with g where in particular

(Ric− Ricγ)ab = DiA
i
ab −DaA

i
ib +Aj

abA
i
ij −Ai

ajA
j
ib.

Fix a coupling constant ξ ∈ R, a cosmological constant Λ > 0, a squared field mass
µ2 ∈ R as well as a potential V ∈ C∞(R,R) with V (0) = Λ and V ′(0) = µ2/2. Let
further φ ∈ T0

0(M) be a formal scalar field with φ = o(1) and assume H > 0. Then
φ∗φ = o(1) and the substitution homomorphisms (c.f. section 2) induced by the
Maclaurin expansions of V and V ′ can be applied to define formal equivalents of
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the non-linear terms involving the potential

V (φ∗φ) := ϕ(∂nV (0)/n!)φ
∗φ =

∞∑
n=0

1
n!
∂nV (0)(φ∗φ)n

V ′(φ∗φ) := ϕ(∂nV ′(0)/n!)φ
∗φ =

∞∑
n=0

1
n!
∂n+1V (0)(φ∗φ)n

respectively. For the same reason the element 1− ξφ∗φ has a multiplicative inverse
in T0

0(M) which is exactly of order zero. With these constituents available equa-
tions (1.10), (1.12)–(1.14), (1.19)–(1.22) and (1.25) define algebraic analogues of
the second fundamental form k, the projections of the energy-momentum tensor of
the scalar field ρ, j and S, of the evolution and constraint quantities e,E, c and C
as well as of the scalar field quantity S.

It is now obvious how a definition of a formal solution to the Einstein-scalar
field system can be given. Denote by I(M) := {f ∈ T(M) | f = O(1) and f(0) ∈
CT (M)} those formal tensors which are at least of order zero and have neither
logarithmic nor oscillatory terms at order zero. The homogeneous subspaces of such
(r, s)-tensors shall again be distinguished by Ir

s(M). Finally, for later reference, fix
constants µ2

c :=
[
n2/4− ξn(n+ 1)

]
H2,

k1 :=

{
n/2−

√
µ2

c − µ2/H for µ2 ≤ µ2
c

n/2 for µ2 > µ2
c

k2 :=

{
n/2 +

√
µ2

c − µ2/H for µ2 ≤ µ2
c

n/2 for µ2 > µ2
c

and call g(m− 2), φ(m+ k1) the coefficients of g and φ at relative order m respec-
tively.

Definition 2.9. Let g ∈ I0
2(M)X−2 be real symmetric with g(−2) = g0 ∈

T 0
2 M a Riemannian metric on M and φ ∈ T0

0(M) of order greater than zero. Then
the pair (g, φ) is said to be a formal solution of the Einstein-scalar field system at
relative order m ∈ R if the quantities e,E, c,C vanish at order m and S vanishes at
order m+k1. It is said to be a formal solution if those quantities vanish everywhere,
i.e.

(e,E, c,C,S) = 0.

It might be appropriate at this point to remark on some restrictions made by
the definition above. Firstly, the formal metric g is required to have no logarithmic
or oscillatory terms in leading order. This is sufficient for an inverse series to have
finite support with respect to the Y and Z unknowns and thus ensures invertibility.
Secondly, g is supposed to be exactly of order −2 because this corresponds to de
Sitter-like asymptotics and such is expected in the models considered here. Lastly,
φ = o(1) guarantees the solvability of the equations in leading order with a constant
parameter H, as is explained in the following section.

6. Properties of solutions

Given a solution (g, φ) of the algebraic Einstein-scalar field system several inter-
esting necessary properties are obtained easily. They are presented in the following.
To start with observe that the conditions on g imply that the (0, 1)-fibre metric
lies in I2

0(M)X2 which implies further Ric ∈ I0
2(M) and R̂ic ∈ I1

1(M), R ∈ I0
0(M),

all real. On the other hand, equation (1.10) shows k ∈ I0
2(M)X−2 and so σ ∈
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I1
1(M), tr k ∈ I0

0(M), all real as well. The same equation (1.10) already deter-
mines the lowest order term of the second fundamental form to k(−2) = −Hg0 and
therefore

σ(0) = 0

tr k(0) = −nH

The scalar field equation (1.18) considerably constrains the lowest order term of
the formal scalar field φ which was left quite unrestricted by the definition 2.9. To
see this assume φ 6= 0 so that m := min suppφ exists. The scalar field equation
(1.18) at order m then reads S(m) = 0 which is

(l + 1)(l + 2)(φ)m,s,l+2 + (l + 1)(n− 2m− 2is)H(φ)m,s,l+1 +{
µ2− s2H2 +

[
m(m−n) + ξn(n+ 1)

]
H2 + is(2m−n)H2

}
(φ)m,s,l = 0

for all s ∈ R and l ∈ N. By choosing l large enough initially and proceeding towards
zero while keeping s fixed shows that the coefficient in curly braces has to vanish,
φ = O(Xk1) and there holds the complete alternative

φ(m) ∈ C∞(M,C) for µ2 < µ2
c

φ(m) ∈ C∞(M,C) + C∞(M,C)Z for µ2 = µ2
c

φ(m) ∈ C∞(M,C)Y −ω + C∞(M,C)Y ω for µ2 > µ2
c .

It says that for subcritical field masses (µ2 < µ2
c) there are neither logarithmic nor

oscillatory terms present at lowest order, for critical field mass (µ2 = µ2
c) at most

one logarithmic term and for supercritical field masses (µ2 > µ2
c) no logarithmic

but in general two oscillatory terms at frequency ±ωH with

ω :=

{√
µ2 − µ2

c/H for µ2 > µ2
c

0 otherwise.

Using the fact that φ = O(Xk1) one infers that the same is true of all covariant
and time derivatives, that φ∗φ, V (φ∗φ) and V ′(φ∗φ) are in I(M) and with them
the projections of the effective energy-momentum tensor Ŝ, trS, j, ρ together with
the evolution and constraint quantities e, E, c, C. For the scalar field quantity
S it follows that S = O(Xk1). More precisely the equations (1.12)–(1.14) yield
S = −Λg0X−2 +O(X2k1−2) and so

Ŝ = O(X2k1)

trS = −nΛ +O(X2k1)

j = O(X2k1)

ρ = Λ +O(X2k1).

The zero order coefficient of e reads (e)0,0,0 = 2nΛ/(n − 1) − n2H2 so that its
vanishing implies

H =

√
2Λ

n(n− 1)
.

Likewise, the validity of the algebraic Einstein equations on the open interval ]0, k0[
where 0 < k0 ≤ min{2, 2k1} implies the vanishing of g and thus k on ]−2, 2k0−2[ ,
of the induced (0, 1)-fibre metric on ]2, 2k0 + 2[ and so of σ, tr k, Ric on ]0, k0[
and R̂ic, R on ]2, k0 + 2[ .
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Taking the results of the preceding paragraph into account the coefficients of
the evolution quantities fulfill the relations

(e)m,s,l = (2n−m− is)H(tr k)m,s,l + (l + 1)(tr k)m,s,l+1 − (R)m,s,l(2.1)

−
∑

p+q=m

∑
u+v=s

∑
κ+λ=l

(tr k)p,u,κ(tr k)q,v,λ

− 1
n− 1

[
(trS)m,s,l + n(ρ)m,s,l

]
(E)m,s,l = (n−m− is)H(σ)m,s,l + (l + 1)(σ)m,s,l+1 − (R̂ic)m,s,l(2.2)

−
∑

p+q=m

∑
u+v=s

∑
κ+λ=l

(σ)p,u,κ(tr k)q,v,λ + (Ŝ)m,s,l

and those of the Hamiltonian constraint quantity

(c)m,s,l = −(2n− 2)H(tr k)m,s,l + (R)m,s,l − 2(ρ)m,s,l(2.3)

+
∑

p+q=m

∑
u+v=s

∑
κ+λ=l

[
−〈(σ)p,u,κ, (σ)q,v,λ〉

+
(
1− 1

n

)
(tr k)p,u,κ(tr k)q,v,λ

]
,

for m ≥ k0 and all s ∈ R, l ∈ N whereas the indices p and q shall take values never
less than k0. The evolution equation for the metric (1.10) implies the validity of

(2.4) (m+ is)H(g)m−2,s,l − (l + 1)(g)m−2,s,l+1 = 2(g)−2,0,0

[
(σ)m,s,l

+
δ

n
(tr k)m,s,l

]
+2

∑
p+q=m

∑
u+v=s

∑
κ+λ=l

(g)p−2,u,κ

[
(σ)q,v,λ+

δ

n
(tr k)q,v,λ

]
for the corresponding coefficients, with δ denoting the identity element in T 1

1 M .
The scalar field quantity at relative order m > 0 satisfies

(2.5) (S)m+k1,s,l = (l + 1)(l + 2)(φ)m+k1,s,l+2

− (l + 1)(2m+ k1 − k2 + 2is)H(φ)m+k1,s,l+1

+
[
m+ i(s−ω)

][
m+k1−k2 + i(s+ω)

]
H2(φ)m+k1,s,l−LOTm+k1,s,l

with LOTm+k1,s,l containing lower order scalar field coefficients only, i.e.

(2.6) LOTm+k1,s,l = (∆φ)m+k1,s,l

−
∑
r<m

∑
u+v=s

∑
κ+λ=l

[
(r + k1 + iv)H(tr k)m−r,u,κ

+ ξ(Rg̃)m−r,u,κ + (V ′(φ∗φ))m−r,u,κ

]
(φ)r+k1,v,λ

+
∑
r<m

∑
u+v=s

∑
κ+λ=l

(λ+ 1)(tr k)m−r,u,κ(φ)r+k1,v,λ+1.

Lastly, if the validity of the Einstein-scalar field equations up to but not including
relative order m ≥ k0 is assumed the propagation equations (1.23), (1.24) for the
constraint quantities yield for the coefficients at relative order m

(2.7) (2n−m− is)H(c)m,s,l + (l + 1)(c)m,s,l+1 = −2(n− 1)H(e)m,s,l

and

(2.8) (n−m− is)H(C)m,s,l + (l + 1)(C)m,s,l+1 =

− 1
2
d(c)m,s,l + divg0(E)m,s,l −

(
1− 1

n

)
d(e)m,s,l
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by virtue of equation (1.6).
In the previous section the question whether the assumption of φ = o(1) could

be relaxed was left open. It is now argued that already φ = O(1) can, in general, not
be treated within the class of series under consideration. Assume φ ∈ I0

0(M) and
φ(0) = φ0 ∈ C∞(M,C) not identically zero with 1− ξφ∗0φ0 > 0. Then 1− ξφ∗φ is
invertible and the analysis outlined above goes through. For the Einstein equations
to be satisfied at leading order it is necessary that e(0) = 0 which now is true if
and only if

H2 =
2

n(n− 1)
V (φ∗0φ0)
1− ξφ∗0φ0

,

a condition which is not met in general by a constant H. Requiring φ∗0φ0 constant
on the other hand is a seemingly artificial restriction on the asymptotic data that
can be prescribed and so ensuring φ = o(1) by hypothesis was chosen instead.

7. Existence of initial solutions

After noting some necessary properties of formal solutions of the Einstein-scalar
field system such solutions shall now be constructed. Regarding the asymptotic
initial data it turns out that the situation is somewhat analogous to a Cauchy
problem at conformal infinity [10] in that the metric g0 (as well as data for the scalar
field φ) can be prescribed arbitrarily while the remaining piece, a symmetric 2-tensor
h, has to satisfy constraints on its trace and divergence. In the case of a pure
cosmological constant, T = −Λg, this conditions demand h transverse-traceless
[24]. In the presence of a scalar field the right hand sides of these conditions
become non-trivial much as in the case of a perfect fluid [24]. Since the tensor h
and hence the asymptotic constraints come into play only at relative order n of g
initial solutions will first be constructed which allow then a convenient formulation
of the asymptotic constraints and an extension to full solutions in the next section.

In the following the inequality

(2.9) µ2 > −ξn(n+ 1)H2

shall be assumed. This has the consequence of k1 being positive and hence the
resulting φ being of order greater than zero. The condition can be understood
when considering a real scalar field. As was shown in chapter 1 the transformation
of the system into the Einstein frame changes the potential according to equa-
tion (1.29) with the effect that the above condition is satisfied if and only if the
squared mass U ′′(0) of the minimally coupled field is positive. In other words the
inequality ensures that the minimum at the origin of the transformed potential is
non-degenerate.

The construction of solutions relies again heavily on proposition 2.1. Let A be
a +-stable superset of {0, 1, k1, k2 − k1} in A0. Suppose that the support of g is
contained in A − 2 and that of φ in A + k1. Then the support of the (0, 1)-fibre
metric is in A+ 2 and since supp k ⊂ A− 2 it follows that the supports of Ŝ, trS, j
and ρ are subsets of A. It follows that supp e, suppE, supp c, suppC ⊂ A as well as
suppS ⊂ A. Therefore it is sufficient for such a solution to satisfy the algebraic
Einstein-scalar field equations for all relative orders in the set A. Conversely, this
observation can be used to construct a solution inductively for relative orders in
the set A.

Proposition 2.10. Let g0 ∈ T 0
2 M be a smooth Riemannian metric on M and

φ0, φ1 ∈ C∞(M,C) smooth complex-valued functions on M . Then there exists a
formal solution (g, φ) of the algebraic Einstein equations up to but not including
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relative order n such that

g(−2) = g0(G1)

φ(k1) =


φ0 for µ2 < µ2

c

φ0 + φ1Z for µ2 = µ2
c

φ0Y
−ω + φ1Y

ω for µ2 > µ2
c

(P1)

φ(k2) ∈ φ1 + C∞(M,C)Z if µ2 < µ2
c .(P2)

The solution is unique up to relative order n exclusive. There are neither logarithmic
nor oscillatory terms in g and φ before relative order n and order k2 respectively.

Proof. The proof goes by induction over relative orders m in the set A∩ [0, n[.
The argument is given as how to extend solutions of relative orders [0,m[ to
solutions of relative orders [0,m] . More precisely, for 0 ≤ m < n suppose a
real symmetric g : [−2,m − 2[→ (CT 0

2 M)[Z]〈Y 〉 as well as a φ : [k1,m + k1[→
C∞(M,C)[Z]〈Y 〉 both with finite support have been constructed such that the
algebraic Einstein-scalar field equations hold for relative orders up to m exclusive.
Assume further that g vanishes on ] − 2, k0 − 2[ , that for m positive (G1), (P1)
and, if m+ k1 > k2, additionally (P2) are satisfied. Finally, there shall be neither
logarithmic nor oscillatory terms present in g before relative order m and in φ prior
to both order m+k1 and k2. Then the coefficients g(m−2) and φ(m+k1) amount
to:
m = 0: Define g(−2) and φ(k1) according to (G1) and (P1), then e(0) = 0, E(0) = 0
and c(0) = 0 due to the choice of H. By (2.8) it then follows that C(0) = 0.
Further, k1 and ω where defined such that they guarantee S(k1) = 0. Hence the
Einstein-scalar field equations are satisfied at relative order zero.

0 < m < k0: Set g(m− 2) := 0. It follows that σ and tr k vanish at order m. The
same is true for the projections Ŝ, trS, j and ρ of the energy-momentum tensor
because k0 ≤ 2k1. Then k0 ≤ 2 implies the Einstein equations to be satisfied at
relative order m. If µ2 > µ2

c or µ2 ≤ µ2
c and m+k1 6= k2 relation (2.5) provides the

existence of a coefficient φ(m+k1) ∈ C∞(M,C)[Z]〈Y 〉 which yields S(m+k1) = 0.
Note that for m+ k1 < k2 it is even true that φ(m+ k1) ∈ C∞(M,C). In the case
µ2 ≤ µ2

c and m+ k1 = k2 the induction hypothesis together with (2.5) ensure the
existence of a χ ∈ C∞(M,C) such that, if φ(m+ k1) := φ1 + χZ, the scalar field
quantity S vanishes at m+ k1. So in any case the scalar field equation is satisfied
at relative order m as well. In particular, (P2) is true for m+ k1 = k2.
k0 ≤ m < n: The evolution equations (2.1), (2.2) and (2.4) together with the in-
duction hypothesis show the existence of a symmetric g(m − 2) ∈ T 0

2 M which
causes e(m) and E(m) to vanish. By (2.7) it follows then that c(m) = 0 and (2.8)
finally yields C(m) = 0 and so the Einstein equations hold at relative order m.
The field coefficient φ(m+ k1) which cancels S(m+ k1) is obtained exactly as in
the case above. In particular, φ(m + k1) ∈ C∞(M,C) for m + k1 < k2 and (P2)
holds for m+ k1 = k2.

The existence part of the statement now follows by transfinite recursion over A ∩
[0, n[ . Uniqueness holds as a consequence of the necessary conditions a solution
has to fulfill established in section 6 and the construction. �

8. Asymptotic constraints and existence of solutions

To formulate asymptotic constraints it is useful to define two functionals z and
Z on the space of freely choosable asymptotic initial data. This data consists of a
Riemannian metric g0 ∈ T 0

2 M and two smooth complex-valued functions φ0, φ1 ∈
C∞(M,C). For any such datum there is, by virtue of proposition 2.10, a solution
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(g, φ) of the algebraic Einstein-scalar field system up to but not including relative
order n satisfying (G1), (P1) and (P2) and it is thus possible to set

z(g0, φ0, φ1) := trg0(g)n−2,0,0 −
2

n2H2
(e)n,0,0

Z(g0, φ0, φ1) := divg0(g)n−2,0,0 −
2

n2H2

[
d(e)n,0,0 + nH(C)n,0,0

]
That this indeed defines functionals can be seen by noting that the right-hand sides
are independent of the actual choice of the initial solution (g, φ) and are therefore
uniquely determined by the corresponding asymptotic initial datum (g0, φ0, φ1) due
to proposition 2.10.

A necessary condition on the coefficient (g)n−2,0,0 of any formal solution is
now obvious: suppose that (g, φ) is a solution to the algebraic Einstein-scalar field
system which fulfills (G1), (P1) and (P2), then it is true that trg0(g)n−2,0,0 =
z(g0, φ0, φ1) and divg0(g)n−2,0,0 = Z(g0, φ0, φ1). That this condition is also sufficient
for the existence of formal solutions is proven in the next theorem.

Theorem 2.11. Let g0 ∈ T 0
2 M be a smooth Riemannian metric, φ0, φ1 ∈

C∞(M,C) smooth complex-valued functions and h ∈ T 0
2 M a smooth symmetric

2-tensor on M satisfying

trg0 h = z(g0, φ0, φ1)(AC1)

divg0 h = Z(g0, φ0, φ1).(AC2)

Then there exists a unique formal solution (g, φ) of the algebraic Einstein equations
such that

g(−2) = g0(G1)

(g)n−2,0,0 = h(G2)

φ(k1) =


φ0 for µ2 < µ2

c

φ0 + φ1Z for µ2 = µ2
c

φ0Y
−ω + φ1Y

ω for µ2 > µ2
c

(P1)

φ(k2) ∈ φ1 + C∞(M,C)Z if µ2 < µ2
c(P2)

hold true. There are no logarithmic or oscillatory terms present in g and φ before
relative order n and k2 − k1 respectively.

Proof. The proof goes again by induction over relative orders m in A, a +-
stable superset of {0, 1, k1, k2 − k1} in A0. Since the construction has already
been carried out up to relative order n, exclusive, in proposition 2.10 m ≥ n
will be assumed. Suppose g : [−2,m − 2[ → (CT 0

2 M)[Z]〈Y 〉 real symmetric and
φ : [k1,m + k1[→ C∞(M,C)[Z]〈Y 〉 being constructed such that their support is
finite, they solve the algebraic Einstein-scalar field equations up to but not including
relative order m and satisfy conditions (G1), (P1) and (P2). Assume further that
g vanishes on ]− 2, k0 − 2[ and that for m > n (G2) holds. Finally, there shall be
neither logarithmic nor oscillatory terms present in g before relative order n and in
φ prior to order k2. Then the metric is extended as follows:
m = n: The evolution equations (2.1), (2.2) and (2.4) yield the existence of a real
symmetric g(n− 2) ∈ (CT 0

2 M)[Z]〈Y 〉 with (g)n−2,0,0 = h such that E(n) = 0 and
e(n) ∈ C∞(M,C). Calculating (e)n,0,0 and using the trace condition (AC1) shows
that this coefficient actually vanishes and so e(n) = 0 too. But this then implies
c(n) = 0 by (2.7) and consequentially C(n) ∈ CT 1

0 M by (2.8). The divergence
condition (AC2) then ensures (C)n,0,0 = 0 so that the Einstein equations are
satisfied at relative order n.
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m = 2n: In this case the relations (2.2), (2.3) and (2.4) can be used to obtain a
real symmetric g(m − 2) ∈ (CT 0

2 M)[Z]〈Y 〉 which cancels the quantities E and c
at order m. It follows then from equation (2.7) that e(m) = 0 and hence further
from equation (2.8) that C(m) = 0. This solves the algebraic Einstein equations
at relative order m.
m /∈ {n, 2n}: The equations (2.1), (2.2) and (2.4) guarantee the existence of a real
symmetric g(m− 2) ∈ (CT 0

2 M)[Z]〈Y 〉 such that the evolution quantities e and E
vanish at order m. Using once again the propagation equations (2.7) and (2.8)
subsequently shows that c(m) = 0 and C(m) = 0 too so that the Einstein equations
are fulfilled at relative order m.

The scalar field is then extended in any case by means of equation (2.5) which
provides a coefficient φ(m + k1) ∈ C∞(M,C)[Z]〈Y 〉 such that S(m + k1) = 0, i.e.
the scalar field equation as well is satisfied at relative order m.

The existence of a solution is now obtained by transfinite recursion over A.
Uniqueness thereof follows from the properties stated in section 2.10, the hypotheses
of the theorem and the construction. �

Theorem 2.11 shows that the conditions (AC1) and (AC2) are not only nec-
essary but also sufficient for a solution with the properties (G1), (G2), (P1) and
(P2) to exist. Due to their analogy with the constraint equations for the Cauchy
problem, in particular with the momentum constraint (1.17), they are called the
asymptotic constraints.

Note that for non-subcritical field masses the exponents in the formal solution
become especially simple, more precisely, because of k1 = k2 = n/2 it is A = N for
even n and A = (1/2)N for odd n, where N denotes the set of natural numbers.
Oscillatory terms always occur at integer multiples of ω with no such terms at all
if the field mass is not supercritical.



CHAPTER 3

Asymptotics of solutions

1. Exponentially bounded functions

The formal series solutions obtained in chapter 2 were motivated as representing
a certain asymptotic expansion of a smooth tensor family. This notion is of course
to be made precise and it will be shown that it applies to solutions of the Einstein-
scalar field system thus providing full information about their asymptotics.

Let M be a smooth manifold and I ⊂ R an open interval not bounded from
above.

Definition 3.1. Let E be a vector bundle over M together with a positive
definite bundle metric 〈·, ·〉. A family f : I → ΓE of sections of E is called σ-
exponentially bounded, σ > 0, if

|f |(t) = 〈f, f〉1/2(t) = O(σt) (t→∞)

is true locally uniformly, i.e. for any p ∈ M there exists a neighbourhood U of p,
a time t0 ∈ I and a constant C > 0 such that |f |(t) ≤ Cσt on U for all t > t0.
Denote the space of all σ-exponentially bounded smooth families by Bσ(ΓE).

Fix a Riemannian metric γ on M and a finite-dimensional complex vector space
V with a positive definite inner product. The metric γ and the inner product on V
induce fibre metrics 〈·, ·〉γ on any bundle T r

sM ⊗ V ⊗n of V ⊗n-valued (r, s)-tensors.
Consider the spaces of exponentially bounded smooth (r, s)-tensors

B(T r
s M,V ⊗n) :=

⋃
σ>0

Bσ

(
Γ(T r

sM ⊗ V ⊗n)
)

together with the map defined by

v(f) := inf
{
σ > 0 | f ∈ Bσ

(
Γ(T r

sM ⊗ V ⊗n)
)}

for all f ∈ B(T r
s M,V ⊗n) and r, s, n ∈ N. This map satisfies

v(f) ≥ 0(i)

v(f + g) ≤ max{v(f), v(g)}(ii)

v(f ⊗ f ′) ≤ v(f)v(f ′)(iii)

for any f, g ∈ B(T r
s M,V ⊗n), f ′ ∈ B(T r′

s′ M,V ⊗n′) where r, s, n, r′, s′, n′ ∈ N.
Furthermore v(0) = 0 and v(a) = 1 for any unit a in C∞(M,C) are valid. From
this the inverse triangle inequality

|v(f)− v(g)| ≤ v(f + g)(iv)

is inferred. Note that for any f ∈ B(T r
s M,V ⊗n), l ∈ N and c = <c+ i=c ∈ C the

equalities v(tlect) = e<c and v(fect) = v(f)e<c hold.
To make contact with the formal tensors it is useful to define an evaluation

homomorphism F : (VnT r
s M)[Z]〈Y,X〉 → B(T r

s M,V ⊗n) by

F f :=
∑

m,s∈R

∑
l∈N

(f)m,s,l t
le−(m+is)Ht

25
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where VnT r
s M abbreviates the space Γ(T r

sM ⊗V ⊗n). It satisfies v(F Xα) = e−αH

for α ∈ R and so v(F f) ≤ e−αH if f = O(Xα) as well as v(F f) < e−αH if
f = o(Xα). The image of F distinguishes the linear subspaces Er

s(M,V ⊗n) :=
F
(
(VnT r

s M)[Z]〈Y,X〉
)

of B(T r
s M,V ⊗n) in which the following important identity

theorem is valid.

Proposition 3.2. Let f ∈ (VnT r
s M)[Z]〈Y,X〉 be given and take α ≥ suppf .

If v (F f) < e−αH then f = 0.

Proof. Assume f 6= 0 so that m := min suppf exists in R and 0 6= f(m) ∈
(VnT r

s M)[Z]〈Y 〉. Now f(m) = X−mf−
[
X−mf−f(m)

]
withX−mf−f(m) = o(1)

so that v
(
F [X−mf − f(m)]

)
< 1 as well as v(F X−mf) < 1 by hypothesis. But

this implies v
(
F f(m)

)
< 1. For a p ∈M set

f(t) := (F f(m))(t)(p) =
∑
s∈R

∑
l∈N

(f)m,s,l(p)tle−isHt

then it follows from what has been stated that there are 0 < ε < 1, C > 0 and
1 < t0 ∈ I with |f(t)|γ ≤ Ce−εt for all t > t0. Since f(m) 6= 0 there exists s0 ∈
suppf(m) and l0 ∈ suppf(m, s0) such that maxs∈R suppf(m, s) ≤ l0. Consider
now the integral

1
t− t0

∫ t

t0

τ−n0e−is0Hτf(τ)dτ

for t > t0. From the estimate above it can be concluded that∣∣∣ 1
t− t0

∫ t

t0

τ−n0e−is0Hτf(τ)dτ
∣∣∣
γ
≤ C

t− t0

∫ t

t0

e−ετdτ → 0 (t→∞),

on the other hand

1
t− t0

∫ t

t0

τ−n0e−is0Hτf(τ)dτ =
1

t− t0

∫ t

t0

(f)m,s0,l0(p)

+
∑

(s,l) 6=(s0,l0)

1
t− t0

∫ t

t0

(f)m,s,l(p)τ l−l0e−i(s−s0)Hτdτ → (f)m,s0,l0(p)

as t→∞ so that (f)m,s0,l0(p) = 0. Since p ∈ M was arbitrary (f)m,s0,l0 vanishes
identically which is a contradiction to the choice of l0 in the support of f(m, s0). �

Corollary 3.3. For any f ∈ (VnT r
s M)[Z]〈Y,X〉 and α ∈ R one has

v(F f) < e−αH

v(F f) ≤ e−αH
if and only if

f = o(Xα)

f = O(Xα).

Corollary 3.4. The evaluation homomorphism F is injective and hence the
vector spaces Er

s(M,V ⊗n) and (VnT r
s M)[Z]〈Y,X〉 isomorphic.

By virtue of this last corollary it is possible and will be useful to define a function
on Er

s(M,V ⊗n) measuring the polynomial degree. This is done by setting

deg f := −H max suppF−1 f

for non-zero f ∈ Er
s(M,V ⊗n) and deg 0 := ∞ where F−1 is the inverse of F on

Er
s(M,V ⊗n). The assertion of proposition 3.2 is then simply stated as v(f) < edeg f

implies f = 0 for f ∈ Er
s(M,V ⊗n). From the behaviour of the supports of formal

series under addition and multiplication it follows easily that

deg(f + g) ≥ min{deg f,deg g}
deg(f ⊗ f ′) ≥ deg f + deg f ′

hold for arbitrary f, g ∈ Er
s(M,V ⊗n), f ′ ∈ Er′

s′(M,V ⊗n′).
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2. Asymptotic approximation

In order to show that the formal series indeed approximate solutions to the
Einstein-scalar field system asymptotically it is helpful to have estimates of how the
errors behave under non-linear substitution, differentiation and solution of ordinary
differential equations. A couple of such tools shall be provided now.

Let again (M,γ) be a Riemannian manifold, V a finite-dimensional complex
scalar product space and I an open real interval not bounded from above. To
emphasize the role of γ as a fixed background metric only, the covariant derivative
induced by it will again be denoted by D. On smooth tensor families I → VnT r

s M
this covariant derivative commutes with ∂t, the derivative along I, i.e. [∂t, D] = 0.
It is thus appropriate to define

Bp(T r
s M,V ⊗n) :=

{
f | ∂i

tD
jf ∈ B(T r

s M,V ⊗n) for all i ≤ p, j ∈ N
}

together with

vp(f) := sup
i≤p

sup
j∈N

v(∂i
tD

jf)

for f ∈ Bp(T r
s M,V ⊗n) for any p ∈ N ∪ {∞}. It is immediate that the properties

(i)–(iv) of v stated in section 1 remain valid for vp as well. Moreover, due to the
fact that for any f ∈ (VnT r

s M)[Z]〈Y,X〉

∂t F f = F ∂tf

DF f = F ∂Df

are true it is clear that Er
s(M,V ⊗n) ⊂ Bp(T r

s M,V ⊗n) and vp ≤ v on Er
s(M,V ⊗n).

Suppose for the following that f and g are functions in B(T r
s M,V ⊗n) that

are approximated by elements F f and F g ∈ Er
s(M,V ⊗n) of degree greater than

−αH ∈ R in the sense that vp(f−F f), vp(g−F g) ≤ e−αH . It is then obvious that
the sum f + g is approximated equally well by the element F(f + g), which is of
degree greater than −αH too, namely vp[(f+g)−F(f +g) ≤ e−αH ]. Furthermore,
such an element is unique due to proposition 3.2. Similar results can be obtained
for non-linear operations such as multiplication and substitution.

Proposition 3.5. Assume F f ∈ Er
s(M,V ⊗n), F g ∈ Er′

s′(M,V ⊗n′) such that
v(f), v(g) ≤ e−βH for a β ≤ α then there is a unique F h ∈ Er+r′

s+s′ (M,V ⊗(n+n′)) of
degree greater than −(α+ β)H with vp(f ⊗ g −F h) ≤ e−(α+β)H .

Proof. If h :=
∑

m<α+β(f⊗g)(m)Xm then clearly degF h > −(α+β)H and
vp[F(f ⊗g−h)] ≤ e−(α+β)H . Further, vp(F f) ≤ max{vp(f −F f), v(f)} ≤ e−βH

as well as vp(F g) ≤ e−βH analogously. But then f ⊗ g − F h = (f − F f) ⊗
(g − F g) + (f − F f) ⊗ (F g) + (F f) ⊗ (g − F g) + F(f ⊗ g − h) shows that
vp(f ⊗ g −F h) ≤ e−(α+β)H . �

Let Ψ ∈ C∞(G,C) be a smooth function defined on an open neighbourhood
of zero in the real numbers. Assume f ∈ Bp(C∞(M,G)) such that v(f) < 1
and vp(f − F f) ≤ e−αH for an α > 0. Then there is a positive ε < 1 with
vp(f), vp(f −F f) < ε and the following lemma can be proven.

Lemma 3.6. Fix n ≤ m ∈ N then v(Ψ(ν) ◦ f) ≤ εm−ν for all ν ≤ n implies
maxi≤p,i+j≤n v[∂i

tD
j(Ψ ◦ f)] ≤ εm.

Proof. The assertion is trivial for n = 0 and shall be supposed to hold for an
n ∈ N and anym ≥ n. Assumem ≥ n+1 and v(Ψ(ν)◦f) ≤ εm−ν for all ν ≤ n+1. It
follows then from the induction hypothesis that maxi≤p,i+j≤n v[∂i

tD
j(Ψ ◦ f)] ≤ εm.
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Take ∂ either ∂t or D then

v[∂∂k
t D

l(Ψ ◦ f)] = v
[
∂k

t D
l
(
(Ψ′ ◦ f)∂f

)]
≤ max

i≤p,i+j≤n
v[∂i

tD
j(Ψ′ ◦ f)]vp(f)

for k + l ≤ n and k < p if ∂ = ∂t or k ≤ p otherwise. Since v
[
(Ψ′)(ν) ◦ f

]
=

v(Ψ(ν+1) ◦ f) ≤ ε(m−1)−ν the induction hypothesis ensures that the first factor
above is not larger than εm−1 and so the claim holds for n+ 1 and hence on N by
induction. �

This allows for the construction of an asymptotic approximation of the composition
Ψ ◦ f in E0

0(M,C).

Proposition 3.7. There exists a unique F g ∈ E0
0(M,C) of degree greater than

−αH with vp(Ψ ◦ f −F g) ≤ e−αH .

Proof. Let n ∈ N be arbitrary and choose n < m ∈ N such that εm ≤ e−αH .
For a compact interval neighbourhood K ⊂ G of zero there are coefficients c ∈ Cm

and constants C ∈ Rm such that∣∣∣∣Ψ(ν)(k)−
(∑

i∈m

cix
i
)(ν)

(k)
∣∣∣∣ ≤ Cν |k|m−ν

for all ν ∈ m and k ∈ K. According to proposition 3.5 there exists an F g ∈
E0

0(M,C) of degree greater than −αH such that

vp

(∑
i∈m

cif
i −F g

)
≤ e−αH .

By concentrating on a suitable neighbourhood in M and sufficiently large times
it can be assumed that |f |γ ≤ εt and that the image of f lies in K. Defining
Ω := Ψ−

∑
i∈m cix

i ∈ C∞(G,C) one finds |Ω(ν) ◦ f | ≤ Cν |f |m−ν
γ ≤ ε(m−ν)t and so

v(Ω(ν) ◦ f) ≤ εm−ν for all ν ≤ n. By lemma 3.6 one infers that

max
i≤p,i+j≤n

v[∂i
tD

j(Ω ◦ f)] ≤ εm ≤ e−αH

so that indeed maxi≤p,i+j≤n v(Ψ ◦ f − F g) ≤ e−αH . Finally, because degF g >
−αH independent of n and n was arbitrary, it follows from proposition 3.2 that
actually vp(Ψ ◦ f −F g) ≤ e−αH . �

The construction in the proof further shows

Remark 3.8. If f = F f then g =
∑

m<α Ψ(f)(m).

where Ψ(f) is defined using the substitution homomorphism induced by Ψ as de-
scribed in section 2.

Corollary 3.9. If vp(f) < 1 and Ψ(0) = 0 then vp(Ψ ◦ f) ≤ vp(f).

Proof. One can choose α > 0 such that vp(f) ≤ e−αH , i.e. F f = 0 approxi-
mates f suitably well. As in the proof of proposition 3.7 the constant c0 vanishes
one can actually choose F g = 0 and get vp(Ψ ◦ f) ≤ e−αH . �

In order to construct fibre metrics out of a given family of Riemannian metrics
on M the following propositions will be useful. Like in the statements on non-linear
substitution above attention is focussed on settings which will actually be of use
later on rather than aimed at the greatest possible generality for the sake of not
overloading the notation. Let f ∈ B(T r

r M,C) and g ∈ B(T r
r M,C) be given such

that v(f − F f) ≤ e−αHv(f) for an F f ∈ Er
r(M,C) and α > 0 and consider the

contraction of r co- and r contravariant indices f · g ∈ Br
r(M,C). Denote by δ the

identity element in CT r
r M .
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Proposition 3.10. If f · g = δ and f is invertible then there is a unique
F g ∈ Er

r(M,C) of maximal degree with v(g − F g) ≤ e−αHv(g). In particular,
v(f)v(g) = 1 and g =

∑
m<α+β f−1(m) with v(f) = eβH .

Proof. Since f is invertible there is β ∈ R with v(F f) ≤ eβH and an F g ∈
Er

r(M,C) with v(F g) ≤ e−βH such that v(F f · F g − δ) ≤ e−αH . It follows that
v(f) ≤ eβH because α > 0. From there one calculates

v(g −F g) = v
[
g · (f −F f + f) · (g −F g)

]
= v
(
g ·
[
δ − (f −F f) · F g −F f · F g

])
≤ v
[
g · (δ −F f · F g)

]
+ v
[
g · (f −F f) · F g

]
≤ e−αHv(g)

as asserted. Uniqueness is obtained as usual by proposition 3.2. For the auxil-
iary statement observe that v(g) ≤ e−βH and therefore 1 = v(δ) ≤ v(f)v(g) ≤
eβHe−βH = 1. �

Corollary 3.11. If vp(f −F f) ≤ e−αHv(f) then vp(g−F g) ≤ e−αHv(g) is
true as well.

Proof. The estimate is true for zero derivatives according to proposition 3.10
and it shall hold up to n ∈ N derivatives. Take some i, j ∈ N with i ≤ p and
i+ j = n+ 1. Then

0 = g · ∂i
tD

jδ = g · ∂i
tD

j(f · g)
= ∂i

tD
jg − ∂i

tD
j F g + g · ∂i

tD
j(F f · F g) + g · (f −F f) · ∂i

tD
j F g

+ g ·
∑

(k,l) 6=0

(
i

k

)(
j

l

)[
∂k

t D
l(f −F f) · ∂i−k

t Dj−l(g −F g)

+ ∂k
t D

l F f · ∂i−k
t Dj−l(g −F g) + ∂k

t D
l(f −F f) · ∂i−k

t Dj−l F g

]
and hence the induction hypothesis implies v(∂i

tD
jg − ∂i

tD
j F g) ≤ e−αHv(g). �

As stated at the beginning of this section it will be necessary to control the
error terms of the asymptotic approximation not only through multiplications and
substitutions but also under solving systems of linear ordinary differential equations.
Before detailing this, let t0 ∈ I be fixed and consider an f ∈ B(T r

s M,V ⊗n). If
v(f) ≥ 1 then the family

g(t) := m 7→
∫ t

t0

f(τ)(m)dτ, t ∈ I

is well-defined, lies in B(T r
s M,V ⊗n) as well and satisfies v(g) ≤ v(f). On the other

hand, if v(f) < 1, the family

h(t) := m 7→
∫ ∞

t

f(τ)(m)dτ, t ∈ I

is also well-defined, lies in B(T r
s M,V ⊗n) and satisfies v(h) ≤ v(f) too.

An endomorphism A ∈ End(V ) of V naturally induces smooth bundle endo-
morphisms

T r
sM ⊗ V ⊗n → T r

sM ⊗ V ⊗n, f 7→ A⊗n ◦ f

by composition with the V ⊗n-valued tensors in T r
sM⊗V ⊗n which will be identified

with A. Denote by Ξ the maximal distance between the real parts of the eigenvalues
of the endomorphism A⊗n of V ⊗n.
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Proposition 3.12. For an endomorphism A ∈ End(V ) and an inhomogeneity
f ∈ Er

s(M,V ⊗n) assume there is a function u ∈ B(T r
s M,V ⊗n) fulfilling

v(∂tu+Au− f) ≤ e−αH

for some α ∈ R. Then there exists a unique F u ∈ Er
s(M,V ⊗n) of degree greater

than −αH + Ξ such that v(u−F u) ≤ e−αH+Ξ.

Proof. The one-parameter group t → eAt in End(V ⊗n) generates a smooth
family of bundle endomorphisms in End(T r

sM ⊗ V ⊗n) satisfying ∂te
At = AeAt.

With this, define

u0 :=
∫ ∞

t0

eAτ (∂τu+Au− f)(τ)dτ ∈ VnT r
s M

if v
[
eAt(∂tu+Au− f)

]
< 1 and u0 := 0 otherwise. Then the function v given by

v(t) := u0 + eAt0u(t0) +
∫ t

t0

eAτf(τ)dτ

is in Er
s(M,V ⊗n). In the case v

[
eAt(∂tu+Au− f)

]
< 1 it follows that

v(eAtu− v) = v

(∫ t

t0

[
∂τ

(
eAτu(τ)

)
− eAτf(τ)

]
dτ − u0

)
= v

(
−
∫ ∞

t

[
∂τ

(
eAτu(τ)

)
− eAτf(τ)

]
dτ

)
≤ v
[
∂t(eAtu)− eAtf

]
= v
[
eAt(∂tu+Au− f)

]
.

On the other hand, if v
[
eAt(∂tu+Au− f)

]
≥ 1 one calculates

v(eAtu− v) = v

(∫ t

t0

[
∂τ

(
eAτu(τ)

)
− eAτf(τ)

]
dτ

)
≤ v
[
∂t(eAtu)− eAtf

]
= v
[
eAt(∂tu+Au− f)

]
again by what was stated in the previous paragraph. So in any case if F u :=
e−Atv ∈ Er

s(M,V ⊗n) then

v(u−F u) ≤ v
[
e−At(eAtu− v)

]
≤ e−αH+Ξ

as claimed. The condition on the degree of F u can be accounted for by truncating
u at and beyond order α − Ξ/H and uniqueness then follows from proposition
3.2. �

It is now shown that these approximations remain valid when being differentiated
with respect to space and time. For shortness only the case αH > Ξ that is used
later on is considered.

Lemma 3.13. If u satisfies v(∂i+1
t u + A∂i

tu − ∂i
tf) ≤ e−αH for all i ≤ m for

some m ∈ N and αH > Ξ then in fact v(∂i
tu− ∂i

t F u) ≤ e−αH+Ξ for i ≤ m.

Proof. The assertion holds for m = 0 by virtue of proposition 3.12 and shall
be true for an m ∈ N. Assume that v(∂i+1

t u+A∂i
tu−∂i

tf) ≤ e−αH for all i ≤ m+1
then by the induction hypothesis one concludes v(∂i

tu − ∂i
t F u) ≤ e−αH+Ξ for

i ≤ m. Moreover, ∂m+1
t f ∈ Er

s(M,V ⊗n) and v
[
∂t(∂m+1

t u) + A∂m+1
t u− ∂m+1

t f
]
≤

e−αH , so that there is F h ∈ Er
s(M,V ⊗n) of degree greater than −αH + Ξ with

v(∂m+1
t u−F h) ≤ e−αH+Ξ < 1 by proposition 3.12. Take

h(t) :=
∫ ∞

t

(
∂m+1

τ u−F h
)
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and

v(t) :=
∫ t

t0

F h− ∂m
t F u + ∂m

t u(t0) + h(t0) ∈ Er
s(M,V ⊗n)

then v(v) = v(∂m
t u− ∂m

t F u + h) ≤ e−αH+Ξ while deg v > −αH + Ξ which shows
that v = 0 and therefore ∂m+1

t u = h and v(∂m+1
t u− ∂m+1

t F u) ≤ e−αH+Ξ. �

Corollary 3.14. If u satisfies vp(∂tu + Au − f) ≤ e−αH for some αH > Ξ
then vp(u−F u) ≤ e−αH+Ξ.

Proof. First note that in particular it is true that v(∂tu + Au − f) ≤ e−αH

and so by proposition 3.12 there is an F u ∈ Er
s(M,V ⊗n) of degree greater than

−αH + Ξ such that

v(u−F u) ≤ e−αH+Ξ.

Let i, j ∈ N with i ≤ p be arbitrary. According to the assumptions one even has
v(∂tD

ju+ ADju−Djf) ≤ e−αH and proposition 3.12 assures the existence of an
F v ∈ Er

s+j(M,V ⊗n) of degree greater than −αH + Ξ with

v(Dju−F v) ≤ e−αH+Ξ.

The construction in the proof there shows that one can choose v = Dju. Because
v
[
∂i

t(∂tD
ju + ADju − Djf)

]
≤ e−αH holds as well, by lemma 3.13 there is an

F w ∈ Er
s+j(M,V ⊗n) of degree greater than −αH + Ξ such that

v(∂k
t D

ju− ∂k
t F w) ≤ e−αH+Ξ

for all k ≤ i. But then

v(F v −F w) = v
[
Dju−F w − (Dju−F v)

]
≤ e−αH+Ξ

while deg(F v −F w) > −αH + Ξ which proves that w = v = Dju and so

v(∂i
tD

ju− ∂i
tD

j F u) ≤ e−αH+Ξ

follows. Since i ≤ p and j were arbitrary this proves the claim. �

Observe that if the vector space V is one-dimensional any endomorphism A of V has
only a single eigenvalue and therefore Ξ vanishes which means that there is no loss
of asymptotic decay in integrating the ordinary differential equations considered
above.

3. Asymptotic expansion of a solution

After having provided some useful tools in the previous sections full asymptotic
expansions will be constructed for solutions meeting some mild boundedness or
decay assumptions in the direction of a Gaussian time coordinate. Restating from
the previous chapters let V ∈ C∞(J,R) be a smooth function defined on an open
neighbourhood J of zero in the real numbers satisfying Λ = V (0) > 0, take µ2/2 =
V ′(0) and fix a coupling constant ξ ∈ R. Assume the non-degeneracy condition 2.9,
µ2 > −ξn(n + 1)H2, to hold and define the constants H =

√
2Λ/n(n− 1) and

µ2
c , k0, k1, k2, ω as in chapter 2. Let a smooth solution of the Einstein-scalar field

system on M̃ = M × I be given as a family of Riemannian metrics g : I → T 0
2 M

and scalar fields φ : I → C∞(M,C) in the sense of chapter 1 with 1 − ξφ∗φ > 0.
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Denote by g] : I → T 2
0 M the family of metrics induced by g on the cotangent

bundle and suppose the following decay conditions

v0(g) ≤ e2H , v0(g]) ≤ e−2H(M)

v0(σ) ≤ e−k0H(K)

v0(φ) ≤ e−k1H , v0(∂tφ) ≤ e−k1H(F)

so that the quantities and all their spatial derivatives have the same corresponding
decay for large times. It is first shown that these conditions determine the late-time
asymptotics to first order. For this consider the family of difference tensors A :=
∇−D ∈ T 1

2 M between the connections ∇ of g(t) and the background connection
D of γ that is given by

2g(A(X,Y ), Z) = DXg(Z, Y ) +DY g(X,Z)−DZg(X,Y )

for vector fields X,Y, Z ∈ T 1
0 M . From condition (M) it is inferred that v0(A) ≤ 1.

Since the curvature endomorphism R(·, ·) ∈ T 1
3 M of ∇ relates to that of D by

R(X,Y )Z = Rγ(X,Y )Z +DXA(Y, Z)−DY A(X,Z)

+A
(
X,A(Y, Z)

)
−A

(
Y,A(X,Z)

)
it follows that v0(Ric) ≤ 1 and therefore v0(R) = v0[tr(g] · Ric)] ≤ e−2H as well
as v0(R̂ic) ≤ e−2H . Recall that R̂ic was defined as the trace-free part of the Ricci
tensor with the first index raised. To get control on the components of the energy-
momentum tensor it will prove useful to consider the quantities

$ :=
ξφ∗∂tφ

1− ξφ∗φ
+ c.c.

and

ρ̌ := ρ− Λ +$ tr k.

From equation (1.12) it can be seen that

ρ̌ =
1
2
(
1− ξφ∗φ

)−1
[
1
2
∂tφ

∗∂tφ−
(
2ξ − 1

2

)
|∇φ|2

− 2ξφ∗∆φ+ (V − Λ)(φ∗φ) + Λξφ∗φ+ c.c.
]
.

By hypothesis v0(∂tφ
∗∂tφ) ≤ e−2k1H , v0(|∇φ|2) ≤ e(2−2k1)H , v0(∇ 2φ) = v0(D2φ−

Dφ · A) ≤ e−k1H and so v0(φ∗∆φ) ≤ e(2−2k1)H . Applying corollary 3.9 with
v0(φ∗φ) ≤ e−2k1H gives v0[(V −Λ)(φ∗φ)] ≤ e−2k1H as well as v0[(1−ξφ∗φ)−1−1] ≤
e−2k1H . This then implies v0($) ≤ e−2k1H and v0(ρ̌) ≤ e−2k1H . By what has been
stated above it then follows that the quantity

ϑ := 2ρ̌−R+ |σ|2

satisfies v0(ϑ) ≤ e−k0H . The Hamiltonian constraint c = 0 reads

(tr k)2 +
2n$
n− 1

tr k − nϑ

n− 1
− n2H2 = 0

which yields the relation

(3.1) tr k ± nH = − n$

n− 1
∓ nH

(√
1 +

1
H2

[( $

n− 1

)2

+
ϑ

n(n− 1)

]
− 1

)
.

At first the ambiguous sign might change from point to point in M × I. It is due
to the decay of $ and ϑ that it must be locally constant at large times for tr k to
remain smooth. Concentrate on such a neighbourhood and sufficiently large times
and assume for the moment that the “lower” signs in (3.1) were true. It follows
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that v0(tr k−nH) ≤ e−k0H and because of ∂tg+2Hg = −2g ·σ−(2/n)(tr k−nH)g
that v(∂tg + 2Hg) ≤ e(2−k0)H . Proposition 3.12 then gives v(g) ≤ e(2−k0)H which
leads with (M) to the contradiction 1 = v(g · g]) ≤ v(g)v(g]) ≤ e−k0H < 1. Thus
the “upper” signs must hold and hence (3.1) implies v0(tr k + nH) ≤ e−k0H .

For ḡ := e−2Htg equation (1.10) implies

(3.2) ∂tḡ = −2ḡ · σ − 2
n

(tr k + nH)ḡ

and thus v(∂tD
j ḡ) = v(Dj∂tḡ) ≤ v0(ḡ)e−k0H ≤ e−k0H for any j ∈ N. It follows

that the functions

g
(j)
0 := Dj ḡ(t0) +

∫ ∞

t0

∂τD
j ḡ(τ)dτ ∈ T 0

2 M

are well-defined with the property

v(Dj ḡ − g
(j)
0 ) = v

(∫ ∞

t

∂τD
j ḡ(τ)dτ

)
≤ e−k0H .

This means in particular that Dj ḡ(t) → g
(j)
0 locally uniformly as t → ∞ which in

turn implies g(j)
0 = Djg0 with g0 := g

(0)
0 and hence v0(ḡ− g0) ≤ e−k0H . The tensor

g0 is symmetric, as a consequence of (M) positive definite and so a Riemannian
metric on M .

As previously it turns out to be helpful to examine some modified matter
quantity which is now taken to be

Š :=
1
2
(
1− ξφ∗φ

)−1
[
(1− 2ξ)∇φ∗ ⊗∇φ− 2ξφ∗

[
∇ 2φ+ k∂tφ

]
+
{(

2ξ − 1
2

)(
|∇φ|2 − ∂tφ

∗∂tφ
)
− (V − Λ)(φ∗φ)− Λξφ∗φ

+ 2ξφ∗φ
[
ξ
(
R+ |k|2 + (tr k)2

)
+ 2V ′(φ∗φ)

]}
g + c.c.

]
.

With equation (1.14) and (1.18) one gets

Š = S + Λg + 4(1− ξφ∗φ)−1ξ2φ∗φ(∂t tr k)g

while one has v0(∇φ∗ ⊗∇φ) ≤ e−2k1H , v0(φ∗∇ 2φ) ≤ e−2k1H and by corollary 3.9
also v0[4(1−ξφ∗φ)−1ξ2φ∗φ] ≤ e−2k1H , v0[2V ′(φ∗φ)] = v0[(2V ′−µ2)(φ∗φ)+µ2] ≤ 1.
Therefore v0(Š) ≤ e(2−2k1)H and v0(tr Š) ≤ e−2k1H . The evolution equation e = 0
can be written in terms of this modified quantity as

∂t(tr k + nH) =
1− ξφ∗φ

1− ηξφ∗φ

[
R+ (tr k + nH)(tr k − nH)(3.3)

+
1

n− 1
tr Š − n

n− 1
(ρ− Λ)

]
.

Recall that η was defined as η = 1 − 4nξ/(n − 1) and that 1 − ξφ∗φ > 0 implies
1 − ηξφ∗φ > 0 thence v0[(1 − ηξφ∗φ)−1] ≤ 1 also by corollary 3.9. It follows from
this equation that v0(∂t tr k) ≤ e−k0H and with it v0[Rg̃ − n(n+ 1)H2] ≤ e−k0H .

Finally, to get the first order field asymptotics, consider φ̄ := ek1Htφ. From (F)
it is clear that v0(φ̄) and v0(∂tφ̄) are both less than or equal to one and the scalar
field equation S = 0 is equivalent to

(3.4) ∂2
t φ̄+ (n− 2k1)H∂tφ̄+

[
k1(k1 − n) + ξn(n+ 1) + ω2

]
H2φ̄ = E

where

E = ∆φ̄+(tr k+nH)(∂tφ̄−k1Hφ̄)−ξ[Rg̃−n(n+1)H2]φ̄−(2V ′−µ2)(φ∗φ)φ̄.

The three cases of supercritical, critical and subcritical field masses are treated
separately. So firstly, assume µ2 > µ2

c . Equation (3.4) reduces to ∂2
t φ̄+ω2H2φ̄ = E
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with v0(E) ≤ e−k0H . Because of ω > 0 corollary 3.14 ensures the existence of two
functions φ0, φ1 ∈ C∞(M,C) such that v0(φ̄ − φ0e

−iωHt − φ1e
iωHt) ≤ e−k0H .

Secondly, assuming µ2 = µ2
c , the equation (3.4) simplifies even further to ∂2

t φ̄ =
E and again by corollary 3.14 there are functions φ0, φ1 ∈ C∞(M,C) such that
v0(φ̄ − φ0 − φ1t) ≤ e−k0H . Thirdly, for µ2 < µ2

c , the equation (3.4) reads ∂2
t φ̄ +

(k2 − k1)H∂tφ̄ = E and corollary 3.14 applied for ∂tφ̄ yields φ0, φ1 ∈ C∞(M,C)
with v0(φ̄ − φ0 − φ1e

−(k2−k1)Ht) ≤ e−k0H since k2 − k1 > 0. In any case, if one
defines

Φ :=


φ0e

−iωHt + φ1e
iωHt for µ2 > µ2

c

φ0 + φ1t for µ2 = µ2
c

φ0 for µ2 < µ2
c and k0 ≤ k2 − k1

φ0 + φ1e
−(k2−k1)Ht for µ2 < µ2

c and k0 > k2 − k1

then v0(φ̄− Φ) ≤ e−k0H as well as v0[∂t(φ̄− Φ)] ≤ e−k0H .
The first-order expansions obtained so far are now shown to hold too when

differentiated with respect to time as often as desired. The argument goes by
inductively improving the estimates from the preceding paragraph. It was observed
that

v0(ḡ − g0), v0(σ), v0(tr k + nH), v1(φ̄− Φ) ≤ e−k0H .

It shall then be assumed that for a p ∈ N it is true that

vp(ḡ − g0), vp(σ), vp(tr k + nH), vp+1(φ̄− Φ) ≤ e−k0H .

From there one infers vp(g) ≤ e2H and hence vp(g]) ≤ e−2H from corollary
3.11. It follows that vp(A) ≤ 1, vp(Ric) ≤ 1 and accordingly vp(R̂ic) ≤ e−2H ,
vp(R) ≤ e−2H . Furthermore the induction hypothesis gives vp+1(φ) ≤ e−k1H and
so vp+1[(1−ξφ∗φ)−1] ≤ 1 by corollary 3.9 which entails vp+1[4(1−ξφ∗φ)−1ξ2φ∗φ] ≤
e−2k1H , vp+1[(V −Λ)(φ∗φ)] ≤ e−2k1H and vp+1[2V ′(φ∗φ)] ≤ 1. Since both vp(∇φ∗⊗
∇φ) and vp(φ∗∇ 2φ) are not larger than e−2k1H one finds that vp(ρ−Λ) ≤ e−2k1H

and vp(Š) ≤ e(2−2k1)H . The trace-free parts of S and Š are equal thus vp(Ŝ) ≤
e−2k1)H . But then the evolution equations (1.20), i.e. E = 0, and (3.3) imme-
diately yield vp+1(σ) ≤ e−k0H as well as vp+1(tr k + nH) ≤ e−k0H respectively.
From relation (3.2) it is clear that vp+1(ḡ − g0) ≤ e−k0H and one certainly has
vp[Rg̃ − n(n+ 1)H2] ≤ e−k0H . As a consequence vp(E) ≤ e−k0H and because of

∂2
t (φ̄− Φ) + (k2 − k1)H∂t(φ̄− Φ) + ω2H2(φ̄− Φ) = E

one finally gets vp+2(φ̄−Φ) ≤ e−k0H . With this, the induction hypothesis has been
improved from p to p+ 1 which then shows that in fact

(3.5) v∞(ḡ − g0), v∞(σ), v∞(tr k + nH), v∞(φ̄− Φ) ≤ e−k0H

is true.
It is now proven that there exist such expansion not only to first order but to

any arbitrary high order. The coupling constant and the potential that specify the
model shall fulfill the conditions given at the beginning of this section.

Theorem 3.15. Suppose that (g, φ) is a smooth solution to the Einstein-scalar
field system with respect to a Gaussian time coordinate M×I → I, existing globally
towards the future and satisfying the decay conditions (M), (K) and (F). Then
for any α > 0 there are unique asymptotic approximants F ḡ ∈ E0

2(M,C) and
F φ̄ ∈ E0

0(M,C) of degree greater than −αH such that

v∞(ḡ −F ḡ), v∞(φ̄−F φ̄) ≤ e−αH

are valid for the rescaled quantities ḡ = e−2Htg and φ̄ = ek1Htφ.
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Proof. It follows directly from the identity theorem 3.2 that such approxi-
mants, if they exist, are unique due to the assumptions concerning their degree.
To show existence it is sufficient and will be convenient to consider orders α that
are integer multiples of k0H only. The assertion was shown to hold for α = 0
and α = k0H in (3.5) and shall now be assumed to hold for an 0 < α ∈ k0HN.
It follows from the details given in this section that ḡ = g0 + O(Xk0) with a
Riemannian metric g0 and is as such invertible. By corollary 3.11 there is an
F ḡ] ∈ E2

0(M,C) with v∞(ḡ] − F ḡ]) ≤ e−αH where ḡ] = e2Htg]. From proposi-
tion 3.5 and v∞(A) ≤ 1 it is then inferred that there is F Ric ∈ E0

2(M,C) with
v∞(Ric − F Ric) ≤ e−αH and therefore F R̂ic ∈ E1

1(M,C), F R ∈ E0
0(M,C) such

that v∞(R̂ic−F R̂ic), v∞(R−F R) ≤ e−(α+2)H .
Clearly, from equation (1.10), there are F σ ∈ E1

1(M,C) and F tr k ∈ E0
0(M,C)

approximating σ and tr k as v∞(σ−F σ), v∞(tr k−F tr k) ≤ e−αH . Further, with
φ := φ̄Xk1 , one has v∞(φ−F φ) ≤ e−(α+k1)H whereas v∞(φ), v∞(F φ) ≤ e−k1H .
From the equations (1.12) and (1.14) the existence of F ρ ∈ E0

0(M,C) and F Ŝ ∈
E1

1(M,C) with v∞(ρ−F ρ) ≤ e−(α+k0)H and v∞(Ŝ−F Ŝ) ≤ e−(α+k0)H is obtained.
Because both v(tr k + nH) and v(σ) are not larger than e−k0H according to (3.5)
there are F F ∈ E1

1(M,C) and F f ∈ E0
0(M,C) such that

v∞

[
R̂ic + (tr k + nH)σ − Ŝ −F F

]
≤ e−(α+k0)H

as well as

v∞

[
R+ (tr k + nH)2 +

trS + nΛ
n− 1

− n(ρ− Λ)
n− 1

−F f

]
≤ e−(α+k0)H .

The evolution equations (1.20) and (1.19) imply

∂tσ + nHσ = R̂ic + (tr k + nH)σ − Ŝ

and

∂t(tr k + nH) + 2nH(tr k + nH) =

R + (tr k + nH)2 +
trS + nΛ
n− 1

− n(ρ− Λ)
n− 1

so that corollary 3.14 yields improved approximants denoted again by F σ and
F tr k that actually fulfill v∞(σ−F σ), v∞(tr k−F tr k) ≤ e−(α+k0)H . According
to equation (1.10) the rescaled metric ḡ obeys the relation

∂tḡ = −2ḡ · σ − 2
n

(tr k + nH)ḡ.

The right hand side of this equation can now be approximated by an F G ∈
E0

2(M,C) as

v∞
[
−2ḡ · σ − (2/n)(tr k + nH)ḡ −F G

]
≤ e−(α+k0)H

too and corollary 3.14 once more allows then for an improved estimate v∞(ḡ−F ḡ) ≤
e−(α+k0)H . Moreover there is F Rg̃ ∈ E0

0(M,C) with v∞(Rg̃ −F Rg̃) ≤ e−(α+k0)H

so that the right hand side of the rescaled scalar field equation (3.4) is approximated
by an F E ∈ E0

0(M,C) as v∞(E − F E) ≤ e−(α+k0)H . As before by corollary 3.14
the estimate on φ̄ − F φ̄ can then be improved to v∞(φ̄ − F φ̄) ≤ e−(α+k0)H .
In summary, given approximations of ḡ and φ̄ to order e−αH it was possible to
construct improved approximations F ḡ and F φ̄ such that

v∞(ḡ −F ḡ), v∞(φ̄−F φ̄) ≤ e−(α+k0)H .

The existence statement aimed at follows hence by recursion. �
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4. Asymptotic character of formal solutions

After having obtained full asymptotic expansions of solutions of the Einstein-
scalar field system out of weak decay assumptions in the previous section the ques-
tion arises whether these expansions correspond to the formal, algebraic solutions
studied in chapter 2. This would enable one to study the asymptotics of solutions
solely at the level of formal series where proofs are usually much simpler and more
intuitive. It is shown in the following that this question can be answered in the
affirmative.

In contrast to the propositions 3.5 and 3.7 that were concerned with the ap-
proximation of products and compositions of functions by elements in Er

s(M,V ⊗n)
what is needed here additionally are crude error estimates under addition, mul-
tiplication and substitution only. So let f, g, a, b ∈ B(T r

s M,V ⊗n) be given with
v(f − a) ≤ e−αHv(f) and v(g − b) ≤ e−αHv(g) for an α ∈ R. It is then immediate
that

v[(f + g)− (a+ b)] ≤ e−αH max{v(f), v(g)}.

For the product a similar result is true.

Proposition 3.16. Assume f, a ∈ B(T r
s M,V ⊗n), f ′, a′ ∈ B(T r′

s′ M,V ⊗n′)
with v(f − a) ≤ e−αHv(f) and v(f ′ − a′) ≤ e−αHv(f ′) for an α > 0. Then
v(f ⊗ f ′ − a⊗ a′) ≤ e−αHv(f)v(f ′).

Proof. First note that v(a) ≤ v[f−(f−a)] ≤ v(f) since α > 0 and analogously
v(a′) ≤ v(f ′). But this implies immediately v(f ⊗ f ′ − a⊗ a′) = v[(f − a)⊗ (f ′ −
a′) + a⊗ (f ′ − a′) + (f − a)⊗ a′] ≤ e−αHv(f)v(f ′) again as α is non-negative. �

For the estimate under substitution take again Φ ∈ C∞(G,C) a smooth func-
tion defined on an open neighbourhood G of zero in the real numbers. Again only
the case f, a ∈ B(C∞(M,G)) is considered.

Proposition 3.17. Suppose v(f − a) ≤ e−αHv(f) for an α > 0 and v(f) < 1.
Then the estimate v[Ψ(f)−Ψ(a)] ≤ e−αHv(f) holds.

Proof. The proof goes much along the lines of that of proposition 3.7. Fix
v(f) < ε < 1 and n ∈ N with εn ≤ e−αHε. For a compact interval neighbourhood
K ⊂ G of zero there are constants c ∈ Cn and C > 0 such that∣∣∣∣∣Ψ(k)−

∑
i∈n

cik
i

∣∣∣∣∣ ≤ C|k|n

for all k ∈ K. By restricting to a suitable neighbourhood in M and sufficiently large
times it can be assumed that the images of f and a lie within K and |f |γ , |a|γ ≤ εt.
For Ω := Ψ−

∑
i∈n cix

i it hence follows that |Ω ◦ f | ≤ C|f |nγ ≤ Cεnt which proves
that v(Ω ◦ f) ≤ εn ≤ e−αHε. In the same way v(Ω ◦ a) ≤ e−αHε is obtained. On
the other hand, from proposition 3.16 one gets v(f i − ai) ≤ e−αHεi for all i ∈ N so
that

v

[∑
i∈n

cif
i −
∑
i∈n

cia
i

]
= v

[ ∑
0<i∈n

ci(f i − ai)

]
≤ e−αHε.

But then

v
[
Ψ(f)−Ψ(a)

]
= v

[
Ω ◦ f +

∑
i∈n

cif
i − Ω ◦ a−

∑
i∈n

cia
i

]
≤ e−αHε.

Since ε > v(f) was arbitrary this proves the claim. �
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Now let (g, φ) be a solution to the Einstein-scalar field system given as as tensor
families with respect to a Gaussian time coordinate. The solution is assumed to
exist globally towards the future and the conditions stated at the beginning of
section 3, in particular (M), (K) and (F), shall be satisfied.

Theorem 3.18. For an α > 0 let F g ∈ E0
2(M,C) and F φ ∈ E0

0(M,C) be of
degree greater than −(α− 2)H and −(α+ k1)H respectively such that

v∞(g −F g) ≤ e−(α−2)H and v∞(φ−F φ) ≤ e−(α+k1)H

hold. Then (g,φ) is a solution to the algebraic Einstein-scalar field system up to
but not including relative order α.

Proof. The idea of the proof is to compare quantities calculated “analytically”
from g and φ to those calculated “algebraically” from g and φ. All the latter shall
be marked as bold symbols. Starting from v∞(g−F g) ≤ e−(α−2)H one obtains due
to (1.10) v∞(k−F k) ≤ e−(α−2)H and from that v∞(σ−F σ), v∞(tr k−F trk) ≤
e−αH due to proposition 3.10, corollary 3.11 and proposition 3.16. For the same
reason v∞(A − F A) ≤ e−αH , v∞(Ric − F Ric) ≤ e−αH and hence v∞(R̂ic −
F R̂ic), v∞(R − F R) ≤ e−(α+2)H . Furthermore v∞(∇φ − F ∇φ), v∞(∇ 2φ −
F ∇ 2φ) ≤ e−(α+k1)H and so v∞(∆φ − F ∆φ) ≤ e−(α+k1+2)H . Finally, combining
the propositions 3.7 and 3.17 yields

v
(
V (φ∗φ)−F [V (φ∗φ)|(α+ 2k1)]

)
≤ e−(α+2k1)H

v
(
V ′(φ∗φ)−F [V ′(φ∗φ)|(α+ 2k1)]

)
≤ e−(α+2k1)H

together with

v
[
(1− ξφ∗φ)−1 −F [(1− ξφ∗φ)−1|(α+ 2k1)]

]
≤ e−(α+2k1)H

where f |α is an abbreviation for the restriction of f ∈ T(M) to the interval ]−∞, α[.
Now this implies that v[ρ−F(ρ|α)] and v[j−F(j|α)] are less than or equal to e−αH

whereas v[S − F(S|(α − 2))] ≤ e−(α−2)H . It follows that the same is true for the
evolution and constraint quantities v[e−F(e|α)], v[E−F(E|α)], v[c−F(c|α)] and
v[C − F(C|α)]. Since the “analytic” quantities e, E, c and C vanish it follows
from the above inequalities and the identity theorem 3.2 that their “algebraic”
counterparts have to vanish up to order α exclusively. Analogously one infers that
v[S−F(S|(α+ k1))] ≤ e−(α+k1)H and thence S|(α+ k1) = 0. But this says exactly
that the algebraic Einstein-scalar field equations are satisfied up to but not including
relative order α. �

The tools and the methods introduced in this chapter for obtaining full asymp-
totic expansions were presented in a quite general setting with the hope of being
directly applicable to models other than the scalar fields considered here. In [24]
Rendall proved existence and uniqueness of formal solutions of Einstein’s equations
coupled to a perfect fluid with linear equation of state. The formal series for the
metric and the fluid variables given there lie well within the algebra T(M) here as
they lack oscillatory terms entirely. It could thus be presumed that for this case the
formal solutions could be turned into asymptotic expansions rather analogously.





CHAPTER 4

Solutions with prescribed asymptotics

1. An existence and uniqueness theorem for Fuchsian systems

In this chapter existence and uniqueness of solutions of the Einstein-scalar field
system with prescribed asymptotics of the form studied in the previous chapter
will be proven for analytic asymptotic data at the future conformal boundary.
This will be achieved by reducing the field equations to first order Fuchsian form
thereby making use of the formal series solutions obtained in chapter 2. Attention
is restricted to analytic data as the most powerful results on Fuchsian systems
are available in this case. To begin with, this section introduces a certain class
of analytic functions and states the basic existence and uniqueness theorem for
Fuchsian equations in this class.

Let T be a topological space, Y a Banach space and X an open subset of Rn.

Definition 4.1. A function f : X × T → Y is called uniformly analytic (on
X) if it is continuous on X × T and for any x0 in X there is a neighbourhood U of
x0 and continuous functions ai ∈ C(T, Y ) for every multi-index i ∈ Nn, such that

f(x, τ) =
∞∑
|i|=0

ai(τ)(x− x0)i τ ∈ T, x ∈ U

converges uniformly on U × T .

A careful introduction and a detailed discussion of this class of functions can be
found in [22]. An obvious generalization for families of maps between analytic
manifolds is the following.

Definition 4.2. Let M and N be analytic manifolds. A function f : M×T →
N is called uniformly analytic (on M) if for the projections τ onto T , π onto M
and any charts x and y of M and N respectively the function

y ◦ f ◦ [(x ◦ π)× τ ]−1

is uniformly analytic on the image of x.

Suppose now that E is an analytic vector bundle over an analytic Riemannian
manifold (M,γ0) with a bundle metric 〈·, ·〉 and a linear connection D and that T
is an interval of the form T = ]0, τ0[ for some positive τ0. Let U be an open subset
of E containing the zero-section of E. Henceforth, under a Fuchsian system it is
understood a first order partial differential equation for a family of analytic sections
u(τ) of E of the form

(4.1) τ∂τu+ Lu = τ εf(u,Du, τ)

for an ε > 0 where L ∈ End(E) is an analytic vector bundle endomorphism and
f : U ×M E ⊗ T 0

1M × T → E is a family of bundle maps from U ×M E ⊗ T 0
1M to

E which is uniformly analytic on U ×M E ⊗ T 0
1M . The linear part L and the non-

linearity f are further subject to the condition that the bundle endomorphisms τL

as well as the maps f(·, τ) are locally uniformly bounded independently of τ ∈ T and

39
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that f(·, τ) is locally Lipschitz uniformly in τ ∈ T . Then a result by Kichenassamy
and Rendall [16] states that the following theorem holds.

Theorem A. Given that the regularity and boundedness assumptions on L and
f are satisfied the Fuchsian system (4.1) has a unique solution u which is defined
on an open neighbourhood of M ×{0+} in M ×T , is uniformly analytic on M and
tends to zero locally uniformly as τ approaches zero.

The proof of theorem A provided in [16] goes by a fixed point argument along
the lines of [3]. The analyticity assumptions are needed to estimate the gradient of
the solution by the Cauchy integral theorem in terms of the function itself as well as
to control the derivatives when taking the limit. There are also results in the non-
analytic setting [8, 15] where control on the gradient is gained by the assumption
of hyperbolicity of the system. In [23] results obtained previously in the analytic
setting [16] on the initial singularity in Gowdy spacetimes were generalized to the
smooth case. It is interesting that this generalization could be obtained without
resorting to the quite technical machinery of [8] and [15].

2. The first order Einstein-scalar field system

As a initial step towards bringing the Einstein-scalar field system to Fuchsian
form and thereby making theorem A applicable it is now written as a first order
equation similar to equation (4.1). For this it is recalled that the system is deter-
mined by the choice of a coupling constant ξ ∈ R and a potential V which shall
now be assumed to be a holomorphic function on some open neighbourhood J of
zero in C that takes real values if the argument is real. Define a vector bundle

E := CS0
2M ⊕ CT 1

1M ⊕ C⊕ C2 ⊕ C2 ⊕ CT 0
3M ⊕ CT 0

1M ⊕ CT 0
1M

and denote the projections onto the ten factors by γ, ς, λ, ψ, ψ†, ψτ , ψ†τ , ∂γ, ∂ψ
and ∂ψ† respectively. The background metric γ0 on M induces a bundle metric
〈·, ·〉γ0 and a linear connection D on E. Let further U1 be the open subset of
non-degenerate elements of S0

2M and U2 an open ball around zero in C2 such that
firstly |(1 + |η|)ξxy| < 1 and secondly xy ∈ J are valid for all (x, y) ∈ τ−k1

0 U2.
With this the preimages γ−1(U1) and (ψ×ψ†)−1(U2) are open in E and thus their
intersection

U := γ−1(U1) ∩ (ψ × ψ†)−1(U2)

as well.
To write down the expression for the non-linearity f eventually it is useful

to consider the following analytic maps defined on U ×M E ⊗ T 0
1M × T . With

inv : Aut(E) → Aut(E) assigning to any bundle automorphism its inverse and
using the background metric γ0 to identify metrically equivalent tensors as usual
one may define

γ] := inv ◦γ

(∂γ])ab
c := −(γ])ai∂γijc(γ])jb

and further

Ac
ab :=

1
2
(γ])ci(∂γiba + ∂γaib − ∂γabi)

∂Ac
abd :=

1
2
(∂γ])ic

d(∂γiba + ∂γaib − ∂γabi)

+
1
2
(γ])ci(∂γiba,d + ∂γaib,d − ∂γabi,d)
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where the projections of E ⊗ T 0
1M are distinguished from those of E by a comma.

This leads to

Ra
b := (γ])ia

[
(Ricγ0)ib + ∂Ai

abi − ∂Ai
iba +Aj

abA
i
ij −Ai

ajA
j
ib

]
and consequently R := Ri

i and R̂a
b := Ra

b − (R/n)δa
b. The possible presence

of logarithmic or oscillatory terms in leading order of the scalar field calls for a
special treatment of the corresponding variables. Let φ1 ∈ Cω(M,C) be an analytic
function, arbitrary for the moment, with its complex conjugate φ∗1. Later, this
function will be taken from the asymptotic initial data of the scalar field and will
so help to improve the asymptotics of the field variable φ. As an abbreviation and
with the notation already introduced

Υ (x) :=


0 if µ2 < µ2

c

−x/H if µ2 = µ2
c

1 if µ2 > µ2
c

for x ∈ R

is analytic with constant derivative Υ ′. Using this, one may proceed by defining

ψ̄ := τ−iωψ + φ1Υ (log τ)τ iω

ψ̄† := τ iωψ† + φ∗1Υ (log τ)τ−iω

ψ̄;a := τ−iω∂ψa +Daφ1Υ (log τ)τ iω

ψ̄†;a := τ iω∂ψ†a +Daφ
∗
1Υ (log τ)τ−iω

and

ψ̄a,b := τ−iω∂ψa,b +DaDbφ1Υ (log τ)τ iω

ψ̄†a,b := τ iω∂ψ†a,b +DaDbφ
∗
1Υ (log τ)τ−iω.

It will further be convenient to have

ψ̄;a := (γ])iaψ̄;i ψ̄†;a := (γ])iaψ̄†;i

ψ̄;ab := ψ̄a,b −Ai
abψ̄;i ψ̄†;ab := ψ̄†a,b −Ai

abψ̄
†
;i

ψ̄;a
b := (γ])iaψ̄;ib ψ̄†;ab := (γ])iaψ̄;ib.

It might be pointed out here explicitly that the commas and semicolons in the
indices are just intended as mnemonics and do not indicate partial and covariant
derivatives of the corresponding tensors. The variables representing time derivatives
of the scalar field are rescaled analogously according to

ψ̄τ := −Hτk0−iωψτ − (k1 − iω)Hψ̄ − φ1(Υ ′ + 2iω)Hτ iω

ψ̄†τ := −Hτk0+iωψ†τ − (k1 + iω)Hψ̄† − φ∗1(Υ
′ − 2iω)Hτ−iω

ψ̄τ ;a := −Hτk0−iωψτ,a − (k1 − iω)Hψ̄;a −Daφ1(Υ ′ + 2iω)Hτ iω

ψ̄†τ ;a := −Hτk0+iωψ†τ,a − (k1 + iω)Hψ̄†;a − φ∗1(Υ
′ − 2iω)Hτ−iω

and

ψ̄;a
τ := (γ])iaψ̄τ ;i ψ̄†;aτ := (γ])iaψ̄†τ ;i.

Since the potential V is holomorphic with V (0) = Λ and V ′(0) = µ2/2 the functions
specified by [V (x) − Λ]/x and [V ′(x) − µ2/2]/x for x ∈ J \ {0} have analytic
extensions denoted by[

V − Λ
·

]
and

[
V ′ − µ2/2

·

]
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to J respectively. With their help one may set

W := ψ̄†ψ̄

[
V − Λ
·

]
(τ2k1 ψ̄†ψ̄) W ′ := ψ̄†ψ̄

[
V ′ − µ2/2

·

]
(τ2k1 ψ̄†ψ̄)

as well as

κ := τ2k0

(
ς +

λ

n
δ
)
−Hδ

for brevity. Another peculiarity, besides possible occurrence of logarithmic or os-
cillatory terms in leading order, is that for non-minimal coupling ξ 6= 0 the energy-
momentum tensor (1.14) contains second order time derivatives of the scalar field
while the scalar field equation (1.18) contains second order time derivatives of the
metric through Rg̃. This fact has played a role already in chapter 3 for the determi-
nation of the asymptotics and requires also here the introduction of some additional
quantities, namely Σ̌, Q and λ̇ as follows.

ε :=
1
2
(
1− τ2k1ξψ̄†ψ̄

)−1
[
ψ̄†τ ψ̄τ −

(
2ξ − 1

2

)
τ2
(
ψ̄†;iψ̄

;i + ψ̄†;iψ̄;i

)
− 2ξψ̄†

[
τ2ψ̄;i

i + (τ2k0λ− nH)ψ̄τ

]
− 2ξψ̄

[
τ2ψ̄†;ii + (τ2k0λ− nH)ψ̄†τ

]
+ 2W + 2Λξψ̄†ψ̄

]
ιa :=

1
2
(
1− τ2k1ξψ̄†ψ̄

)−1
[
−(1− 2ξ)

(
ψ̄†;aψ̄τ + ψ̄;aψ̄

†
τ

)
+ 2ξψ̄†

(
ψ̄τ ;a + κi

aψ̄;i

)
+ 2ξψ̄

(
ψ̄†τ ;a + κi

aψ̄
†
;i

)]
Σ̌a

b :=
1
2
(
1− τ2k1ξψ̄†ψ̄

)−1
[
(1− 2ξ)τ2

(
ψ̄†;aψ̄;b + ψ̄;aψ̄†;b

)
− 2ξψ̄†

(
τ2ψ̄;a

b + κa
bψ̄τ

)
− 2ξψ̄

(
τ2ψ̄†;ab + κa

bψ̄
†
τ

)
+
{(

2ξ − 1
2

)(
τ2ψ̄†;iψ̄

;i + τ2ψ̄†;iψ̄;i

)
+ 4ξψ̄†ψ̄

(
ξ
[
τ2R+ κi

jκ
j
i + (τ2k0λ− nH)2

]
+ 2τ2k1W ′ + µ2

)
− 2W − 2Λξψ̄†ψ̄

}
δa

b

]
.

Consider the function given by [(1−ξx)(1−ηξx)−1−1]/x for all non-zero x satisfying
(1 + |η|)ξ|x| < 1. It is analytic and has an analytic extension[

(1− ξ·)(1− ηξ·)−1 − 1
·

]
to zero. Therefore it is possible to set

Q := ψ̄†ψ̄

[
(1− ξ·)(1− ηξ·)−1 − 1

·

]
(τ2k1ξψ̄†ψ̄)

and using this

λ̇ := (1 + τ2k1Q)
[
τ2(1−k0)R+ τ2k0λ2 +

1
n− 1

τ2(k1−k0)
(
Σ̌i

i − nε
)]

− 2nHτ2k1Qλ
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as well as

R̃ := τ2(1−k0)R− 2λ̇+ τ2k0ςijς
j
i +
(
1 +

1
n

)
τ2k0λ2 + 2(n− 1)Hλ.

In order to compare the quantities defined here to the projections of the energy-
momentum tensor of the solution to be constructed it is convenient to have

Σa
b := Σ̌a

b −
4ξ2τ2k0 ψ̄†ψ̄

1− ξτ2k1 ψ̄†ψ̄

(
λ̇− 2nHλ)δa

b

at one’s disposal. Lastly, as a shorthand, one may write

ψ̈ := τ2(1−k0)ψ̄;i
i + λψ̄τ − ξR̃ψ̄ − 2τ2(k1−k0)W ′ψ̄

ψ̈† := τ2(1−k0)ψ̄†;ii + λψ̄†τ − ξR̃ψ̄† − 2τ2(k1−k0)W ′ψ̄†.

Then the non-linearity f which maps U ×M E ⊗ T 0
1M × T to E analytically shall

be given as components by

γab ◦ f :=
τ2k0

H

[
γaiς

i
b + γbiς

i
a +

1
n

(γab + γba)
]

ςab ◦ f := − 1
2H

[
τ2(1−k0)

(
R̂a

b + R̂ b
a

)
+ τ2k0λ(ςab + ς b

a )

− τ2(k1−k0)
(
Σ̂a

b + Σ̂ b
a

)
− 2
n
τ2k0λ(ςab − ς b

a )

+ τ2k0(ςaiς
i
b − ς i

b ς
a

i )
]

λ ◦ f := − 1
H
λ̇

ψ ◦ f := τk0ψτ

ψ† ◦ f := τk0ψ†τ

ψτ ◦ f :=
τk0+iω

H2
ψ̈

ψ†τ ◦ f :=
τk0−iω

H2
ψ̈†

∂γabc ◦ f :=
2τ2k0

H

[
∂γaicς

i
b + γaiς

i
b,c +

1
n
γabλ,c +

1
n
λ∂γabc

]
∂ψa ◦ f := τk0ψτ,a

∂ψ†a ◦ f := τk0ψ†τ,a.

As mentioned before, a hat is used to denote the trace-free part of the corresponding
tensor and the notation X b

a is used as a shorthand for γai(γ])jbXi
j for any X ∈

CT 1
1M .
What remains to be defined is the main part of equation (4.1), the bundle

endomorphism L ∈ End(E). It is taken to be the following direct sum on the
factors

L := 0⊕ (2k0 − n)⊕ 2(k0 − n)⊕ 0⊕ 0

⊕ (k0 − 2iω − k2 + k1)⊕ (k0 + 2iω − k2 + k1)⊕ 0⊕ 0⊕ 0

from which the eigenvalues can directly be read off. Note that the endomorphism
is constant and the real part of its spectrum is bounded below by −2(n− k0). The
first order equation (4.1) obtained with these definitions of L and f will be referred
to as the reduced system.
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3. Approximate solutions of the reduced system

The system obtained so far is of the form of equation (4.1) but it is not Fuchsian
since there are eigenvalues of the endomorphism L with a negative real part. The
properties of the non-linearity already fit the assumptions of theorem A though.
The plan now is to shift the eigenvalues up by using the formal series solutions
obtained in chapter 2. As a step in that direction it is shown in this section that
truncations of the formal solutions “approximately” solve the reduced system.

The notion of asymptotic character developed in chapter 3 can be carried over
to the situation at hand by means of the bianalytic diffeomorphism

(4.2) t : ]0, τ0[→ ]t0,∞[ , τ 7→ − 1
H

log τ

where −Ht0 = log τ0 so that a smooth family f : T → CT r
s M of (r, s)-tensors is

exponentially bounded if and only if f ◦ t : ]t0,∞[ → CT r
s M is. As 0 < τ0 < ∞

there is no risk of confusion and the families f and f ◦t will simply be identified, i.e.
f ∈ B(T r

s M,C) will be written instead of f ◦ t ∈ B(T r
s M,C) or just v(f) instead

of v(f ◦ t).

Definition 4.3. Fix a θ > 0. Two smooth tensor families f, g : T → CT r
s M

are said to be θ-asymptotically equivalent, f ' g, if f−g ∈ B(T r
s M,C) and satisfies

v∞(f − g) ≤ e−θH .

For a fixed θ > 0 the truncated evaluation map

Fθ f := F(f |θ) = F

(∑
m<θ

f(m)Xm

)
, f ∈ T(M)

has the following properties which immediately follow from the results of chapter 3.
Let κ ∈ C, f, g : T → CT r

s M , f ′ : T → CT r′

s′ M smooth tensor families and
f , g ∈ (CT r

s M)[Z]〈Y 〉((X)), f ′ ∈ (CT r′

s′ M)[Z]〈Y 〉((X)), then

Fθ(κf) = κFθ f

Fθ(f + g) = Fθ f + Fθ g

Fθ(f ⊗ f ′) ' (Fθ f)⊗ (Fθ f ′).

It means that Fθ, while not quite an algebra homomorphism, has compatible prop-
erties with respect to the equivalence relation '. Furthermore, one has the approx-
imation relations

f ′ ' Fθ f ′ =⇒ f + f ′ ' f + Fθ f ′

g ' Fθ g ∧ v∞(f) ≤ 1 =⇒ f ⊗ g ' f ⊗Fθ g

f ' Fθ f ∧ g ' Fθ g =⇒ f + g ' Fθ(f + g)

f ' Fθ f ∧ f ′ ' Fθ f ′ =⇒ f ⊗ f ′ ' Fθ(f ⊗ f ′)

as well as, for a holomorphic function Ψ defined on an open neighbourhood of zero
and provided the image of f ∈ B(C∞(M,C)) lies within the domain of Ψ,

f ' Fθ f ∧ f = o(1) =⇒ Ψ ◦ f ' Fθ Ψ(f).

Finally it is noted that in the case where f ' Fθ f it is true that

Df ' Fθ ∂Df

τ∂τf ' − 1
H
Fθ ∂tf

and for any α ≥ 0 non-negative, β ∈ R, l ∈ N
(−H)−l(log τ)lτα+iβf ' Fθ(XαY βZlf).
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Let any formal solution (g,φ) of the algebraic Einstein-scalar field system be
given and fix φ1 according to the conditions (P1) and (P2) of theorem 2.11. Assume
the solution to be analytic, that is, all coefficients of g and φ are analytic. With
the rescaled metric ḡ := X2g and scalar field φ̌ := X−k1Y ωφ − φ1Y

2ωΥ (−HZ)
define a family v of analytic sections of E as

v := Fθ ḡ ⊕Fθ X
−2k0σ ⊕Fθ X

−2k0(tr k + nH)⊕Fθ φ̌⊕Fθ φ̌
∗

(4.3)

⊕
(
− 1
H
Fθ X

−k0∂tφ̌
)
⊕
(
− 1
H
Fθ X

−k0∂tφ̌
∗)

⊕Fθ Dḡ ⊕Fθ Dφ̌⊕Fθ Dφ̌
∗

for some θ > n. One may assume, without loss of generality, that the images of
v(τ) all lie within U . Then, from corollary 3.11 it follows that

γ](v,Dv, τ) ' Fθ ḡ]

∂γ](v,Dv, τ) ' Fθ Dḡ]

A(v,Dv, τ) ' Fθ A

∂A(v,Dv, τ) ' Fθ DA.

Hence

R̂a
b(v,Dv, τ) ' Fθ X

−2R̂ica
b

R(v,Dv, τ) ' Fθ X
−2R

are inferred. For the scalar field variables one has

ψ̄(v,Dv, τ) ' Fθ X
−k1φ ψ̄†(v,Dv, τ) ' Fθ X

−k1φ∗

ψ̄;a(v,Dv, τ) ' Fθ X
−k1∇aφ ψ̄†;a(v,Dv, τ) ' Fθ X

−k1∇aφ∗

because of Dφ = ∇φ, as well as

ψ̄a,b(v,Dv, τ) ' Fθ X
−k1DaDbφ ψ̄†a,b(v,Dv, τ) ' Fθ X

−k1DaDbφ
∗

ψ̄;ab(v,Dv, τ) ' Fθ X
−k1∇a∇bφ ψ̄†;ab(v,Dv, τ) ' Fθ X

−k1∇a∇bφ
∗.

The quantities representing time derivatives of the scalar field satisfy

ψ̄τ (v,Dv, τ) ' Fθ X
−k1∂tφ ψ̄†τ (v,Dv, τ) ' Fθ X

−k1∂tφ
∗

ψ̄τ ;a(v,Dv, τ) ' Fθ X
−k1∇a∂tφ ψ̄†τ ;a(v,Dv, τ) ' Fθ X

−k1∇a∂tφ
∗

giving rise to

ψ̄;a(v,Dv, τ) ' Fθ X
−2−k1∇aφ ψ̄†;a(v,Dv, τ) ' Fθ X

−2−k1∇aφ∗

ψ̄;a
τ (v,Dv, τ) ' Fθ X

−2−k1∇a∂tφ ψ̄†;aτ (v,Dv, τ) ' Fθ X
−2−k1∇a∂tφ

∗

and

ψ̄;a
b(v,Dv, τ) ' Fθ X

−2−k1∇a∇bφ

ψ̄†;ab(v,Dv, τ) ' Fθ X
−2−k1∇a∇bφ

∗.
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By noting that (ψ̄†ψ̄)(v,Dv, τ) ' Fθ X
−2k1φ∗φ and so (τ2k1 ψ̄†ψ̄)(v,Dv, τ) '

Fθ φ∗φ and due to the choice of U2 one concludes that

W (v,Dv, τ) ' Fθ X
−2k1

[
V (φ∗φ)− Λ

]
W ′(v,Dv, τ) ' Fθ X

−2k1

[
V ′(φ∗φ)− µ2/2

]
(
1− ξτ2k1 ψ̄†ψ̄

)−1 ' Fθ

(
1− ξφ∗φ

)−1(
1− ηξτ2k1 ψ̄†ψ̄

)−1 ' Fθ

(
1− ηξφ∗φ

)−1

and hence

Q(v,Dv, τ) ' Fθ X
−2k1

[
1− ξφ∗φ

1− ηξφ∗φ
− 1
]
.

Obviously,

κ(v,Dv, τ) ' Fθ

(
σ +

trk

n
δ
)

and this implies

ε(v,Dv, τ) ' Fθ X
−2k1(ρ− Λ)

ιa(v,Dv, τ) ' Fθ X
−2k1ja

Σ̌a
b(v,Dv, τ) ' Fθ X

−2k1Ša
b.

With this one calculates that

λ̇(v,Dv, τ) ' Fθ X
−k0λ̇

Ša
b(v,Dv, τ) ' Fθ X

−2k1

[
Ša

b −
4ξ2φ∗φ

1− ξφ∗φ

(
λ̇− 2nH(trk + nH)

)]
and

R̃(v,Dv, τ) ' Fθ X
−2k0

[
R− 2λ̇ + σi

jσ
j
i +
(
1 +

1
n

)
(trk + nH)2

+ 2(n− 1)H(trk + nH)
]

where the abbreviation

λ̇ :=
1− ξφ∗φ

1− ηξφ∗φ

[
R + (trk + nH)(trk − nH) +

1
n− 1

(
tr Š − nρ + nΛ

)]
+ 2nH(trk + nH)

was used. It will now be exploited that the algebraic quantities for the metric and
the scalar field, g and φ respectively, satisfy the Einstein-scalar field equations.
The fact that the algebraic scalar field equation holds implies

trS + nΛ− tr Š = − 4nξ2φ∗φ
1− ξφ∗φ

∂t trk

and from there the algebraic Einstein equations yield

λ̇− 2nH(trk + nH) = ∂t trk.

But then it is actually true that

Σa
b(v,Dv, τ) ' Fθ X

−2k1(Sa
b + Λδa

b)

(λ̇− 2nHλ)(v,Dv, τ) ' Fθ X
−2k0∂t trk
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as well as

R̃(v,Dv, τ) ' Fθ X
−2k0

[
Rg̃ − n(n+ 1)H2

]
and this in turn shows again by the algebraic scalar field equation that

ψ̈(v,Dv, τ) ' Fθ X
−2k0Y −ω

[
∂2

t φ̌ + (k2 − k1 + 2 + 2iω)H∂tφ̌
]

ψ̈†(v,Dv, τ) ' Fθ X
−2k0Y ω

[
∂2

t φ̌
∗

+ (k2 − k1 + 2− 2iω)H∂tφ̌
∗]
.

Putting all this together finally yields

γ ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tḡ

ς ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂t(X−2k0σ)− (n− 2k0)Fθ X

−2k0σ

λ ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂t

[
X−2k0(trk + nH)

]
− 2(n− k0)Fθ X

−2k0(trk + nH)

ψ ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tφ̌

ψ† ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tφ̌

∗

ψτ ◦ f(v,Dv, τ) ' 1
H2

Fθ ∂t

(
X−k0∂tφ̌

)
+

1
H

(k2 − k1 − k0 + 2iω)Fθ X
−k0∂tφ̌

ψ†τ ◦ f(v,Dv, τ) ' 1
H2

Fθ ∂t

(
X−k0∂tφ̌

∗)
+

1
H

(k2 − k1 − k0 − 2iω)Fθ X
−k0∂tφ̌

∗

∂γ ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tDḡ

∂ψ ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tDφ̌

∂ψ† ◦ f(v,Dv, τ) ' − 1
H
Fθ ∂tDφ̌

∗

meaning that indeed

(4.4) τ∂τv + Lv ' f(v,Dv, τ)

holds.
Instead of putting the result of this section with the quite technical defini-

tions for the rescaled quantities ḡ and φ̌ and the approximate solution (4.3) into
a proposition they will be summarized in a rather informal and imprecise manner.
So assume that a solution of the algebraic Einstein-scalar field system is given. For
any arbitrary high order, the functions defined by some finite truncation of the for-
mal series solutions solve the reduced system asymptotically to at least that order.
This is expressed by the asymptotic equivalence (4.4).

4. Solutions of the reduced system

The formal solutions or more precisely the approximate solutions (4.3) obtained
in the previous section can now be used to solve the reduced system exactly. This
is done by showing that the “difference” u between an actual solution v + τ ζu and
the approximate solution v satisfies a Fuchsian system with linear part L+ ζ, thus
yielding positive eigenvalues thereof by only choosing ζ large enough. The non-
trivial task thereby is to verify that the non-linearity remains well-behaved for an
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application of theorem A. The corresponding estimates will therefore be provided
in the following.

Let E, F and G be vector bundles over a Riemannian manifold (M,γ0) together
with (positive definite) bundle metrics and linear connections DE , DF and DG on
E, F and G respectively. Consider a smooth family of bundle maps u : E×T → F
over M where T = ]0, τ0[ for some positive τ0. By identifying the maps u(·, τ) with
sections of the pullback bundle π∗EF by the projection πE : E → M and using
the splitting of TE = E ×M E ⊕ TM provided by the connection DE to introduce
the fibre metric 〈·, ·〉E ⊕ γ0 on TpE = Em ⊕ TmM for any p ∈ E, m = πE(p), the
definitions of chapter 3, section 1 become applicable to u and analogously to any
smooth family of bundle maps f : F × T → G over M .

Proposition 4.4. Suppose ů : E → F and uτ , vτ : E → F are smooth (families
of) bundle maps over M with v(u− ů) < 1 and v(u− v) < 1. If v(DGf) < 1 then
the families f(u) : τ 7→ fτ (uτ ) and f(v) : τ 7→ fτ (vτ ) satisfy

v[f(u)− f(v)] ≤ v(DGf)v(u− v).

Proof. Choose α, β > 0 such that v(DGf) < e−αH < 1 and v(u−v) < e−βH <
1. For a fixed x0 ∈ E there is a fibre-wise convex neighbourhood P of p0 = ů(x0)
such that for τ small |DGfτ (p)|Hom(Fm⊕TmM,Gm) < τα for all p ∈ P . Due to the
fact that v(u − ů) < 1 as well as v(v − ů) ≤ max{v(v − u), v(v − ů)} < 1 there is
a neighbourhood U of x0 in E with ůτ (U), uτ (U) and vτ (U) are all contained in
P for small τ . It can further be assumed that |uτ − vτ |F ≤ τβ on U as well. But
then for τ sufficiently small one has on U

d

ds
f
[
(1− s)uτ + svτ

]
= DGf

(
(1− s)uτ + svτ

)
[vτ − uτ , 0]

for s ∈ [0, 1] . Since (1 − s)uτ (x) + svτ (x) ∈ P for all s ∈ [0, 1] , x ∈ U and τ
sufficiently small it implies

(4.5) |f(v)− f(u)|G ≤ C|DGf |Hom(F⊕TM,G)|v − u|F
on U and for small τ where C is a constant. This shows v[f(u)− f(v)] ≤ e−(α+β)H

which proves the claim. �

Corollary 4.5. If vp(u− ů) < 1, vp(u− v) < 1 and vp(f) < 1 then vp[f(u)−
f(v)] ≤ vp(f)vp(u− v).

Proof. Consider the statement that if for α, β positive v
[
(τ∂τ )i(DF )j(u −

ů)
]
< 1, v

[
(τ∂τ )i(DF )j(u−v)

]
≤ e−βH and v

[
(τ∂τ )i(DG)j+1f

]
≤ e−αH were valid

for i+j ≤ n then so is v
(
(τ∂τ )i(DG)j [f(u)−f(v)]

)
≤ e−(α+β)H . Due to proposition

4.4 this holds for n = 0. Assume that it holds for an n ∈ N and that the hypothesis
is fulfilled for i+ j ≤ n+ 1. Then, for any vector field X ∈ T 1

0 E,

DG
X [f(u)− f(v)] = DGf(u)[DF

Xu, TπEX]−DGf(v)[DF
Xv, TπEX]

=
(
DGf(u)−DGf(v)

)
[DF

Xu, TπEX]

+DGf(v)[DF
Xu−DF

Xv, 0]

as well as

τ∂τ [f(u)− f(v)] = DGf(u)[τ∂τu, 0]−DGf(v)[τ∂τv, 0]

+ (τ∂τf)(u)− (τ∂τf)(v)

=
(
DGf(u)−DGf(v)

)
[τ∂τu, 0]

+DGf(v)[τ∂τu− τ∂τv, 0]

+ (τ∂τf)(u)− (τ∂τf)(v).
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Using the induction hypothesis together with v
[
(τ∂τ )i(DG)j+1DGf

]
≤ e−αH and

v
[
(τ∂τ )i(DG)j+1τ∂τf

]
≤ e−αH for all i+ j ≤ n it can be concluded that

v
(
(τ∂τ )i(DG)j [DGf(u)−DGf(v)]

)
≤ e−(α+β)H ,

v
(
(τ∂τ )i(DG)j [(τ∂τf)(u)− (τ∂τf)(v)]

)
≤ e−(α+β)H

and

v
[
(τ∂τ )i(DG)jDGf(u)

]
≤ max

{
v
(
(τ∂τ )i(DG)j [DGf(u)−DGf (̊u)]

)
,

v
[
(τ∂τ )i(DG)jDGf (̊u)

]}
≤ e−αH .

Now certainly v
[
(τ∂τ )i(DF )j(DFu − DF v)

]
≤ e−βH and v

[
(τ∂τ )i(DF )j(τ∂τu −

τ∂τv)
]
≤ e−βH so that the statement holds for i + j ≤ n + 1 and this completes

the proof. �

Remark 4.6. Due to the local nature of the proofs proposition 4.4 and corollary
4.5 remain valid if E and F are merely open subsets of vector bundles over M
containing a smooth section of the respective bundle. Note also that equation (4.5)
establishes local Lipschitz continuity of fτ uniformly in τ for τ sufficiently small
provided v(DGf) < 1.

After procuring these important estimates the notation introduced in section 2
shall be adopted again and so in particular the spaces E, U and the maps L, f
and v shall be defined as detailed there. It is now straightforward to show that f
has the regularity required by theorem A. In fact, much more is ascertained. Fix
a positive k0 such that 2k0 is not greater than both one and k1. To start with
note that all the projections from U ×M E ⊗ T 0

1M are independent of τ and so
have an v∞-value of at most one. Since the map inv is analytic the same is true
of γ]. Then it follows immediately that v∞(∂γ]), v∞(A), v∞(∂A), v∞(R̂) and
v∞(R) are all less than or equal to one. Because v∞[Υ (log τ)τ±iω] ≤ 1 it is clear
that v∞(ψ̄), v∞(ψ̄†), v∞(ψ̄;a), v∞(ψ̄†;a), v∞(ψ̄a,b), v∞(ψ̄†a,b), v∞(ψ̄;a), v∞(ψ̄†;a),
v∞(ψ̄;ab), v∞(ψ̄†;a), v∞(ψ̄;a

b), v∞(ψ̄†;ab), v∞(ψ̄τ ), v∞(ψ̄†τ ), v∞(ψ̄τ ;a), v∞(ψ̄†τ ;a) and
v∞(ψ̄;a

τ ), v∞(ψ̄†;aτ ) are not greater than one either. Now v∞(τ2k1 ψ̄†ψ̄) ≤ e−2k1H < 1
and so by corollary 3.9 one has v∞(W ), v∞(W ′), v∞(Q) ≤ 1. Obviously, v∞(κ) ≤ 1
and therefore v∞(Σ̌), v∞(ι), v∞(ε) ≤ 1. This then implies, by the choice of k0,
that v∞(λ̇) ≤ e−2k0H as well as v∞(R̃), v∞(Σ) ≤ 1 and hence v∞(ψ̈), v∞(ψ̈†) ≤ 1.
Putting all together yields

(4.6) v∞(f) ≤ e−k0H .

Let A be the smallest +-stable set in A0 containing the supports of X2g and
X−k1φ and fix θ > 2n with θ /∈ A. It can be assumed that 2k0 ≤ [(A−θ)∪A]∩]0,∞[
and there is a positive ε with 2ε < 2k0 ≤ max{1, k1}. It will further be assumed
that the image of the approximate solution v is compactly contained in U . With
this define ζ := θ − ε and an analytic map f̊ : Ů ×M E ⊗ T 0

1M × T → E by

f̊(z, z′, τ) := τ−ζ
[
f(v + τ ζz,Dv + τ ζz′, τ)− (τ∂τ + L)v

]
where Ů is a suitable open subset of E containing the zero-section of E. For
simplicity compositions with the bundle projection from Ů ×M E ⊗ T 0

1M to M are
not written out explicitly. To see that the regularity of f carries over to f̊ one
observes that there is v̊ ∈ Cω(M,U) with v∞(v − v̊) < 1 which is given by the
zero-order coefficients of the formal series occurring in equation (4.3). Then the
maps v̊ × Dv̊, v × Dv and h(z, z′, τ) := v × Dv + τ ζ(z, z′) are analytic and fulfill
v∞(v ×Dv − v̊ ×Dv̊) < 1 and v∞(v ×Dv − h) ≤ e−ζH . With the estimates (4.6)
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on the function f and (4.4) on the approximate solution v it follows by corollary
4.5 that

v∞(τ ζ f̊) ≤ max{v∞[f(h)− f(v)], v∞[(τ∂τ + L)v − f(v)]}

≤ max{e−(ζ+k0)H , e−θH} ≤ e−(ζ+ε)H

and therefore

(4.7) v∞(f̊) ≤ e−εH .

This together with the fact that all eigenvalues of L+ ζ have strictly positive real
part implies that the system

(4.8) τ∂τu+ (L+ ζ)u = f̊(u,Du, τ)

is indeed of Fuchsian form and theorem A yields the existence of a unique solution
u : M → Ů defined on some open neighbourhood M of M × {0+} in M × T which
tends to zero locally uniformly as τ → 0 and for which πE ◦ u is the canonical
projection M →M . As f̊ is actually analytic so is u. It is then clear that

w = v + τ ζu

is an analytic solution of the reduced system with w − v = o(τ ζ) locally uniformly
as τ → 0. Conversely, if w̃ : M → U is any solution of the reduced system uniformly
analytic on M with w̃ − v = o(τ ζ) locally uniformly then ũ = τ−ζ(w̃ − v) solves
the Fuchsian system above and so ũ = u and therefore w̃ = w. In this sense the
Fuchsian system and the reduced system are equivalent.

In the rest of this section some basic properties of the solution w of the reduced
system are collected that will allow for an interpretation of certain components of
w as a solution to the Einstein-scalar field system. According to the definition of f
one has (γab−γba)◦f(w,Dw, τ) = 0 as well as γab◦L = 0 so τ∂τ [γab(w)−γba(w)] =
(γab − γba) ◦ f(w,Dw, τ) = 0 and hence readily

γab(w) = γba(w).(R1)

This already ensures X i
i = Xi

i for X ∈ CT 1
1M . Using the fact that σ is trace-less

and therefore ςii(v) = 0 it follows that the quantity ςii(u) satisfies the Fuchsian
equation

τ∂τ [ςii(u)] + [ζ − (n− 2k0)]ςii(u) = − 1
H
τ2k0λ(w)ςii(u).

The uniqueness statement of theorem A thus implies that ςii(u) is identically zero
and so

ςii(w) = 0.(R2)

Also with (R1) it is inferred that [τ∂τ − (n−2k0)][γai(w)ςib(w)−γbi(w)ςia(w)] = 0.
From the algebraic solution it is known that γai(v)ςib(v) ' γbi(v)ςia(v) which shows
that y := τ−ζ [γai(w)ςib(w)− γbi(w)ςia(w)] = o(1) locally uniformly as τ → 0 while
satisfying τ∂τy + [ζ − (n− 2k0)]y = 0. Again by uniqueness it is concluded that

γai(w)ςib(w) = γbi(w)ςia(w).(R3)

Apart from these symmetries it is crucial to show that the “daggered” quantities
used in the formulation of the reduced system as representing the corresponding
complex conjugate variables do in fact have this meaning while all the other quan-
tities remain real. For this the bundle automorphism

J := (γ, ς, λ, ψ†, ψ, ψ†τ , ψτ , ∂γ, ∂ψ
†, ∂ψ) ∈ Aut(E)



4. SOLUTIONS OF THE REDUCED SYSTEM 51

interchanging respectively the daggered and un-daggered variables is introduced.
It maps the set U∗ into U and by direct calculation it is seen that it satisfies

f
(
Jz∗, (J ⊗ δ)z′∗, τ

)
= Jf(z, z′, τ)∗

for all (z, z′, τ) ∈ U ×M E ⊗ T 0
1M × T . Additionally,

LJ = JL∗

and for the approximate solution the relation v = Jv∗ is true. It follows then that
Ju∗ is analytic on M, tends to zero locally uniformly as τ goes to zero and satisfies
the same equation u does,

τ∂τ (Ju∗) + (L+ ζ)Ju∗ = J
[
τ∂τu+ (L+ ζ)u

]∗
= τ−ζ

[
f(Jw∗, DJw∗, τ)− (τ∂τ + L)Jv∗

]
= f̊(Ju∗, DJu∗, τ),

where (J ⊗ δ)Dw∗ = DJw∗ was used. Once again uniqueness implies

w = Jw∗.(R4)

As a result of the reduction of the Einstein-scalar field system to first order the
auxiliary variables ∂γ, ∂ψ and ∂ψ† representing spatial derivatives of the corre-
sponding quantities had to be introduced. That they really serve this purpose will
now be established. Certainly, ςab,c(w,Dw) = Dcς

a
b(w) and λa(w,Dw) = Daλ(w)

so that with (R1)–(R3) one gets

τ∂τ

[
Dcγab(w)− ∂γabc(w)

]
=

2
H
τ2k0

(
ςib(w) +

1
n
λ(w)δi

b

)[
Dcγai(w)− ∂γaic(w)

]
.

Thus yab := τ−ζ [Dcγab(w)− ∂γabc(w)] = Dcγab(u)− ∂γabc(u) fulfills the equation

τ∂τyab + ζyab =
2
H
τ2k0

(
ςib(w) +

1
n
λ(w)δi

b

)
yai

while vanishing locally uniformly in the limit τ → 0 and so yab = 0 is inferred which
proves that

Dcγab(w) = ∂γabc(w).(R5)

Along the same lines it is observed that τ∂τ [Dψ(w) − ∂ψ(w)] = 0 and Dψ(w) −
∂ψ(w) vanishes for τ → 0 hence implying with (R4)

Dψ(w) = ∂ψ(w) Dψ†(w) = ∂ψ†(w).(R6)

The last property which shall be remarked here is that, given asymptotic data
corresponding to a real scalar field, the solution will in fact be real. For this it is
first noted that ψ(u) = o(τk0) locally uniformly as τ → 0 since it satisfies

τ∂τψ(u) + ζψ(u) = τk0ψτ (u)

and the assertion follows by integration. Then an analytic map uc on M shall be
given by requiring that

ψ(uc) := τ2iωψ†(u)

ψ†(uc) := τ−2iωψ(u)

ψτ (uc) := τ2iω
[
ψ†τ (u) + 2iωτ−k0ψ†(u)

]
ψ†τ (uc) := τ−2iω

[
ψτ (u)− 2iωτ−k0ψ(u)

]
∂ψ(uc) := τ2iω∂ψ†(u)

∂ψ†(uc) := τ−2iω∂ψ(u)
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and all other projections of uc agree with those of u. Because of the decay esti-
mate for ψ(u) just established it is obvious that uc = o(1) locally uniformly as τ
approaches zero. Now suppose that the data for the scalar field is real, φ∗ = φ,
then v∗ = v and consider the function wc := v + τ ζuc. By a direct calculation it
can be seen that ψ̄(wc, Dwc, τ) = ψ̄†(w,Dw, τ) and ψ̄†(wc, Dwc, τ) = ψ̄(w,Dw, τ)
and that the analogues are true for all the other “barred” field variables. Fur-
thermore ψ̈(wc, Dwc, τ) = ψ̈†(w,Dw, τ) and ψ̈†(wc, Dwc, τ) = ψ̈(w,Dw, τ). This
finally implies the validity of

τ∂τu
c + (L+ ζ)uc = f̊(uc, Duc, τ)

from which uc = u is deduced due to uniqueness of solutions of Fuchsian systems.
In particular ψ†(u) = τ−2iωψ(u) and because of (R4) ψ(w∗) = ψ†(w) so that one
obtains

ψ̄(w,Dw, τ)∗ = ψ̄(w,Dw, τ).(R7)

5. Solutions of the Einstein-scalar field system

An analytic formal solution (g,φ) of the algebraic Einstein-scalar field system
on an analytic Riemannian manifold (M,γ0) determines an approximate solution
v up to some order θ of the reduced system and it has been shown so far that this
approximate solution can be “corrected” to yield a unique exact solution w of the
reduced system which is (θ− ε)-asymptotically equivalent to v. It is demonstrated
in this section that such a solution of the reduced system gives rise to a unique
solution of the Einstein-scalar field equations. In particular it is shown that the
constraints, which did not go into the reduced system, are satisfied.

The domain of the solution w is an open neighbourhood M of M × {0+} in
M×T . Using the diffeomorphism (4.2) t : T → I this can be mapped bianalytically
onto an open neighbourhood M of M × {+∞} in M × I,

ϕ : M →M, (x, τ) 7→ (x, t(τ)).

As done hitherto, compositions with ϕ and its inverse will be understood implicitly
so for instance w and w ◦ ϕ−1 are identified. It is further convenient to denote by
π and t also the canonical projections M→ M and M→ I respectively. On the
manifold M define a Lorentzian metric

g̃ := e2Htπ∗γ(w,Dw, t)− dt⊗ dt

and a complex scalar field

φ̃ := e−k1Htπ∗ψ̄(w,Dw, t).

This metric indeed is real by (R4) and symmetric by (R1). Using the notation from
chapter 1 and the fact that w is a solution of the reduced system it follows with
(1.10) that

σ +
tr k + nH

n
δ = e−2k0Ht

[
ς(w,Dw, t) +

1
n
λ(w,Dw, t)δ

]
and therefore by (R2)

tr k + nH = e−2k0Htλ(w,Dw, t)

σ = e−2k0Htς(w,Dw, t).

If g] is the metric induced by g on the cotangent bundle it follows that

g] = e−2Htγ](w,Dw, t),
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from (R5) that

Dg = e2Ht∂γ(w,Dw, t)

Dg] = e−2Ht∂γ](w,Dw, t)

and thus for the scalar curvature and the trace-free Ricci tensor

Rg = e−2HtR(w,Dw, t)

R̂ic = e−2HtR̂a
b(w,Dw, t) ∂a ⊗ dxb.

For the scalar field and its covariant derivatives one gets using (R4) and (R6)

φ = e−k1Htψ̄(w,Dw, t)

φ∗ = e−k1Htψ̄†(w,Dw, t)

∇φ = e−k1Htψ̄;a(w,Dw, t) dxa

∇φ∗ = e−k1Htψ̄†;a(w,Dw, t) dxa

∇ 2φ = e−k1Htψ̄;ab(w,Dw, t) dxa ⊗ dxb

∇ 2φ∗ = e−k1Htψ̄†;ab(w,Dw, t) dx
a ⊗ dxb,

as well as for its time derivative

∂tφ = e−k1Htψ̄τ (w,Dw, t)

∂tφ
∗ = e−k1Htψ̄†τ (w,Dw, t)

∇∂tφ = e−k1Htψ̄τ ;a(w,Dw, t) dxa

∇∂tφ
∗ = e−k1Htψ̄†τ ;a(w,Dw, t) dxa.

It is clear that

V (φ∗φ) = Λ + e−2k1HtW (w,Dw, t)

V ′(φ∗φ) =
µ2

2
+ e−2k1HtW ′(w,Dw, t)

1− ξφ∗φ

1− ηξφ∗φ
= 1 + e−2k1HtQ(w,Dw, t)

and hence

∂t tr k = e−2k0Ht
[
λ̇(w,Dw, t)− 2nHλ(w,Dw, t)

]
Rg̃ = n(n+ 1)H2 + e−2k0HtR̃(w,Dw, t).

From here it can already be concluded that the scalar field equation (1.2) holds
true for S vanishes identically. As the projections of the energy-momentum tensor
satisfy

ρ = Λ + e−2k1Htε(w,Dw, t)

j = e−2k1Htιa(w,Dw, t) dxa

trS = −nΛ + e−2k1HtΣi
i(w,Dw, t)

Ŝ = e−2k1HtΣ̂a
b(w,Dw, t) ∂a ⊗ dxb

it is seen that the evolution quantities e and E also vanish. To establish the same
statement for the constraint quantities consider the analytic functions

χ := τ2−k0R− τ3k0ςijς
j
i + τk0

(
1− 1

n

)
λ(τ2k0λ− 2nH)− 2τ2k1−k0ε

and

χa := τ2k0
(
ςia,i +Ai

ijς
j
a −Aj

iaς
i
j

)
−
(
1− 1

n

)
τ2k0λ,a − τ2k1ιa
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on U ×M E ⊗ T 0
1M × T . They satisfy v∞(χ) < 1 and v∞(χa) < 1. From section 3

one obtains additionally

χ(v,Dv, τ) ' Fθ X
−k0c = 0

as well as

χa(v,Dv, τ) ' Fθ C = 0.

Using this together with corollary 4.5 shows that v[χ(w,Dw, τ)] < e−ζH and
v[χa(w,Dw, τ)] < e−ζH . On the other hand

c = e−k0Htχ(w,Dw, t)

C = χa(w,Dw, t) dxa

so that according to the equations (1.23) and (1.24) and since e = 0, E = 0 and
S = 0 the uniformly analytic functions C := χ(w,Dw, τ), Ca := χa(w,Dw, τ)
satisfy the system

τ∂τC− (2n− k0)C = − 2
H

[
τ2k0Hλ(w)C − τ2−k0(γ])ij(w)∇iCj

]
τ∂τCa− nCa = − 1

H

[
τ2k0Hλ(w)Ca −

1
2
τk0∇aC

]
.

Because of v(C), v(Ca) < e−ζH and v[λ(w,Dw, τ)] ≤ 1 while 2n − k0 and n are
both less than ζ it follows from the uniqueness theorem for Fuchsian systems that
C and Ca actually have to vanish but this implies the constraints to be satisfied,
c = 0 and C = 0. Thus, the space-time M equipped with the metric g̃ and the
scalar field φ̃ is a solution of the Einstein-scalar field system with t a Gaussian time
coordinate and such that ḡ = e−2Htg and Fζ ḡ as well as φ̄ = ek1Htφ and Fζ φ̄ are
ζ-asymptotically equivalent.

In order to establish uniqueness assume that a uniformly analytic solution (g̃, φ̃)
of the Einstein-scalar field system on M is given such that the projection t is a
Gaussian time coordinate, 1 − ξφ̃∗φ̃ > 0 and v∞[ek1Htφ − F φ(k1)] < 1. Define
then a uniformly analytic function w̃ on M by requiring

γ(w̃) := τ2g

ς(w̃) := τ−2k0σ

λ(w̃) := τ−2k0(tr k + nH)

ψ(w̃) := τ−k1+iωφ− φ1Υ (log τ)τ2iω

ψ†(w̃) := τ−k1−iωφ∗ − φ∗1Υ (log τ)τ−2iω

as well as

ψτ (w̃) := τ−k0τ∂τψ(w̃)

ψ†τ (w̃) := τ−k0τ∂τψ
†(w̃)

∂γ(w̃) := Dγ(w̃)

∂ψ(w̃) := Dψ(w̃)

∂ψ†(w̃) := Dψ†(w̃).

Due to the assumptions this function w̃ takes values in the set U and it follows
from the definition that

γ](w̃) = τ−2g]

R(w̃,Dw̃, τ) = τ−2Rg

R̂a
b(w̃,Dw̃, τ) = τ−2(R̂ic)a

b.
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Moreover the field quantities satisfy

ψ̄(w̃,Dw̃, τ) = τ−k1φ ψ̄†(w̃,Dw̃, τ) = τ−k1φ∗

ψ̄;a(w̃,Dw̃, τ) = τ−k1Daφ ψ̄†;a(w̃,Dw̃, τ) = τ−k1Daφ
∗

ψ̄;ab(w̃,Dw̃, τ) = τ−k1DaDbφ ψ̄†;ab(w̃,Dw̃, τ) = τ−k1DaDbφ
∗

and their time derivatives

ψ̄τ (w̃,Dw̃, τ) = τ−k1∂tφ ψ̄†τ (w̃,Dw̃, τ) = τ−k1∂tφ
∗

ψ̄τ ;a(w̃,Dw̃, τ) = τ−k1Da∂tφ ψ̄†τ ;a(w̃,Dw̃, τ) = τ−k1Da∂tφ
∗.

From there one clearly gets

W (w̃,Dw̃, τ) = τ−2k1
[
V (φ∗φ)− Λ

]
W ′(w̃,Dw̃, τ) = τ−2k1

[
V ′(φ∗φ)− µ2

2

]
Q(w̃,Dw̃, τ) = τ−2k1

[ 1− ξφ∗φ

1− ηξφ∗φ
− 1
]

and hence for the projections of the energy-momentum tensor

ε(w̃,Dw̃, τ) = τ−2k1(ρ− Λ)

ιa(w̃,Dw̃, τ) = τ−2k1ja

Σ̌a
b(w̃,Dw̃, τ) = τ−2k1 Ša

b.

The validity of the Einstein-scalar field equations then imply

(λ̇− 2nHλ)(w̃,Dw̃, τ) = τ−2k0∂t tr k

and therefore

R̃(w̃,Dw̃, τ) = τ−2k0
[
Rg̃ − n(n+ 1)H2

]
Σa

b(w̃,Dw̃, τ) = τ−2k1(Sa
b + Λδa

b).

Putting all this together and using the validity of the Einstein-scalar field equations
shows that w̃ is a solution of the reduced system

τ∂τ w̃ + Lw̃ = f(w̃,Dw̃, τ).

By imposing suitable conditions on the late-time asymptotics of g̃ and φ̃ that guar-
antee w̃ − v = o(τ ζ) and Dw̃ −Dv = o(τ ζ) it can then be concluded that in fact
w̃ = w and therefore the solution (g̃, φ̃) coincides with the one obtained from w.

The findings of this chapter can be summarized by the following theorem.
Recall that the potential shall be holomorphic on a neighbourhood of zero assuming
real values when the argument is real and the usual conditions are supposed to hold,
namely that Λ = V (0) > 0 and µ2 = 2V ′(0) fulfill the inequality (2.9).

Theorem 4.7. Let M be an analytic manifold and (g,φ) a formal analytic
solution of the algebraic Einstein-scalar field equations. Given any ζ > 2n there
exists a unique analytic solution (g̃, φ̃) of the Einstein-scalar field equations on an
open neighbourhood M of M×{+∞} in M×R such that the projection t : M→ R
is a Gaussian time coordinate and the asymptotics of the solution with respect to t
is given by (g,φ) up to relative order ζ in the sense that

v∞(ḡ −Fθ ḡ), v∞(φ̄−Fθ φ̄) < e−ζH

is true for the rescaled metric ḡ = e−2Htg, the rescaled field φ̄ = ek1Htφ and a
θ > ζ. If the asymptotic data is real, φ∗ = φ, so is the solution.
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Proof. For any ζ > 2n there is a θ > ζ such that 3(θ−ζ) ≤ [(A−ζ)∪A]∩]0,∞[,
where A is the smallest +-stable set in A0 containing the supports of ḡ = X2g and
φ̄ = X−k1φ. Then for ζ < ζ ′ < θ it has been shown that there is a solution (g̃, φ̃)
such that ḡ−Fθ ḡ = o(e−ζ′Ht) and φ̄−Fθ φ̄ = o(e−ζ′Ht) locally uniformly as t→∞
which shows that v(ḡ−Fθ ḡ) < e−ζH and v(φ̄−Fθ φ̄) < e−ζH . As the non-linearity
f of the reduced system is in fact analytic so is the solution (g̃, φ̃). Moreover, the
estimate (4.7) shows that the Fuchsian system (4.8) stays Fuchsian even when
differentiated with respect to space and time as often as desired, which then yields
in particular the asserted decay estimates. Uniqueness on the other hand, as it
has been pointed out above, stems from the fact that the decay estimates imply
ḡ − Fθ ḡ = o(e−ζ′Ht), ∂tḡ − Fθ ∂tḡ = o(e−(ζ′+2k0)Ht), φ̄ − Fθ φ̄ = o(e−(ζ′+k0)Ht)
and ∂tφ̄ − Fθ ∂tφ̄ = o(e−(ζ′+k0)Ht) locally uniformly as t → ∞ and that the same
is true of all spatial derivatives for a ζ ′ with ζ < ζ ′ < θ and k0 sufficiently small.
The remainder follows from (R7).

�

The same comment as at the end of chapter 3 might be appropriate here in
that approximate formal solutions together with proposition 4.4 and corollary 4.5
could possibly be useful in other situations too to prove existence and uniqueness
of solutions with prescribed asymptotics.



CHAPTER 5

Spatially homogeneous models

The aim of this chapter is to prove late-time asymptotics for a class of solutions
of the Einstein-scalar field-matter system which is, compared to the previous results,
far more restricted in that a strong symmetry assumption is made, but also more
general as it allows for a much wider class of potentials and, notably, the presence of
other forms of matter. No assumptions on that matter are made except that it has
to satisfy certain energy conditions and so the result will not be a global existence
statement with detailed asymptotics like before but rather crude estimates on the
late-time acceleration and isotropization of solutions that exist globally towards
the future. To have the conformal transformation between matter coupled and
curvature coupled models available only the case of a real scalar field is considered.
The contents of this chapter were published in [6].

1. Potentials with a positive lower bound

To analyse the asymptotics of global solutions of the matter coupled Einstein-
scalar field system some assumptions on the Lie group G, the potential U , the
coupling functions c and C as well as on the energy-momentum tensor Tm describing
the ordinary matter content will now be made. Two cases are then considered
separately, namely one where the potential has a positive lower bound that leads
asymptotically to exponential acceleration, and a second in the next section where
the potential energy density of the scalar field approaches zero, which allows, in
general, for intermediate late-time acceleration only. The argument closely follows
that of [25].

The Lie group G is assumed such that every left invariant Riemannian metric
has non-positive scalar curvature. In the three-dimensional simply connected case,
this corresponds to groups of Bianchi type other than IX [32]. In general Bergery [4]
proved that a connected Lie group admits only left invariant Riemannian metrics
of zero or strictly negative scalar curvature if and only if its universal cover is
diffeomorphic to Rn. On the other hand Milnor [20] has shown that the latter
is not the case if the Lie group contains a compact non-commutative subgroup.
Anyway, the assumption guarantees R ≤ 0. The energy-momentum tensor Tm

of the additional matter is supposed to satisfy the dominant and strong energy
condition, which imply

|jm| ≤ ρm, | trSm| ≤ nρm(DEC)

ρm + trSm ≥ 0.(SEC)

Furthermore, it is assumed that the coupling function C is non-negative, so C(φ)Tm

fulfills every energy condition Tm does, and that there is a constant C0 such that

|c| ≤ C0C(C)

holds. The potential U shall be positive and satisfy the following, more technical
conditions:

57
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(U1) There exists a positive lower semi-continuous minorant Ū on the closure J̄
of J in R, i.e. Ū : J̄ → R is lower semi-continuous, Ū > 0 and U(x) ≥ Ū(x)
for all x ∈ J .

(U2) The derivative U ′ is bounded on any subset of J on which U is bounded.

(U3) U ′ extends to a continuous function on the closure of J in R̄ := R∪{±∞}
with values in R̄.

Condition (U1) ensures that U is bounded away from zero on bounded subsets of
J whereas (U3) yields the existence of limits limx→J± U

′(x) = U ′± ∈ R̄ when x

approaches the endpoints J± of J in R̄. Finally, suppose that the model is initially
expanding, so t0 = min I ∈ R and H(t0) > 0, where H = − tr k/n shall now be
used as an abbreviation for the negative of the mean curvature. Lemma 5.1 below
collects some immediate consequences of these assumptions.

Lemma 5.1. The following properties hold:

(1) H is positive, bounded and monotonically decreasing
(2) φ̇ is bounded and square-integrable with ‖φ̇‖L∞ ≤

√
n(n− 1)‖H‖L∞ and

‖φ̇‖2L2 ≤ (n− 1)‖H‖L∞

(3) φ̈, R, |σ|2, U(φ), U ′(φ), C(φ)ρm and c(φ) trg̃ Tm are bounded with

‖R‖L∞ , ‖|σ|2‖L∞ , 2‖U(φ)‖L∞ , 2‖C(φ)ρm‖L∞ ≤ n(n− 1)‖H‖2L∞

‖c(φ) trg̃ Tm‖L∞ ≤ 1
2
n(n− 1)(n+ 1)C0‖H‖L∞

Proof. Since U is positive so is H2 due the Hamiltonian constraint (1.30)
and so is H itself because it is positive initially. The evolution equation (1.32)
and (DEC) render Ḣ non-positive in the same way, so that H is monotonically
decreasing and bounded by 0 < H ≤ H(t0). In fact, the inequality φ̇2 ≤ −(n−1)Ḣ
holds, so integration over I yields ‖φ̇‖2L2 ≤ (n − 1)‖H‖L∞ . The L∞ bounds on
φ̇, R, |σ|2, U(φ) and C(φ)ρm follow from (1.30) directly, U ′(φ) ∈ L∞(I) is then a
consequence of (U2) and the estimate for c(φ) trg̃ Tm is obtained from the inequality
|c(φ) trg̃ Tm| = |c(φ)|| trSm − ρm| ≤ C0C(φ)(n + 1)ρm using (C). The scalar field
equation (1.34) finally gives a L∞ bound for φ̈. �

Since U is a positive function, the infimum of the potential energy density of
the field U0 := inf (U ◦ φ)(I) is either positive or zero. The rest of this section
is concerned with the late-time asymptotics in the first case. It is shown that
expansion, isotropization and decay of matter terms take place exponentially in
time. Note that the solution is assumed to exist globally towards the future and so
I is not bounded from above.

Proposition 5.2. For any δ > 0 the spatial curvature R, the shear |σ|2,
the matter terms C(φ)ρm, C(φ)|jm| and C(φ) trSm as well as the coupling term
c(φ) trg̃ Tm decay at least as e−(2−δ)H0t for t→∞,

R, |σ|2, C(φ)ρm, C(φ)|jm|, C(φ) trSm, c(φ) trg̃ Tm = O
(
e−(2−δ)H0t

)
,

where H0 :=
√

2U0/n(n− 1).

Proof. (i) From the square-integrability of φ̇ and the boundedness of φ̈ es-
tablished in lemma 5.1 it follows that φ̇(t) → 0 as t → ∞. (ii) With E :=
1/2 φ̇2 + U(φ) ∈ C1(I) the field energy density, define a quantity [25]

Z := n(n− 1)H2 − 2E ∈ C1(I).
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Because of (1.34) Ė = c(φ)(trg̃ Tm)φ̇− nHφ̇2, which implies with (SEC)

Ż = −2H
(
Z + (n− 1)|σ|2 + C(φ)

[
(n− 2)ρm + trSm

])
− 2c(φ)(trg̃ Tm)φ̇

≤ −2HZ − 2c(φ)(trg̃ Tm)φ̇.

(iii) Fix a 0 < δ < 1, then

δHC(φ)ρm + 2c(φ)(trg̃ Tm)φ̇ ≥
[
δH − 2(n+ 1)C0|φ̇|

]
C(φ)ρm

holds and with −2HZ ≤ −(2 − δ)HZ − δHC(φ)ρm and H ≥ H0 by (1.30) one
obtains

Z ≤ −(2− δ)H0Z

eventually from (i). Integrating this yields

Z(t) = O
(
e−(2−δ)H0t

)
(t→∞).

Noting again that Z = |σ|2−R+C(φ)ρm and using (DEC) and (C) now yields the
claims. �

With this information at hand, it is possible to obtain late-time limits for the mean
curvature −H, the potential energy density of the field U(φ), its derivative, and for
the derivatives of the field φ itself.

Proposition 5.3. As t goes to infinity, the following limits are attained:
(1) H(t) → H∞, with H∞ ≥ H0 > 0
(2) (U ◦ φ)(t) → U∞ := 1

2n(n− 1)H2
∞ > 0

(3) (U ′ ◦ φ)(t) → 0
(4) φ̇(t), φ̈(t) → 0

Proof. (i) By lemma 5.1 H is monotonically decreasing and bounded from
below by H0 > 0, so convergence follows immediately. (ii) Using the decay of
the matter terms and of φ̇ from proposition 5.2 as well as the convergence of H
just obtained, the Hamiltonian constraint (1.30) yields 2(U ◦ φ)(t) → n(n− 1)H2

∞
(t → ∞). (iii) Let φ− := lim inft→∞ φ(t) and φ+ := lim supt→∞ φ(t) be the limes
inferior and limes superior of φ in R̄ respectively. If φ− = φ+, then φ(t) converges
for t→∞ and the limit lies in the closure of J in R̄, so (U ′ ◦ φ)(t) converges in R̄
by assumption (U3). Thus, suppose φ− < φ+ and choose φ0 in the open interval
]φ−, φ+[ . Then, there exists a sequence (sn) in I with sn →∞ and φ(sn) → φ0 for
n→∞ because φ is continuous. But then (ii) implies

U∞ = lim
t→∞

(U ◦ φ)(t) = lim
n→∞

U(φ(sn)) = U(φ0),

so U is constant on ]φ−, φ+[ and thus U ′ vanishes on ]φ−, φ+[ . This means that
for every neighborhood N of zero, G := (U ′)−1(N) is a neighborhood of the closure
of ]φ−, φ+[ in R. By construction, it follows that φ(t) ∈ G for t sufficiently large
and therefore (U ′ ◦ φ)(t) ∈ N eventually. This shows the convergence of (U ′ ◦ φ)(t)
in R̄ for t → ∞ in any case. Employing the scalar field equation (1.34) and using
proposition 5.2 it follows that −φ̈ converges to the same limit, so boundedness of
φ̇ requires that limit to vanish. �

Corollary 5.4. Consider a solution of Bianchi type I–VIII of the Einstein
equations together with a non-linear scalar field evolving in a positive potential and
coupled directly to ordinary matter satisfying the dominant and strong energy con-
dition. Suppose the potential to possess a positive lower bound and the assumptions
(U1)–(U3) to be fulfilled. If the solution is expanding initially and exists globally in
the future then exponential acceleration and isotropization occur asymptotically.

Proof. This follows directly from proposition 5.2 and 5.3. �



60 5. SPATIALLY HOMOGENEOUS MODELS

The results of this section show in particular that if the potential is bounded below
away from zero, the deceleration parameter q := −1− Ḣ/H2 approaches −1 at late
times and so the expansion of the solution is accelerated exponentially. Moreover,
the density of ordinary matter C(φ)ρm as well as any anisotropy |σ|/H vanish
exponentially fast.

2. Intermediate acceleration

In the case in which the potential energy density of the scalar field U(φ) can
become arbitrarily small, inf (U ◦ φ)(I) = U0 = 0, the dynamics is more subtle.
Nevertheless, for potentials falling off not too steeply, it is possible to prove late-
time acceleration as well as decay estimates for the curvature and matter terms. In
contrast to the findings in the case of positive U0 > 0, the acceleration is in general
no longer exponential but may be asymptotically power-law. This will be referred
to as intermediate acceleration. Of course, the solution again is supposed to exist
globally in forward time direction.

In general without having a positive lower bound U0 on the field’s potential
energy density, proposition 5.2 is weakened to the following proposition 5.5.

Proposition 5.5. The spatial curvature R, the shear |σ|2, the matter terms
C(φ)ρm, C(φ)|jm| and C(φ) trSm as well as the coupling term c(φ) trg̃ Tm decay at
least as t−2 so

R, |σ|2, C(φ)ρm, C(φ)|jm|, C(φ) trSm, c(φ) trg̃ Tm = O
(
t−2
)

(t→∞).

Proof. Using the same quantity Z = n(n−1)H2− φ̇2−2U(φ) as in the proof
of proposition 5.2 it follows by lemma 5.1 that φ̇(t) → 0 as t → ∞ and so both
Z ≥ 0 and Ż ≤ −HZ eventually are valid. The Hamiltonian constraint (1.30) in
turn gives Z ≤ n(n− 1)H2, so

Ż ≤ − 1√
n(n− 1)

Z
3
2

holds eventually. Integrating this yields

Z(t) = O
(
t−2
)

(t→∞),

which establishes the claimed decay by (DEC) and (C). �

Since U(φ) is positive and continuous on I, the condition U0 = 0 is equivalent to
lim inft→∞(U ◦ φ)(t) = 0. Monotonicity of H and the constraint equation (1.30)
then give limt→∞H(t) = 0 and, together with the proposition 5.5 just proven, that
actually limt→∞(U ◦φ)(t) = 0. By assumption (U1) it follows that J is unbounded
and either limt→∞ φ(t) = −∞ or limt→∞ φ(t) = ∞. Without loss of generality the
latter will be assumed for the rest of this section.

Restricting the asymptotic steepness of the potential

κ := lim sup
x→∞

|U ′|
U

(x)

will allow more detailed asymptotics to be obtained and late-time accelerated ex-
pansion to be shown. For this, consider the quantity

Y :=
n(n− 1)H2

2U(φ)
.

According to the equations (1.30) and (1.32) it fulfills Y ≥ 1,

(5.1)
φ̇2

H2
= n(n− 1)

(
1− 1

Y

)
− |σ|2

H2
+

R

H2
− 2C(φ)ρm

H2
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and its time derivative is given by

(5.2)
Ẏ = − 2

n− 1

[
φ̇2

H
+

1
2
(n− 1)

U ′

U
(φ)φ̇

+
|σ|2

H
− 1
n

R

H
+

1
n

C(φ)
H

(nρm + trSm)
]
Y

respectively. Also note that with the elementary inequality
√
a− b ≥

√
a − b/

√
a

for all a > b ≥ 0 the relation

(5.3) − φ̇2

H
− |σ|2

H
+

1
n

R

H
− 1
n

C(φ)
H

(nρm + trSm) ≤ −
√
n(n− 1)

(
1− 1

Y

)
|φ̇|

−
(

1− 1√
n(n− 1)

|φ̇|
H

)
|σ|2

H
+
(

1
n
− 1√

n(n− 1)
|φ̇|
H

)
R

H

−
(

1
2
n− 1
n

− 1√
n(n− 1)

|φ̇|
H

)
2C(φ)
H

follows from (5.1).

Proposition 5.6. If κ < 2/
√
n(n− 1) then

lim sup
t→∞

Y (t) ≤
(

1− 1
2

√
n− 1
n

κ
)−1

.

Proof. Fix ε > 0 with κ + 2ε < 2/
√
n(n− 1), then there is a T ∈ I with

(|U ′|/U)(φ(t)) ≤ κ + ε for all t ≥ T . Define

1 < δ :=
(

1−
√
n− 1
n

κ + 2ε
2

)−1

<
n

n− 1

and let T ≤ L ⊂ I be any subinterval of I bounded below by T on which Y is not
less than δ, Y |L ≥ δ. For an arbitrary t ∈ L distinguish two cases. First, assume
that (|φ̇|/H)(t) ≥

√
(n− 1)/n, then (5.2) directly gives

Ẏ (t) ≤
(
− 2√

n(n− 1)
+ κ + ε

)
|φ̇(t)|Y (t) ≤ −ε|φ̇(t)|Y (t).

Second, assume (|φ̇|/H)(t) ≤
√

(n− 1)/n instead, so

1√
n(n− 1)

|φ̇|
H

≤ 1
n
≤ 1

2
n− 1
n

≤ 1,

then (5.3) yields

Ẏ (t) ≤
[
−2
√

n

n− 1

(
1− 1

δ

)
+ κ + ε

]
|φ̇(t)|Y (t) ≤ −ε|φ̇(t)|Y (t).

This, together, shows that on L the inequality Ẏ ≤ −εY |φ̇| holds, so L is bounded
because φ̇ is non-integrable. Since Y is in particular monotonically decreasing on
any such L the set where Y is bigger than δ is itself bounded, but this means that
lim supt→∞ Y (t) ≤ δ. �

Combining the evolution and constraint equations (1.30), (1.32) with the relation
(5.1) results in an upper bound on the deceleration parameter q, namely

(5.4) q ≤ n

(
1− 1

Y

)
− 1,

leading to the following sufficient condition for accelerated expansion.
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Proposition 5.7. If κ < 2/
√
n(n− 1) then accelerated expansion occurs even-

tually.

Proof. From proposition 5.6 it is known that

lim sup
t→∞

Y (t) ≤
(
1− 1

2

√
n− 1
n

κ
)−1

<
n

n− 1
,

so Y < n/(n− 1) eventually. By (5.4) this means that q < 0 eventually. �

Isotropization can be proven by requiring the potential to be “flat” at infinity, which
says that κ = 0.

Proposition 5.8. If the potential is flat at infinity, limx→∞(U ′/U)(x) = 0,
then the curvature and matter terms vanish faster than H2, more precisely, as
t→∞,

φ̇

H
(t),

|σ|2

H2
(t),

R

H2
(t) → 0

as well as
C(φ)ρm

H2
(t),

C(φ)|jm|
H2

(t),
C(φ) trSm

H2
(t),

c(φ) trg̃ Tm

H2
(t) → 0.

Proof. When κ = 0, proposition 5.6 implies Y (t) → 1 as t→∞ and equation
(5.1) together with (DEC) and (C) makes the claims evident immediately. �

Corollary 5.9. Consider the same situation as in corollary 5.4 above but
suppose instead of a positive lower bound that the the asymptotic steepness κ of
the potential is less than

√
2/3. If the solution is expanding initially and exists

globally in the future then accelerated expansion takes place eventually. Moreover if
the potential is actually flat at infinity, κ = 0, the model isotropizes as well.

Proof. This follows from propositions 5.7 and 5.8 with n = 3. �

A question that arises in the treatment outlined so far is whether it is possible
to decide a priori, without referring to the actual solution, to which of the two cases
(U0 > 0 or U0 = 0) the evolution belongs. As an answer to this question in general
not only depends on the form of the potential U but also on the initial data, no
simple necessary and sufficient criterion can be expected. Instead, two rather rough
conditions leading to each of the cases will be presented, that might be useful in
some situations though. They can be employed to make contact with the findings
of [26].

Take a threshold value B > 0 and consider a component G of the set {x ∈
J | U(x) ≤ B}. By monotonicity of H it is clear that if H2(t0) ≤ 2B/n(n − 1)
and φ belongs to G initially, φ(t0) ∈ G, then φ stays in G, φ(I) ⊂ G. Now the
conditions can be stated as

Lemma 5.10. If G is bounded then U0 > 0.

Proof. With G its closure Ḡ in R is bounded too and thus compact. Because
of U(φ) ≥ Ū(φ) and (Ū ◦ φ)(I) ⊂ Ū(Ḡ) it follows that U0 = inf(U ◦ φ)(I) ≥
inf(Ū ◦ φ)(I) ≥ inf Ū(Ḡ) > 0 from (U1). �

Lemma 5.11. If U ′ < 0 on G and G is bounded below within J , then

lim
t→∞

φ(t) = J+.

In particular, if the potential has negative derivative everywhere and U(x) decays
as x→∞ then U0 = 0.
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Proof. Let G± denote the endpoints of G in R̄. By assumption, G− is an
element of J and thus of G itself. It will now be shown that actually G+ = J+.
Assume that this is not the case, so G+ < J+, then G+ lies in the interior of J and
U ′ < 0 on G implies that G can be extended in J beyond G+ while remaining a
connected subset of {x ∈ J | U(x) ≤ B}. But this is a contradiction to G being
a component of that set. So indeed G+ = J+. If U0 > 0 proposition 5.3 gives
(U ′ ◦ φ)(t) → 0 for t→∞ and therefore φ(t) → J+ (t→∞). If U0 = 0 nothing is
left to be shown. The additional statement is immediate. �

3. Curvature-assisted acceleration

The results of the previous sections shall now be applied to the example of
a scalar field with an explicit coupling to the scalar curvature of space-time to
demonstrate the mechanism of curvature-assisted acceleration. For simplicity an
exponential potential is assumed although the method is not restricted to that case
by any means. By a conformal transformation the direct coupling of the field to
the scalar curvature is first moved to the energy-momentum tensor where results
are obtained by virtue of the propositions proved so far. Transforming back to the
Jordan frame will then yield the desired statements.

On an interval Í := [t́0,∞[ suppose functions φ́ ∈ C2(Í), ρ́m ∈ C1(Í), ́m ∈
C1(I, T 0

1 g) and families ǵ ∈ C2(Í , T 0
2 g) and Śm ∈ C1(Í , T 0

2 g) of Riemannian metrics
and symmetric tensors on the Lie algebra g respectively are given such that

T́m := π́∗Śm − π́∗́m ⊗ dt́− dt́⊗ π́∗́m + ρ́m dt́⊗ dt́

satisfies the dominant and strong energy conditions (DEC) and (SEC) while

g̃ := π́∗ǵ − dt́⊗ dt́

and

φ̃ := π́∗φ́

are a solution to the curvature-coupled Einstein-scalar field-matter equations on
Ḿ := G× Í with potential Ú of class C1. Like before, π́ : Ḿ → G and t́ : Ḿ → Í
are the canonical projections, compositions with which are understood implicitly
when appropriate. The coupling constant ξ is taken to be any non-zero real number.

Assume 1− ξφ́2 > 0 and define according to chapter 1 a conformal factor

Ω := n−1
√

1− ξφ́2 ∈ C2(Í).

The transformation functions

p : Í → I, t́ 7→
∫ t́

t́0

Ω

Φ : J́ → R, x́ 7→
∫ x́

0

√
1− ηξx2

1− ξx2
dx

are smooth diffeomorphisms from Í onto I := p(Í) and from

J́ :=

{
]− 1/

√
ξ, 1/

√
ξ[ ξ > 0

R ξ < 0

onto R whose inverses will be denoted by p−1 and Ψ respectively. Then the quan-
tities

g := (Ω2ǵ) ◦ p−1, φ := Ψ(φ́) ◦ p−1

ρm := (Ω−2ρ́m) ◦ p−1, jm := (Ω−1́m) ◦ p−1, Sm := Śm ◦ p−1
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define a solution of the matter-coupled Einstein-scalar field-matter equations (1.26)–
(1.28) on M̃ = G× I with the smooth coupling functions

C =
1

1− ξΨ2
, c =

1
n− 1

C ′ =
1

n− 1
2ξΨ√

1− ηξΨ2
C

and the transformed potential U = Ú(Ψ)C
n+1
n−1 . Apart from a conformal change of

the metric and a redefinition of the scalar field a change of the time coordinate is
employed to keep it Gaussian. It is easily seen that (SEC) and (DEC) hold for Tm

as well and the condition (C) is fulfilled due to the boundedness of 2ξΨ/
√

1− ηξΨ2

on R.
Attention shall now be restricted to positive coupling constants ξ > 0 and fields

evolving in exponential potentials Ú(x) = λe−κx for positive κ, λ > 0 and all x ∈ R.
Suppose H́(t́0) > −(log Ω)̇(t́0) and define

φ́∞ :=

√
1
ξ

+
1
κ2

(n+ 1
n− 1

)2

− 1
κ

n+ 1
n− 1

then φ∞ := Φ(φ́∞) is the critical point of the transformed potential U = Ú(Ψ)C
n+1
n−1 .

The following proposition 5.12 holds true.

Proposition 5.12. In the limit t́→∞, the field φ́ and its derivatives converge,

φ́(t́) → φ́∞,
˙́
φ(t́) → 0, ΅

φ(t́) → 0,

so does the mean curvature −H́,

H́(t́) → H́∞ :=

√
2

n(n− 1)
Ú(φ́∞)

1− ξφ́2
∞

and the curvature and matter terms vanish exponentially,

Rǵ, |σ́|2ǵ, ρ́m, |́m|ǵ, trǵ Śm = O
(
e−(2−δ)H́∞ t́

)
for any δ > 0. Moreover, asymptotically, the expansion is accelerated exponentially

q́ = −1−
˙́
H

H́2
→ −1.

Proof. (i) The assumption H́(t́0) > −(log Ω)̇(t́0) is equivalent to H(0) > 0
while 0 = min I. Furthermore, the transformed potential U clearly fulfills the
requirements (U1), (U2) and (U3) and U(x) goes to infinity when |x| does. Hence,
it possesses a positive lower bound and lemma 5.10 ensures the image φ(I) being
relatively compact which implies that Ω is bounded away from zero. This renders
Ω /∈ L1(Í) non-integrable and so the transformed evolution exists globally too, I =
[0,∞[ . The results of section 1 thus apply. (ii) From proposition 5.3 convergence
of φ(t) to φ∞ and therefore of φ́(t́) to φ́∞ follows. The decay of φ̇ and φ̈ give those
for the derivatives of φ́ as well as convergence of H́ and q́. The exponential decay
of the curvature and matter terms

|σ́|2ǵ = Ω6(|σ|2 ◦ p) Rǵ = Ω2(R ◦ p)
ρ́m = Ωn+1[C(φ)ρm ◦ p] |́m|ǵ = Ωn+1[C(φ)|jm| ◦ p]

trǵ Śm = Ωn+1[C(φ)(trSm) ◦ p]

is then directly obtained from proposition 5.2. �
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Corollary 5.13. Consider a solution of Bianchi type I–VIII of the Ein-
stein equations together with a non-linear scalar field coupled directly to the scalar
curvature of space-time and evolving in an arbitrary exponential potential in the
presence of ordinary matter satisfying the dominant and strong energy condition.
Suppose that for a positive coupling constant ξ the conditions 1 − ξφ2 > 0 and
H > −[log(1− ξφ2)]̇ /(n− 1) on the field φ and the expansion factor H are fulfilled
initially. If the solution exists globally in the future then 1− ξφ2 > 0 holds at any
time and exponential acceleration and isotropization take place asymptotically.

This result shows that an arbitrarily small positive coupling constant ξ estab-
lishes a dynamics similar to the presence of a cosmological constant with value

Λdyn =
Ú(φ́∞)

1− ξφ́2
∞

although the potential lacks a positive lower bound. It causes exponential acceler-
ation to occur asymptotically as well as exponentially fast isotropization and decay
of matter independent of the steepness κ of the potential.

In the proof given above the particular form of the potential Ú is used mainly to
ensure the existence of exactly one critical point of U and thus to obtain convergence
of the field φ́ and the conformal factor Ω at late times. For assumptions (U1), (U2)
and (U3) to hold it is sufficient for instance to require the potential only to allow
for a C1-extension to the closure of J́ in R. Invoking lemma 5.10 it can still
be concluded that the field φ́ cannot approach the boundary of J́ and hence the
presumption 1− ξφ́2 > 0 does not restrict the dynamics even in this more general
situation once it is fulfilled initially.





Concluding remarks

In this section some possible extensions of the presented work are sketched.
For the construction of formal solutions in chapter 2 asymptotic initial data could
be prescribed that consists of a Riemannian metric g0, two scalar fields φ0 and
φ1 and a symmetric 2-tensor h subject to the asymptotic constraints (AC1) and
(AC2) stated in theorem 2.11. While the asymptotic constraints look similar to the
momentum constraint of the ordinary Cauchy problem there is no analogue of the
much harder Hamiltonian constraint. One can thus try to solve (AC1) and (AC2)
using the conformal method for the constraints developed by Choquet-Bruhat and
York [7]. Following Isenberg [13] consider the conformal Killing operator

DX := £X g0 −
2
n

divg0 X

on vector fields X on (M, g0). It has the formal adjoint D∗ = −divg0 . In the
absence of conformal Killing vectors, that is if the kernel of D is trivial, the linear
elliptic system

D∗DX = −Z +
1
n
dz

is expected to be solvable for any inhomogeneity on the right hand side. But then
evidently

h := DX +
z

n
g0

is a particular solution of the asymptotic constraints (AC1) and (AC2) and the
general solution is obtained by adding arbitrary symmetric transverse-traceless 2-
tensors.

When a space-time metric g̃ as considered in chapter 3 is expressed as its
asymptotic series and in terms of the time coordinate τ = e−Ht it fulfills

τ2g̃ = g0 +
∑

m≥k0

∑
s,l

π∗(g)m−2,s,l(−H)−l(log τ)lτm+is − 1
H2

dτ ⊗ dτ

and is thus conformal to a Lorentzian metric that extends continuously to τ = 0 and
is non-degenerate in the limit. Due to the presence of logarithmic and oscillatory
terms as well as the non-integer powers of τ even in the case n = 3 the extension
will, however, in general not be smooth. This shows that the existence of a smooth
conformal boundary necessary for the applicability of Friedrichs conformal method
[10] is rather special already within the class of scalar field models taken into
account here.

For the conformal transformation between the curvature-coupled and matter-
coupled Einstein-scalar field system to work it was assumed that the field fulfills
the inequality 1−ξφ̃2 > 0 which is non-trivial for ξ > 0. One can ask what happens
if 1− ξφ̃2 < 0. Evidently, it is possible to choose

Ω = n−1
√
ξφ̃2 − 1

67



68 CONCLUDING REMARKS

as a conformal factor. But unlike before 1 − ηξφ̃2 6= 0 is no longer guaranteed
automatically and a sign has to be assumed in order for the field rescaling

dφ̄ =

√
|1− ηξφ̃2|

ξφ̃2 − 1
dφ̃

to remain a smooth diffeomorphism Φ = Ψ−1. Hence, suppose 1− ηξφ̃2 > 0, then
the transformed solution (ḡ, φ̄) satisfies

Ricḡ −
1
2
Rḡ ḡ = dφ̄⊗ dφ̄− 1

2
|dφ̄|2ḡ ḡ + U(φ̄)ḡ − C(φ̄)Tm

�ḡφ̄+ U ′(φ̄) = c(φ̄) trḡ Tm

with U = V (Ψ2)/(ξΨ2−1)
n+1
n−1 , C = (ξΨ2−1)−1 and c = C ′/(n−1). It means that

the potential U and the energy-momentum tensor for the matter have switched
their signs. On the other hand, if 1− ηξφ̃2 < 0, the transformed equations read

Ricḡ −
1
2
Rḡ ḡ = −

[
dφ̄⊗ dφ̄− 1

2
|dφ̄|2ḡ ḡ − U(φ̄)ḡ

]
− C(φ̄)Tm

�ḡφ̄− U ′(φ̄) = −c(φ̄) trḡ Tm.

This can happen only if the coupling constant ξ lies properly between the values for
minimal and conformal coupling respectively. In that case the right hand side of
Einstein’s equations acquires an overall negative sign. In both cases it is doubtful
whether such equations constitute a reasonable theory. A more elaborate discussion
of this issue can be found in Abramo, Brenig and Gunzig [1].

As mentioned in chapter 4 it would be desirable to relax the analyticity as-
sumption on the prescribed asymptotic data. But even if this could be done the
method presented in this work is not directly suited to obtain a stability statement
similar to that of Ringström [27]. On the other hand the existence of asymptotic
expansions only is already quite useful in situations where the perturbation series
do not actually converge.
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