Structural Analysis of Proteins of Human Sphingolipid Metabolism

Dissertation

zur Erlangung des akademischen Grades des

Doktors der Naturwissenschaften (Dr. rer. Nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie

der Freien Universität Berlin

vorgelegt von

Maxim Rossmann

aus Charkow

Februar, 2008

Die vorliegende Arbeit wurde in der Zeit vom Februar 2003 bis Februar 2008 unter Anleitung von Prof. Dr. W. Saenger im Institut für Kristallographie der Freien Universität Berlin im Fachbereich Biologie, Chemie und Pharmazie durchgeführt.

- 1. Gutachter: Prof. Dr. W. Saenger
- 2. Gutachter: Prof. Dr. V. Haucke

Disputation am 11.04.2008

ABSTRACT

The amphiphilic saposins SapA, SapB, SapC, and SapD are glycoproteins acting at the lipid-water interface of intra-lysosomal lipid vesicles. They are required for the degradation of sphingolipids by glycosylceramidase and ceramidase, respectively, and lipid-antigen presentation by CD1 molecule. Despite the simple makeup of saposins, their mode of interaction with acidic phospholipid-containing membranes is not fully understood. The present work describes two high resolution crystal structures of human SapC that reveal an unusual homodimer with swapped monomers in an 'open' configuration. This novel form of SapC dimer provides new insights into protein-lipid interactions and supports the "clip-on" model for SapCinduced vesicle fusion. Small-angle X-ray scattering (SAXS) experiments with SapC have established the presence of SapC oligomers in solution supporting the mechanism in which SapC forms protein patches on the membrane surface and activates hydrolytic enzymes, of which one is a human acid ceramidase (ASAH) - a lysosomal enzyme indispensable for ceramide degradation in lysosomes as demonstrated by its association with the fatal sphingolipid storage disorder Farber disease. In the present work the X-ray crystal structure of the conjugated bile acid hydrolase (CBAH) from C. perfringens – a near bacterial homologue to the β -subunit of the human acid ceramidase – was determined at 1.6 Å resolution. Using CBAH structure, a homology model for acid ceramidase was generated, and residues responsible for the catalytic activity of the ASAH were proposed. The obtained 3D model of the ASAH provides a new tool to better understand Farber disease and the catalytic mechanism of the human acid ceramidase.

On the basis of the crystal structure of CBAH determined here and prior works on related bacterial enzymes, the processing, catalytic mechanism, and substrate binding of this enzyme are discussed. The structures of CBAH in complex with reaction products are the first structures of a member of the choloylglycine-hydrolase family complexed with products and provide a working model for engineering substrate specifity of N-terminal nucleophillic hydrolases, a protein family employed in the industrial production of β -lactam antibiotics.

ZUSAMMENFASSUNG

Saposine SapA, SapB, SapC und SapD sind amphiphile Glykoproteine und agieren an der Lipid-Wasser-Phasengrenze. Sie sind unentbehrlich für den lysosomalen Abbau von Sphingolipiden durch spezifische Hydrolasen und für die Präsentation von Lipid-Antigenen durch CD1-Moleküle. Trotz des einfachen dreidimensionalen Aufbaus der Saposine ist deren Interaktion mit azidischen Phospholipid-Membranen noch nicht vollständig verstanden. Vorliegende Arbeit beschreibt zwei Kristallstrukturen von menschlichem Saposin C (SapC), die eine ungewöhnliche homodimere offene Konformation mit vertauschten Monomeren (domain swapping) aufweisen. Diese neuartige Form der SapC Dimerisierung bietet neue Einblicke in Protein-Lipid-Wechselwirkungen und unterstützt das so genannte "clip-on" Modell, das für die durch SapC induzierte Vesikel-Fusion vorgeschlagen wurde. Röntgen Klein-Winkel-Streuung (SAXS) Experimente mit SapC zeigten das Vorhandensein von SapC Oligomeren in Lösung auf und unterstützten so den Mechanismus, in dem SapC durch die Bildung von Protein-Pflastern an der Phasengrenze hydrolytische Enzyme in Lysosom aktiviert. Die menschliche saure Ceramidase (ASAH) gehört dazu als lysosomales Enzyms unentbehrlich für den Abbau der Ceramide, wie der Zusammenhang zwischen dem Ausfall von der saueren Ceramidase und der tödlichen Farber-Krankheit aufzeigt. In dieser Arbeit wurde die Kristallstruktur der konjugierten Gallensäure hydrolase (CBAH) von C. perfringens bestimmt, die homolog der β -Untereinheit der ASAH ist. Die Struktur der CBAH wurde verwendet, um ein Homologie-Modell für die saure Ceramidase zu generieren sowie Aminosäuren vorzuschlagen, die verantwortlich für die katalytische Aktivität von ASAH sind. Das erhaltene 3D Modell bietet ein neues Werkzeug zum besseren Verständnis der Farber-Krankheit und des katalytischen Mechanismus der menschlichen saueren Ceramidase.

Auf der Grundlage der in dieser Arbeit bestimmten CBAH-Kristallstruktur und anderen Arbeiten an ähnlichen bakteriellen Enzymen werden Prozessierung, katalytisches Mechanismus und Substrat-Bindung der CBAH diskutiert. Die Strukturen von CBAH-Komplexen mit Reaktionsprodukten sind die ersten Strukturen dieser Art von Choloylglycine-Hydrolasen. Sie bieten ein Modell für die Manipulation der Substrat-Spezifität von so genannten Ntn-Hydrolasen, einer Protein-Familie, die bei der industriellen Herstellung von β -lactam Antibiotika verwendung findet.

DANKSAGUNG

Meinen größten Dank möchte ich an Prof. Dr. Wolfram Saenger aussprechen, der als großartiger Mensch und Wissenschaftler mich nachhaltig beeindruckt und geprägt hat und es mir ermöglichte, unter ausgezeichneten Bedingungen zu arbeiten und mir stets hilfreich und geduldig zur Seite stand.

Ebenso danke ich meine Freunden und Kollegen Dr. Timm Maier, Dr. Robert Schultz-Heienbrok, Dr. Wilhelm Weihofen und Dr. Thomas Spreter für die Einführung in die makromolekulare Kristallographie sowie stete Hilfe und die Möglichkeit, aus ihren Erfahrungen zu lernen.

Claudia Alings und Clemens Langner gilt mein Dank für die zuverlässige und ausgezeichnete Zusammenarbeit an zahlreichen Projekten.

Ich möchte mich ebenfalls bei Carsten Jakob für die wirksame technische (und nicht nur) Unterschtützung bedanken.

Bei Dr. Michael Engel and Dr. Ardi Vahedi bedanke ich mich für wissenschaftliche Disputen, die mich als Wissenschaftler geprägt haben.

Meinen Kollegen Daria Slowik und Jacek Biesiadka danke ich für die freundschaftliche und gutwillige Unterschtützung.

Ich möchte mich bei Prof. K. Sandhoff, Dr. N. Remmel und Dr. H. Schulze aus dem Universität Bonn bedanken, ohne die die Erstellung dieser Arbeit nicht möglich gewesen wäre.

Einen ganz besonderen Dank aber empfinde ich gegenüber meiner Familie und insbesondere meiner Marina, die mit viel Vertrauen mir die Zeit ließen, die nötig war, um die Arbeit zu erstellen, und die mit viel Liebe mir die Kraft gaben in schwierigen Phasen des Projektes die Arbeit fortzusetzen.

ABBREVIATIONS

AU	asymmetric unit
Å	Angstrom, 0.1 nm
ASAH	Human acid ceramidase
BESSY	Berliner Elektronenspeicherring Gesellschaft für Synchrotronstrahlung
°C	Degree Celsius
CD	Circular dichroism
СВАН	Conjugated bile salt hydrolase
DXC	Deoxycholate
E. coli	Escherichia coli
FOM	Figure of merit
IPTG	Isopropylthiogalactoside
MAD	multi- wavelength anomalous dispersion
OD ₆₀₀	Optical density at 600 nm
PDB	Protein Data Bank
P. pastoris	Pichia pastoris
PCR	Polymerase chain reaction
PEG	Polyethyleneglycol
r.m.s.d.	root mean square deviation
SAD	single wavelength anomalous dispersion
SDS	Sodium dodecyl sulfate
Tris	Tris - (hydroxymethyl) - aminomethane
UV ₂₈₀	Ultraviolet absorption at 280

CONTENT

1	INT	TRODUCTION	1
	1.1	Sphingolipids	1
	1.2	Glycosphingolipid degradation	3
	1.3	Sphingolipid activator proteins	4
	1.4	Direct interactions of saposins with hydrolytic enzymes	6
	1.5	Sphingolipidoses	7
	1.6 Human acid ceramidase		9
	1.7 Biological role of ceramide		11
	1.8	Biological role of bile salts	12
	1.9	Conjugated bile acid hydrolase (CBAH)	14
	1.10	Ntn-hydrolases	14
	1.11	Biotechnological applications of Ntn-hydrolases	16
2	AIN	M OF THIS WORK	19
3	MA	ATERIALS AND METHODS	
	3.1	SapC	20
	3.1 3.1.	SapC .1 Cloning and expression of SapC	20 20
	3.1 3.1. 3.1.	SapC .1 Cloning and expression of SapC .2 Protein precipitation by chloroform/methanol	20 20 20
	3.1 3.1. 3.1. 3.1.	SapC .1 Cloning and expression of SapC .2 Protein precipitation by chloroform/methanol .3 High-density fermentation of SapC	20 20 20 21
	3.1 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC 	20 20 21 21
	3.1 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC 	20 20 21 21 21 22
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC 1 Cloning and expression of SapC 2 Protein precipitation by chloroform/methanol 3 High-density fermentation of SapC 4 Purification of SapC 5 Crystallization of SapC 6 Collection and processing of SapC X-ray datasets 	20 20 21 21 21 22 22
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC Collection and processing of SapC X-ray datasets Circular dichroism spectroscopy. 	20 20 20 20 21 21 21 22 22 22
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC Collection and processing of SapC X-ray datasets Circular dichroism spectroscopy Small-angle X-ray scattering 	20 20 20 20 21 21 21 22 22 22 22 22
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC Collection and processing of SapC X-ray datasets Circular dichroism spectroscopy Small-angle X-ray scattering Cloning of CBAH and CBAH mutants 	20 20 20 21 21 21 22 22 22 22 23 23
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC Collection and processing of SapC X-ray datasets Circular dichroism spectroscopy Small-angle X-ray scattering Cloning of CBAH and CBAH mutants Conjugated Bile Salt Hydrolase (CBAH) 	
	3.1 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.	 SapC Cloning and expression of SapC Protein precipitation by chloroform/methanol High-density fermentation of SapC Purification of SapC Crystallization of SapC Crystallization of SapC Collection and processing of SapC X-ray datasets Circular dichroism spectroscopy Small-angle X-ray scattering Cloning of CBAH and CBAH mutants Conjugated Bile Salt Hydrolase (CBAH) Expression and purification of CBAH and CBAH variants. 	20 20 20 21 21 21 22 22 22 22 22 23 23 23 23 24

3.2.3	Conjugated bile salt hydrolase assay	26
3.2.4	Crystallization of CBAH and CBAH variants	27
3.2.5	Collection and processing of CBAH datasets	28
3.2.6	Docking of choloylglycine into the active site of CBAH	28
3.2.7	Tunnel identification using CAVER	29
3.3 Hur	man acid ceramidase (ASAH)	29
3.3.1	Expression and purification of ASAH	29
3.3.2	Crystallization of ASAH	29
3.3.3	Collecting of ASAH X-ray diffraction data	30
3.3.4	Homology modelling of the <i>b</i> -subunit of ASAH	30
3.3.5	Structure analysis and generation of figures	30
4 RESUL	TS	32
4.1 Sap	pC	32
4.1.1	Expression and purification of SapC	32
4.1.2	CD spectroscopy of SapC	32
4.1.3	Crystallization of SapC	37
4.1.4	Determination of the structure of SapC	38
4.1.5	Overall structure of SapC	40
4.1.6	Conformational flexibility and oligomerization of SapC	43
4.1.7	SAXS studies on SapC in solution	44
4.1.8	Initial interactions of saposins with lipid head groups	45
4.2 Cor	njugated bile salt hydrolase (CBAH)	49
4.2.1	Expression and purification of CBAH	49
4.2.2	Crystallization of CBAH and X-ray data collection	50
4.2.3	Structure determination of CBAH	52
4.2.4	Overall structure of CBAH	56
4.2.5	Quaternary structure of CBAH	59
4.2.6	Substrate-binding pockets of CBAH	61
4.2.7	Structural comparison of CBAH to other proteins	64

	4.2.8	3 (Catalytic mechanism of CBAH	68
	4.2.9	9 (Catalytic activity of CBAH variants	71
	4.2.1	10 I	Role of Arg18 in the active site of CBAH	72
4.2.11		11	Processing of CBAH	75
	4.2.1	12	Initial substrate binding by CBAH	76
	4.2.13		Product binding by PVA	78
	4.2.1	14	Substrate selectivity of CBAH	80
	4.2.1	15 (CBAH inhibitors	83
	4.3	Acid	ceramidase (ASAH)	83
	4.3.1	1 (CD spectroscopy of CBAH and ASAH	83
	4.3.2	2 (Crystallization of ASAH and X-ray data collection	85
4.3.3		3 I	Homology modelling of the acid ceramidase subunits	86
	4.3.4	4 `	Validation of the homology model of the <i>b</i> -subunit	87
	135		Proposed active site of ASAH	89
	4.0.0			
5	DIS	CUSS	SION	92
5	DIS 5.1.1		SapC	92
5	5.1.1	CUSS	SapCAcid ceramidase	92 92 97
5	5.1.1 5.1.2	CUSS	SION SapC Acid ceramidase Conjugated bile salt hydrolase	92 92 97 98
5	5.1.1 5.1.2 5.1.3 5.1.3 5.1.3	CUSS 1 3 3 0 PEND	Sion SapC Acid ceramidase Conjugated bile salt hydrolase	92 92 97 98 101
5	5.1.1 5.1.2 5.1.3 5.1.3 6.1	CUSS 1 3 2 7 3 0 PEND Theo	Sion SapC Acid ceramidase Conjugated bile salt hydrolase IX	92 92 97 98 101 .101
5	DIS 5.1.1 5.1.2 5.1.3 APP 6.1 6.2	CUSS CUSS 1 3 2 7 3 0 PEND Theo Cryst	Sion	92 92 97 98 101 .101
5	 4.3.2 DIS(5.1.2 5.1.3 APP 6.1 6.2 6.3 	CUSS CUSS 1 3 2 7 3 0 PEND Cryst Cryst	SION	92 92 97 98 101 .101 .103 .103
5	 4.3.2 DIS(5.1.2 5.1.3 5.1.3 APP 6.1 6.2 6.3 6.4 	CUSS CUSS 1 3 2 7 3 0 PEND Cryst Cryst X-ray	Sion SapC Acid ceramidase. Conjugated bile salt hydrolase. IX ory of X-ray crystallography. tal mounting in a capillary tube tal cryo-cooling	92 92 97 98 101 .101 .103 .103 .104
5	 DIS 5.1.1 5.1.2 5.1.3 APP 6.1 6.2 6.3 6.4 6.5 	CUSS CUSS 1 3 2 7 3 0 PEND Cryst Cryst Cryst X-ray X-ray	SapC SapC Acid ceramidase Conjugated bile salt hydrolase IX IX In ounting in a capillary tube tal mounting in a capillary tube tal cryo-cooling / data collection	92 92 97 98 101 . 101 . 103 . 103 . 104 . 104
5	4.3.0 DIS(5.1.1 5.1.2 5.1.3 APP 6.1 6.2 6.3 6.4 6.5 6.6	CUSS CUSS CUSS 2 2 2 3 0 PEND Cryst Cryst X-ray X-ray Circu	Sion	92 92 97 98 101 .101 .103 .103 .104 .104 .104
5	 DIS 5.1.1 5.1.2 5.1.3 APP 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	CUSS CUSS CUSS 2 2 2 3 7 END Cryst Cryst X-ray X-ray Circu SAX	SION	92 92 97 98 101 .101 .103 .103 .104 .104 .104 .104
5	 DIS 5.1.1 5.1.2 5.1.3 APP 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	CUSS CUSS CUSS 1 3 2 7 PEND Cryst Cryst Cryst X-ray X-ray Circu SAX Hom	SION	92 92 97 98 101 .101 .103 .103 .104 .104 .104 .104 .106 .107

7	REFERENCES	110
8	CURRICULUM VITAE	119
9	LIST OF PUBLICATIONS	120