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 3 

In this chapter the details of the development of the B4(XQ3)LYP approach for the 
calculation of the redox potentials of transition metal complexes (TMC) will be 
represented. The chapter begins with the description of the computational methods 
followed by the presentation of results, discussion and conclusion. 

3.1 Computational methodology 

3.1.1 Model compounds 

In this work a total of 48 4- and 6-coordinated TMCs were considered, including iron, 
manganese and nickel with diverse inorganic and organic ligands. The chemical 
structures of the ligands involved in considered TMCs can be found in the Table A1 of 
the Appendix section. Figures representing the three-dimensional structures of all 
considered compounds are also available in the Appendix (Figure A1). The TMCs were 
divided into two parts, namely: 

1) 30 compounds (with 38 measured redox potentials by considering different 
solvents and redox states) for the training set to determine the parameters 
(Table 1) and 

2) 18 compounds (with 20 measured redox potentials by considering different 
solvents and redox states) for the prediction set (Table 2). 
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Table 1. Training set of 30 different TMCs for which redox reactions are considered in three different 
solvents [water (W), acetonitrile (AN), dimethylformamide (DMF)].  

No.a model compoundb solventc  No.a model compoundb solventc 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13d. 

14. 

15. 

16. 

[Fe(CN)6]3−/4− 

[Fe(bpy)3]3+/2+ 

[Fe(bpy)2(CN)2]1+/0 

[Fe(phen)3]3+/2+ 

[Fe(diammac)]3+/2+ 

[Fe(sar)]3+/2+ 

[Fe(tacn)2]3+/2+ 

[Fe(PyIm2H2)2]3+/2+ 

[Fe(PyIm2)2]1−/2− 

[Fe(PypepO)2]1-/2- 

[Fe(PypepS)2]1−/2− 

[Fe(PyAS)2]1+/0 

[Fe(bpteta)2]3+/2+ 

[Fe(DITim)2]1+/0 

[Fe(Pypep)2]1+/0 

[Fe(Prpep)2]1+/0 

W

W,AN,DMF

W

W,AN,DMF

W

W

W

AN

AN

DMF

DMF

DMF

AN

AN

W,AN,DMF

W

 17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26i. 

26ii. 

27i. 

27ii. 

28. 

29. 

30. 

[Fe(PaPy3)(AN)]2+/1+ 

[Fe(PaPy3)(Cl)]1+/0 

[Fe(PaPy3)(N3)]1+/0 

[Fe(PaPy3)(CN)]1+/0 

[Fe(PaPy2O)(Cl)]0/1− 

[Fe(SEt)4]1−/2− 

[Fe(S2-o-xyl)2]1−/2− 

[Fe(SEtOH)4]1−/2− 

[Mn(CN)6]3−/4− 

[Mn(bpia)(Cl)2]2+/1+ 

[Mn(bpia)(Cl)2]1+/0 

[Mn(py2(NMe)2)(Cl)2]2+/1+ 

[Mn(py2(NMe)2)(Cl)2]1+/0 

[Mn(bpteta)]3+/2+ 

[Ni(bpy)]3+/2+ 

[Ni(bpteta)]3+/2+ 

AN

AN

AN

AN

DMF

AN

DMF

W

W

AN

AN

AN

AN

AN

W

AN

a Numbers in front are used to refer to specific TMCs in text.  
b The total charges of the pairs of redox states are given as superscripts; for some TMCs (26, 27) the redox potential is measured for 
two different pairs of redox states; a complete list of the structure of ligands is given in table S1 of the supplementary material; 
abbreviations for ligands: AN=acetonitrile; bpy=2,2'-bipyridinyl; phen=1,10-phenanthroline; diammac= 6,13-dimethyl-1,4,8,11-
tetraazacyclotetradecane-6,13-diamine; sar=3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosane; tacn=1,4,7-triazonane; PyIm2=2,6-di-
(1H-imidazol-2-yl)-pyridine-11,16-diide; PypepO=N-(2-hydroxyphenyl)pyridine-2-carboxamide-7,8-diide; PypepS=N-(2-
mercaptophenyl)pyridine-2-carboxamide-7,8-diide; PyAS= 2-[(pyridin-2-ylmethylene)-amino]-benzenethiol-15-ide; bpteta=N-
pyridin-2-ylmethyl-N'-(2-{2-[(pyridin-2-ylmethyl)-amino]-ethylamino}-ethyl)-ethane-1,2-diamine; DITim=3-[2-(1H-imidazol-4-
yl)-ethylimino]-2-methyl-butane-2-thiol-11-ide; Pypep= N-[2-(1H-imidazol-4-yl)ethyl]pyridine-2-carboxamide-8-ide; 
Prpep=pyrimidine-4-carboxylic_acid_[2-(1H-imidazol-4-yl)-ethyl]-amide-8-ide; PaPy3=N-{2-[bis(pyridin-2-
ylmethyl)amino]ethyl}pyridine-2-carboxamide-18-ide; PaPy2O=N-{2-[bis(pyridin-2-ylmethyl)amino]ethyl}-2-hydroxybenzamide-
18,27-diide; SEt= ethanethiol-1-ide; S2-o-xyl=1,2-phenylenedimethanethiol-8,10-diide; SEtOH=2-mercapto-ethanole-1-ide; 
bpia=(1-methyl-1H-imidazol-2-ylmethyl)-bis-pyridin-2-ylmethyl-amine; py2(nMe)2= 3,11-dimethyl-3,11-diaza-
tricyclo[11.3.1.15,9]octadeca-1(16),5,7,9(18),13(17),14-hexaene.  
c The solvents for which the redox potentials were measured are: W: water; AN: acetonitrile; DMF: dimethylformamide. 
d Since compound 13 exhibited maximum deviation from the measured redox potentials its contribution was ignored in the first step 
of the fitting procedure [described in the Results and Discussion part (0)] and considered only for the second step. 
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Table 2. Prediction set of 18 different TMCs for which redox reactions are considered in three different 
solvents [water (W), acetonitrile (AN), dimethylformamide (DMF)].  

No.a model compound b solvent c  No.a model compound b solvent c 

31i 

31ii 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

[Fe(cyclamAc)(N3)] 2+/1+ 

[Fe(cyclamAc)(N3)] 1+/0 

[Ni(tacn)2]3+/2+ 

[Fe(dtne)]3+/2+ 

[Ni(dtne)]3+/2+ 

[Fe(terpy)2]3+/2+ 

[Fe(SPh)4]1−/2− 

[Fe(SCH2CON(CH3)2)4]1−/2− 

[Fe(S-i-Pr)4]1−/2−  

[Fe(bpy)(CN)4]3+/2+ 

AN

AN

W

W

W

DMF

AN

AN,DMF

AN

W

 40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

[Fe(tacnPy2)(AN)]3+/2+ 

[Fe(N4Py)(Cl)]2+/1+ 

[Fe(N4Py)(AN)]3+/2+ 

[Fe(Py3tacn)]3+/2+ 

[Ni(Py3tacn)]3+/2+ 

[Fe(TCTA)]0/1− 

[Ni(TCTA)]0/1− 

[Mn(TCTA)]0/1− 

[Fe(Pyr2Py)2]3+/2+ 

AN

AN

AN

AN

AN 

W

W

W

AN 

a Numbers in front are used to refer to specific TMCs in text.  
b The total charges of the pairs of redox states are given as superscripts; for compound 31 the redox potential is measured for two 
different pairs of redox states; abbreviations for ligands besides those already mentioned in Table 1: cyclamAc=(1,4,8,11tetraaza-
cyclotetradec-1-yl)-acetic acid anion; dtne = 1,2-di(1,4,7-triazonan-1-yl)ethane; terpy = 2,2':6',2''-terpyridine, SPh = benzenethiol-
7-ide; (CH3)2NCOCH2S  = N,N-dimethyl-2-sulfanylacetamide-1-ide; HS-i-Pr = propane-2-thiol-1-ide; tacnPy2 = 1-(dipyridin-2-
ylmethyl)-4,7-dimethyl-1,4,7-triazonane; N4Py = 2,2-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethanamine; Py3tacn = 1,4,7-
tris(pyridin-2-ylmethyl)-1,4,7-triazonane; TCTA = 2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetate; Pyr2Py = 2,6-bis(3,4-dihydro-2H-
pyrrol-5-yl)pyridine.  
c The solvents for which the redox potentials were measured are: W: water; AN: acetonitrile; DMF: dimethylformamide. 

For the development of the approach, which will be described in this chapter, only the 
training set has been used. The prediction set was introduced at a later time to validate 
our approach more carefully. Since the same training set without any change of the 
parameters has been used, this test can be considered as a true blind prediction. While 
some of considered complexes have been known for a long time, others have been 
synthesized only within the last three decades[100-119]. Several of these complexes were 
synthesized to mimic commonly observed cofactors in proteins[104, 106-108, 110-112, 115, 116, 

118, 119] as well as the metal-chelating part of bleomycin[105, 111, 112, 114].  

The model compounds were selected systematically to include nitrogen, oxygen, sulfur, 
carbon and chlorine as coordinating atoms. These are the atoms, which are most 
frequently seen in the coordination sphere of the metal centers of protein cofactors. 
Similarly, the metal atoms of Fe, Mn and Ni, involved in the chosen transition metal 
complexes, are biologically most relevant. It is sufficient to mention, such important 
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biological systems, as photosystem I/II (Fe and Mn), hemoglobin (Fe), cytochromes 
(Fe) and hydrogenases (Fe and Ni), in which these metals are playing a crucial role.  

Another criterion for the selection of the model compounds was the availability of  
experimentally measured reliable redox potentials (see also part 2.2). Model 
compounds, which demonstrate an irreversibility of the redox reaction pointing to larger 
conformational changes, were sorted out.   

Since the computational costs are increasing with the number of atoms (~ 3
atomN for 

DFT), one was interested in relatively small compounds. The smallest available TMCs, 
which  were considered (TMCs 1 and 25) consist of 13 atoms. However, the rest of 
compounds are relatively large with number of atoms between 29 and 67 (see Figure 
19).  

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Computation of redox potentials 

The standard (°) redox potential E° of the redox reaction Oxs + eg → Reds in solution is 
given by  

 s SHE

n F n F
G GGE Δ −ΔΔ

= − = −
⋅ ⋅

, (3.1) 

Figure 19. Diagram showing the occurrence of the model TMCs in our training and prediction sets
dependent on the number of atoms. 
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where GΔ , sGΔ  and SHEGΔ  are, respectively, the standard Gibbs free energy of 

reduction relative to that of H+ [standard hydrogen electrode (SHE)], the standard Gibbs 
free energy of reduction, and the Gibbs free energy of the redox reaction 

1
water g 2(g)2H e H+ + →  at SHE. The Faraday constant is F = 23.06 kcal·mol−1·V−1, the 

number of transferred electrons in the redox reaction is n. Since in this study, only one-
electron transfer processes are considered, the parameter n in Eq. (3.1) is equal to 1. In 
the paragraph 2.2.1, a number of methods, which suggest different values for the 
absolute potential of SHE, including numbers in the range from 4.2 V to 4.73 V[86-93] 
have been already mentioned. Since there is no general agreement on the absolute value 
of SHE so far, the value of 4.44 V recommended by IUPAC[86] was considered. 
Converting this redox potential value into energy one obtains SHEGΔ = −4.44 eV. It 

should be emphasized that the particular value of SHEGΔ  used is not crucial for the 

B4(XQ3)LYP-approach, since the computed redox potentials can at the end still be 
adjusted to a different value of SHEGΔ .  

 

 

 

 

 

 

 

 

The standard free energy of reduction sΔG  can be calculated routinely using the 

thermodynamic cycle[120, 121] describing the relation between the electron attachment 
process in vacuum [gas phase, (g)] and the corresponding reduction in solution (Figure 
20).  

The free energy of a specific redox state (Red or Ox) of TMC in solution is defined as  

 s g solG G G= + Δ , (3.2) 

 

Figure 20. Thermodynamic cycle for the redox process.
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where gG  and solGΔ  are free energy in vacuum and free energy of solvation (see 

paragraph 2.1.2.3), respectively. Therefore, the free energy of a redox reaction in 
solution can be given as  

 s s s g sol(Re d) (Ox)G G G G GΔ = − = Δ + ΔΔ . (3.3) 

The free energy in vacuum can be calculated as follows  

 g 0 0 298KZPEG E G →= + + Δ , (3.4) 

where E0 is the ground-state electronic energy in vacuum, ZPE the zero-point 
vibrational energy and 0 298KG →Δ  the thermal vibration free energy at 298 K. The values 

of E0, ZPE and 0 298KG →Δ  were calculated quantum chemically. The details of the 

quantum-chemical computations are given in paragraph 3.1.3. 

3.1.3 Quantum chemistry 

The quantum-chemical computations were done with the DFT method implemented in 
the program JAGUAR, version 5.5[122]. The JAGUAR package was chosen due to its high 
performance especially for the treatment of systems, containing transition metals.  

The quantum-chemical computations performed in this study include the following 
three procedures (see Figure 21). First of all the geometries of the model compounds 
were optimized. Where the coordinates of the crystal structures were available, they 
were used as starting structures for the optimization; otherwise structures were created 
using the program Molden[123]. In all cases, geometry optimizations of the model 
compounds were performed in vacuum using the B3LYP functional with LACVP[124] 
effective core potential for transition metal atoms and 6-31G** basis functions for main 
group atoms (corresponding to LACVP**).  

In the second step, single-point energies [E0 in eq. (3.4)] for the computation of redox 
potentials were calculated for optimized geometries in vacuum, using the B3LYP and 
the newly introduced B4LYP (see below) functionals with large basis set 
LACV3P**++. This basis set includes the LACV3P[122] effective core potential for 
transition-metal atoms and 6-311++G** basis functions for all other atoms.  

The optimized geometries were also used in the third step, where the vibrational 
frequency calculations were performed to obtain zero-point energies and vibrational 
correction to the free energies at 298K, 0 298KG →Δ .  
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For these computations the B3LYP functional combined with the LACVP** basis set 
was used. No scaling of frequencies was applied, since its effect would be very smallin 
the energy differences between reduced and oxidized states. The considered model 
compounds can have different spin states (as already explained in the part 2.3). 
Therefore, both low- and high-spin states for the reduced and oxidized complexes were 
included in the computations. Moreover, as it will be shown in part 4.1, one of the 
development steps of the B4(XQ3)LYP-approach is directly related to the problem of 
spin states of the TMCs. For open shell systems unrestricted DFT was used. To explore 
how the spin multiplicity of the electronic ground state is reproduced using specialized 
DFT methods, the single point electronic energies were computed with B3LYP*[21] and 
X3LYP[125, 126] functionals for some TMCs (see Table A4-5 of appendix). 

3.1.4 B4XLYP hypothesis. Introduction of the B4(XQ3)LYP-approach 

The B4XLYP hypothesis, which will be described in the following, is the central idea of 
our study. It is indeed very simple and suggests a new four-parameter hybrid functional 
B4XLYP (hypothetical functional), which can be obtained by rewriting the B3LYP 
functional as follows  

 
 
 

Geometry optimization 

Starting structure 

 
 
 

Single-point energy calculation 

Optimized structure 
 
 
 

Frequency calculation 

Optimized structure 

ZPE ΔG0→298K E0 

Figure 21. Diagram representing quantum-chemical computations, necessary for obtaining of the
energy data, entering eq. (3.4). 
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 B4XLYP exact LSDA X B88 LYP VWN
0 0 x 0 x x x x c c c câ (1 a ) a a (1 a )= + − + + Δ + + −E E E E E E E . (3.5) 

In this functional, â0 is an additional variable parameter for the exact exchange term, 
exact
xE , differing from a0 the parameter for LSDA

xE  that remains at the standard value of 

0.20. Thus introducing â0 one decouples the parameters of exact exchange exact
xE  and 

local exchange LSDA
xE , used for the standard B3LYP functional [Eq. (1.1)]. The 

parameter adjustment yields â0 obeying 0 < â0 < a0. Setting of this condition leads to a 
decreased weight of exact

xE  in the functional.  To compensate for decrease of the exact 

exchange contribution and possible deficiencies of the B3LYP functional an additional 
term X

xE  of yet unknown form (abbreviated as X in the notation B4XLYP) is 

introduced. As long as X
xE  has not been specified explicitly the expression (3.5) 

involves four parameters. The parameters (a0, ax, ac) adopt the same values as in the 
B3LYP functional, such that for â0 = a0 and X

xE =0 one regains the B3LYP functional. 

As long as the X
xE  part is unknown the B4XLYP functional remains hypothetical and 

cannot directly be used for the computation of electronic energies. Nevertheless, the 
B4XLYP hypothesis can be validated indirectly for certain properties of transition metal 
complexes as described in the following.  

It is assumed, that the influence from the unknown X
xE  can be accounted for by first 

computing the electronic ground state energies with the incomplete four parameter 
functional B4LYP (B4XLYP without X

xE )  

 B4LYP exact LSDA B88 LYP VWN
0 0 x 0 x x x c c c câ (1 a ) a a (1 a )= + − + Δ + + −E E E E E E  (3.6) 

and adding an appropriate empirical correction term GX afterwards. For convenience, 
the whole machinery is called the B4(XQ3)LYP-approach. Abbreviation (XQ3) points 
at the character of the correction term GX, which in our applications is a function of the 
charge of the redox-active complex and involves three additional parameters (see details 
in paragraph 4.2). Thus, the free energy in vacuum, which is computed is a combination 
of quantum-chemical and empirical parts:  

 ,B4(XQ3)LYP approach B4LYP , B4LYP
g 0 0 298K gZPE−

→= + + Δ + = +X XG E G G G G . (3.7) 

The correction GX is determined by fitting a third-order polynomial GX(q) (involving 
four coefficients) in the total charges q of the reduced states of the considered TMCs to 
optimize the agreement between calculated and measured redox potentials. To evaluate 
redox potentials, energy differences involving GX(q) - GX(q+1) are considered. Note, 
that in these differences the constant term of the polynomial GX(q) cancels. Hence, the 
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correction term involves three additional parameters such that for the B4(XQ3)LYP-
approach a total of seven parameters are used from which three parameters adopt the 
same values as in the B3LYP functional. In the procedure to determine the coefficients 
of the polynomial GX(q), 30 different TMCs of the training set (Table 1), were 
considered (see below for more details). It should be noted here that the B4LYP 
functional is incomplete and can therefore not be used for geometry optimization for 
which exclusively the B3LYP functional is used. With â0 = 0.12 (a0 = 0.20) in eq. (3.6), 
used to compute redox potentials of transition metal complexes, the B4LYP DFT 
functional reproduces correctly the experimental spin multiplicities of the electronic 
ground states for the studied compounds. This is in analogy to the B3LYP* 
functional[21], which corresponds to the parameter values of â0 = a0 = 0.15 in eq. (3.6). 
Except for TMCs 13, 16 and 18 the B3LYP* functional yields for the free energies in 
dielectric medium sG , eq. (3.3), the proper spin multiplicity (Table 3) (See paragraph 

4.1 for more details.)  

3.1.5 Generation of atomic partial charges 

Since the procedure involves computations of electrostatic solvation energies, one needs 
appropriate atomic partial charges. In paragraph 2.1.3 some common strategies for the 
generation of atomic partial charges were already represented. Using the strategy, which 
is the most appropriate for the given TMC system is an important point. In the 
following details of the procedure used in B4(XQ3)LYP-approach are given to generate 
atomic partial charges.  

Atomic partial charges were determined from the electrostatic potentials derived from 
the molecular electronic wave functions. The necessary quantum-chemical 
computations were done in vacuum at the B3LYP/LACVP** level of theory using 
JAGUAR 5.5[122]. Electrostatic potentials were calculated on a grid formed by merging 
sets of spherical shells with centers located on the atomic nuclei, with no grid points 
within the molecular vdW surface. The values of the vdW radii used by the program 
Jaguar 5.5[122] for electrostatic potential computation were used as is (H 1.597 Å, C 
1.949 Å, N 1.831 Å, O 1.702 Å, S 2.070 Å, Cl 1.958 Å, Fe 1.456 Å). These electrostatic 
potentials were used in the RESP[65, 77] two-step procedure, which fits the quantum 
chemically calculated electrostatic potential with an atom-centered point-charge model 
(for details see paragraph 2.1.3). The charge fitting was performed in two stages using 
hyperbolic restraints with the total charge fixed. In the first stage of the RESP procedure 
the atomic charges were allowed to change with a restraining weight of a = 0.0005 a.u. 
[Eq. (2.50)]. In the second stage charges on hydrogen atoms and their neighbor atoms 
were left free while all other atomic charges were constrained at their values obtained 
from the first stage using a restraining weight of a = 0.001 a.u.. 
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3.1.6 Computation of solvation energy 

For the computation of solvation energy solGΔ  the solvent was represented as dielectric 

continuum, with dielectric constants of εw = 80.0, εAN = 37.5 and εDMF = 36.7 for water, 
acetonitrile (AN) and dimethylformamide (DMF), respectively[127]. The solvation 
energies were computed with the program SOLVATE from the MEAD program suite[53, 

54] by solving the Poisson equation numerically by a finite difference method. In this 
approach, the solute is represented by a set of atomic point charges embedded in the 
solute cavity with dielectric constant ε = 1. Outside the solute cavity, a dielectric 
constant appropriate for the solvent was taken and the ionic strength was set to zero. 
The boundaries of the solute are defined by the molecular surface using atomic radii for 
the solute atoms with a solvent probe radii of 1.4 Å, 2.23 Å and 2.54 Å for water, AN 
and DMF, respectively. These solvent probe radii of AN and DMF were estimated by 
the probe-radius calculator implemented in the program JAGUAR, which determines the 
probe radius according to molecular weight and density of the solvent[122]. Optimized 
geometries were used for the computation of solvation energies. The implicit-solvent 
model in the electrostatic calculations represented by probe radii and dielectric constant 
ignores specific properties of the solvent, which in turn influence the solute cavity. To 
account for these effects in the solvation model different sets of solute atomic radii for 
different solvents were used, following previous workers[12, 14, 128]. The solute atomic 
radii for each solvent were optimized to obtain in combination with B4LYP and the 
ΔGX correction the best agreement between calculated and measured redox potentials 
(see part 0). As a starting set for the optimization the Bondi atomic radii[129] were used. 
These are in Å for H, C, N, O, Cl, and S: 1.2, 1.7, 1.55, 1.52, 1.75 and 1.8. Since the 
transition metal atom is situated in the center of the complex, buried by ligand atoms, its 
atomic radius practically does not contribute to the surface of the complex. Therefore, 
its radius was not optimized, leaving the value of 1.456 Å (Fe), 1.480 (Mn) and 1.417 
(Ni) from the JAGUAR data set unchanged[122]. The two-step focusing procedure was 
used to solve the Poisson equation on a grid consisting of (189)3 points, using first a 
low- and then a high-resolution grid with lattice constants of 0.4 Å and 0.1 Å, 
respectively.  




